DOI QR코드

DOI QR Code

Pointing Accuracy Analysis of Space Object Laser Tracking System at Geochang Observatory

거창 우주물체 레이저 추적 시스템의 추적마운트 지향 정밀도 분석

  • Received : 2021.06.30
  • Accepted : 2021.09.27
  • Published : 2021.11.01

Abstract

Korea Astronomy and Space Science Institute has been verifying the multipurpose laser tracking system with three functions of satellite laser tracking, adaptive optics and space debris laser tracking for not only scientific research but also national space missions. The system employs an optical telescope consisting of a 100 cm primary mirror and an altazimuth mount for fast and precise tracking. The precise pointing and tracking capability in a tracking mount is considered as one of important performance metrics in the fields of automatic tracking and precise application research. So it is required to analyze a mount model for investigating pointing error factors and compensating pointing error. In this study, we investigated various factors causing static pointing errors of tracking mount and analyzed the pointing accuracy of the tracking mount at Geochang observatory by estimating mount parameters based on the least square method.

거창 우주물체 레이저 추적 시스템은 인공위성 레이저 추적, 적응광학, 우주쓰레기 레이저 추적 등 과학 연구 및 국가적 미션을 수행하기 위해 100cm 크기의 광학 망원경을 가지고 있으며, 빠르고 정밀한 구동을 위하여 경위대식 방식의 추적마운트를 개발하여 테스트 관측 중에 있다. 최근 레이저 추적 시스템의 자동 관측 및 응용 연구 분야에서 추적 대상을 정밀하게 추적할 수 있는 능력은 시스템 성능을 판단할 수 있는 중요한 지표 중 하나이다. 그러기 위해서는 정밀 추적을 저해하는 요인을 파악하고 보정하기 위한 지향 보정 모델이 요구된다. 따라서 본 논문에서는 추적마운트 제작, 조립 및 설치 과정에서 발생 할 수 있는 정적 지향 오차 발생 원인들을 분석하였으며, 거창 우주물체 레이저 시스템의 추적마운트에 적용된 지향 보정 모델 및 최소자승법을 통해 추적마운트 파라미터를 추정하고, 지향 정밀도 분석 결과를 제시하였다.

Keywords

Acknowledgement

이 연구는 한국천문연구원 주요사업 "우주물체감시 관측인프라 통합운영(2021185403)" 과제로 수행된 연구 결과이며, 본 연구에 대한 검토 의견을 주신 최철성 박사님께 감사드립니다.

References

  1. Sung, K. P., Choi, E. J., Lim, H. C., Jung, C. G., Kim, I. Y. and Choi, J. S., "Development of Operation Software for High Repetition rate Satellite Laser Ranging," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 12, December 2016, pp. 1103~1111. https://doi.org/10.5139/JKSAS.2016.44.12.1103
  2. Choi, M. S., Lim, H. C. and Lee, S. J., "Development and Preliminary Performance Analysis of a fast and high precision Tracking Mount for 1m Satellite Laser Ranging," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 11, November 2016, pp. 1006~1015. https://doi.org/10.5139/JKSAS.2016.44.11.1006
  3. Medvedsky, M. and Pap, V., "The new pointing model of telescope based on tracking data," Proceedings of the 16th International Workshop on Laser Ranging, Poznan Poland, October 2008.
  4. Lim, H. C., Park, J. U., Choi, M. S., Choi, C. S. and Choi, J. D., "Performance Analysis of DPSK Optical Communication for LEO-to-Ground Relay Link Via a GEO Satellite," Journal of Astronomy and Space Sciences, Vol. 44, No. 1, January 2020, pp. 11~18.
  5. Lim, H. C., Yu, S. S., Sung, K. P., Park, J. U., Choi, C. S. and Choi, M. S., "Performance Analysis of M-ary Optical Communication over Log-Normal Fading Channels for CubeSat Platforms," Journal of Astronomy and Space Sciences, Vol. 37, No. 4, November 2020, pp. 219~228. https://doi.org/10.5140/JASS.2020.37.4.219
  6. Zhang, X. X. and WU, L. D., "The Basic Parameters of Static Pointing Model of Telescope," Chinese Astronomy And Astrophysics, Vol. 25, No. 4, 2001, pp. 499~505. https://doi.org/10.1016/S0275-1062(01)00103-5
  7. Wang, Y., Lou, Z, Zuo, Y. X., Kang, H. R. and Zhang M. Z., "Study on the pointing model of a slant-axis terahertz antenna," Research in Astronomy and Astrophysics, Vol. 20, No. 4, April 2020.
  8. Keitzer, S., Kimbrell, J. and Greenwald, D., "Deterministic errors in pointing and tracking system I: identification and correction of static errors," Proceedings of the SPIE 1482 Acquisition Tracking and Pointing V, August 1991, pp. 406~411.
  9. Prabu, K., Cheepalli, S. and Kimar, D. S., "Analysis of PolSK based FSO system using wave-length and time diversity over strong atmospheric turbulence with pointing errors," Optics Communications, Vol. 324, August 2014, pp. 318~323. https://doi.org/10.1016/j.optcom.2014.03.058
  10. Hus, Y. Y. and Wang, S. S., "A new compensation method for geometry errors of five-azis machine tools," Optics International Journal of Machine Tools and Manufacture, Vol. 47, February 2007, pp. 352~360. https://doi.org/10.1016/j.ijmachtools.2006.03.008
  11. Yang, L., Cunbo, F., Han X., Chengzhi L., Zhipeng, L., Mingguo, S., Xue, D., Qingli, S. and Haitao, Z., "Research on Pointing Model of Telescope Based on SLR Tracking Data," Proceedings of SPIE-The International Society for Optical Engineering, Beijing China, Vol. 8201, November 2011.
  12. Huang, L., Ma, W. and Huang, J., "Modeling and calibration of pointing error with alt-az telescope," New Astronomy, Vol. 47, February 2016, pp. 105~110. https://doi.org/10.1016/j.newast.2016.02.007
  13. Luck, M. J., "Mount Model Stability," Proceedings of 14th International Workshop on Laser Ranging, San Fernando, Spain, June 2004.
  14. Rickelfs, R. L., "Orienting a Transportable Alt-Azimuth Telescope," Proceedings of the 4th International Workshop on Laser Ranging, Austin TX USA, October, 1981.
  15. Schipani, P., Arcidiacono, C., Argomedo, J. and Dall'Ora, M., "Pointing and tracking results of the VST telescope," proceedings of SPIE-The International Society for Optical Engineering, Vol. 8444, September 2012.
  16. Zheng, X. M., Wang, Wu., Zhang Y. C. and Feng, H. S., "Research on the Pointing Model of the 1.2-m Altazimuth Telescope(1. Modeling of the global pointing)," Chinese Astronomy and Astrophysics, Vol. 28, No. 1, 2004, pp. 105~111. https://doi.org/10.1016/S0275-1062(04)90012-4