DOI QR코드

DOI QR Code

Changes in hematological parameters and plasma components of olive flounder, Paralichthys olivaceus exposed to acute microplastics

넙치, Paralichthys olivaceus의 미세플라스틱 급성 노출에 따른 혈액성상 및 혈장성분의 변화

  • Kim, So-Hee (Sun Moon University, Department of Aquatic Life and Medical Science) ;
  • Kim, Ga-Hyun (Sun Moon University, Department of Aquatic Life and Medical Science) ;
  • Kim, Ji-Su (Sun Moon University, Department of Aquatic Life and Medical Science) ;
  • Kim, Jun-Hwan (Sun Moon University, Department of Aquatic Life and Medical Science) ;
  • Jeon, Yu-Hyeon (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Cho, Jae-Hwang (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Seok-Ryel (Department of Smart Fisheries Resources, Kongju National University) ;
  • Kim, Dae-Hee (West Sea Fisheries Research Institute, National Institute of Fisheries Science)
  • 김소희 (선문대학교 수산생명의학과) ;
  • 김가현 (선문대학교 수산생명의학과) ;
  • 김지수 (선문대학교 수산생명의학과) ;
  • 김준환 (선문대학교 수산생명의학과) ;
  • 전유현 (국립수산과학원 서해수산연구소) ;
  • 조재황 (국립수산과학원 서해수산연구소) ;
  • 김석렬 (공주대학교 스마트수산자원학과) ;
  • 김대희 (국립수산과학원 서해수산연구소)
  • Received : 2021.08.06
  • Accepted : 2021.09.10
  • Published : 2021.09.30

Abstract

Juvenile olive flounder, Paralichthys olivaceus (mean weight 66.7±7.1 g; mean length 19.2±0.9 cm) in a bio-floc environment were exposed to microplastic (PE: polyethylene, size 40-48 ㎛) at 0, 4, 20, 100, 500 and 2,500 mg L-1 for 96 hours. No P. olivaceus deaths were observed following microplastic exposure. In the plasma components, calcium was significantly decreased whereas there was no significant change with magnesium following microplastic exposure. Glucose was significantly decreased with over 100mg L-1 at 48 hours and 20mg L-1 at 96 hours. Cholesterol was significantly decreased with over 20mg L-1 after 48 hours, whereas there was no significant change in the total protein content. In enzymatic plasma components, the AST(Aspartate aminotransferase) was significant decreased by microplastic exposure. The results of this study indicate that acute exposure to microplastic induces blood physiological changes in P. olivaceus.

본 실험에서 미세플라스틱의 노출은 넙치의 혈액학적 성상인 hemoglobin 및 hematocrit 수치의 유의적인 감소를 유발하였다. 또한 미세플라스틱의 노출은 넙치 혈장 무기성분인 calcium, 유기성분인 glucose 및 cholesterol, 효소성분인 AST의 유의적인 변화를 나타냈다. 본 연구에서 바이오플락 환경에서 미세플라스틱의 노출이 어류의 혈액생리에 영향을 주며 독성으로 작용하는 것을 확인할 수 있었다. 향후, 일반 해수와 바이오플락 환경으로 각각 양성한 넙치를 이용하여 사육환경의 변화에 의한 미세플라스틱 노출영향의 차이에 대해서도 추가적인 연구가 이루어져야 할 것이다. 본 연구는 다양한 어종에서 종별 미세플라스틱의 농도 연구에서 미세플라스틱 노출에 따른 종별 독성영향비교평가를 위한 기본 자료로 활용될 수 있을 것이다. 하지만, 바이오플락 환경에서 미세플라스틱의 응집은 미세플라스틱의 독성에 영향을 미치는 중요한 요소이기 때문에(Choi et al. 2020), 향후 연구에서 철저한 모니터링과 함께 다양한 미세플라스틱 독성에 미치는 요소에 대한 추가연구가 필요할 것이다.

Keywords

Acknowledgement

이 논문은 2021년 국립수산과학원 '바이오플락을 이용한 해수양식 기술개발(대하, 넙치) (R2021014)'의 지원으로 수행된 연구입니다.

References

  1. Annune PA and AA Oladimeji. 1994. Acute toxicity of cadmium to juveniles of Clarias gariepinus (Teugels) and Oreochromis niloticus (Trewavas). J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 29:1357-1365. https://doi.org/10.1080/10934529409376116
  2. Azim ME and DC Littl. 2008. The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283:29-35. https://doi.org/10.1016/j.aquaculture.2008.06.036
  3. Baby J and SJ Raj. 2011. Effect of curacron toxicity on aminotransferases (ALT and AST) in the serum of the fish Cyprinus carpio. Int. J. Biol. Chem. 5:207-211. https://doi.org/10.3923/ijbc.2011.207.211
  4. Banaee M, A Gholamhosseini, A Sureda, S Soltanian, MS Fereidouni and ATA Ibrahim. 2020. Effects of microplastic exposure on the blood biochemical parameters in the pond turtle (Emys orbicularis). Environ. Sci. Pollut. Res. 28:9221-9234.
  5. Banaee M, S Soltanian, A Sureda, A Gholamhosseini, BN Haghi, M Akhlaghi and A Derikvandy. 2019. Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). Chemosphere 236:124335. https://doi.org/10.1016/j.chemosphere.2019.07.066
  6. Bijvelds MJ, JA Velden, ZI Kolar and G Flik. 1998. Magnesium transport in freshwater teleosts. J. Exp. Biol. 201:1981-1990. https://doi.org/10.1242/jeb.201.13.1981
  7. Browne MA, A Dissanayake, TS Galloway, DM Lowe and RC Thompson. 2008. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 42:5026-5031. https://doi.org/10.1021/es800249a
  8. Burgos-Aceves MA, L Lionetti and C Faggio. 2019. Multidisciplinary haematology as prognostic device in environmental and xenobiotic stress-induced response in fish. Sci. Total Environ. 670:1170-1183. https://doi.org/10.1016/j.scitotenv.2019.03.275
  9. Chen Q, C Lackmann, W Wang, TB Seiler, H Hollert and H Shi. 2020. Microplastics lead to hyperactive swimming behaviour in adult zebrafish. Aquat. Toxicol. 224:105521. https://doi.org/10.1016/j.aquatox.2020.105521
  10. Cho JH, SR Kim, YB Hur, KM Lee and JH Kim. 2020. Tolerance limit of nitrite exposure to hybrid grouper (Epinephelus fuscoguttatus ♀×E. lanceolatus ♂): hematological parameters and plasma components. Korean J. Environ. Biol. 38:93-100. https://doi.org/10.11626/KJEB.2020.38.1.093
  11. Cho YR, HS Kim, SK Kim, SK Kim, SR Kim, YB Hur and JH Kim. 2019. Bio-floc technology application in olive flounder, Paralichthys olivaceus aquaculture according to the difference of closed recirculating systems. Korean J. Environ. Biol. 37:129-135. https://doi.org/10.11626/KJEB.2019.37.2.129
  12. Choi B, J Kim and S Choi. 2020. A mini-review on microplastics in drinking water treatment processes. J. Korean Soc. Water Wastewater 34:357-371. https://doi.org/10.11001/jksww.2020.34.5.357
  13. Corcoran PL, T Norri, T Ceccanese, MJ Walzak, PA Helm and CH Marvin. 2015. Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record. Environ. Pollut. 204:17-25. https://doi.org/10.1016/j.envpol.2015.04.009
  14. Crab R, T Defoirdt, P Bossier and W Verstraete. 2012. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture 356:351-356. https://doi.org/10.1016/j.aquaculture.2012.04.046
  15. Dreolin N, M Aznar, S Moret and C Nerin. 2019. Development and validation of a LC-MS/MS method for the analysis of bisphenol a in polyethylene terephthalate. Food Chem. 274:246-253. https://doi.org/10.1016/j.foodchem.2018.08.109
  16. Fazio F, F Filiciotto, S Marafioti, V Di Stefano, A Assenza, F Placenti and S Mazzola. 2012. Automatic analysis to assess haematological parameters in farmed gilthead sea bream(Sparus aurata Linnaeus, 1758). Mar. Freshw. Behav. Physiol. 45:63-73. https://doi.org/10.1080/10236244.2012.677559
  17. Flik G and PM Verbost. 1993. Calcium transport in fish gills and intestine. J. Exp. Biol. 184:17-29. https://doi.org/10.1242/jeb.184.1.17
  18. Firat O and F Kargin. 2010. Individual and combined effects of heavy metals on serum biochemistry of Nile tilapia Oreochromis niloticus. Arch. Environ. Contam. Toxicol. 58:151-157. https://doi.org/10.1007/s00244-009-9344-5
  19. Haghi BN and M Banaee. 2017. Effects of micro-plastic particles on paraquat toxicity to common carp (Cyprinus carpio): biochemical changes. Int. J. Environ. Sci. Technol. 14:521-530. https://doi.org/10.1007/s13762-016-1171-4
  20. Hamed M, HA Soliman, AG Osman and AEDH Sayed. 2019. Assessment the effect of exposure to microplastics in Nile Tilapia (Oreochromis niloticus) early juvenile: I. blood biomarkers. Chemosphere 228:345-350. https://doi.org/10.1016/j.chemosphere.2019.04.153
  21. Han SK. 2020. The concept of microplastics and their occurrence, transport, biological effects, and management methods in the ocean. J. Environ. Health Sci. 5:610-626.
  22. Iheanacho SC and GE Odo. 2020a. Dietary exposure to polyvinyl chloride microparticles induced oxidative stress and hepatic damage in Clarias gariepinus (Burchell, 1822). Environ. Sci. Pollut. Res. 27:1-15. https://doi.org/10.1007/s11356-019-07074-x
  23. Iheanacho SC and GE Odo. 2020b. Neurotoxicity, oxidative stress biomarkers and haematological responses in African catfish (Clarias gariepinus) exposed to polyvinyl chloride microparticles. Comp. Biochem. Physiol. Part C-Toxicol. Pharmacol. 232:108741.
  24. Javed M and N Usmani. 2015. Impact of heavy metal toxicity on hematology and glycogen status of fish: a review. Proc. Natl. Acad. Sci., India Sect. B 85:889-900. https://doi.org/10.1007/s40011-014-0404-x
  25. Jeon GH, SH Cho, HS Kim, SH Myung, HJ Kim, WG Jung and KJ Lee. 2013. Effects of the inclusion of Kimchi lactic acid bacterial culture in extruded pellets on the growth, body composition and immune response of Juvenile olive flounder Paralichthys olivaceus. Korean J. Fish. Aquat. Sci. 46:552-558. https://doi.org/10.5657/KFAS.2013.0552
  26. Kang JC and EY Min. 2010. Changes of hematological parameters in olive flounder Paralichthys olivaceus exposed to pentachlorophenol. J. Fish Pathol. 23:189-198.
  27. Karami A, N Romano, T Galloway and H Hamzah. 2016. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus). Environ. Res. 151:58-70. https://doi.org/10.1016/j.envres.2016.07.024
  28. Kim JH and JC Kang. 2017. Toxic effects on bioaccumulation and hematological parameters of juvenile rockfish Sebastes schlegelii exposed to dietary lead (Pb) and ascorbic acid. Chemosphere 176:131-140. https://doi.org/10.1016/j.chemosphere.2017.02.097
  29. Kim JH, SK Kim and JH Kim. 2018. Bio-floc technology application in flatfish Paralichthys olivaceus culture: Effects on water quality, growth, hematological parameters, and immune responses. Aquaculture 495:703-709. https://doi.org/10.1016/j.aquaculture.2018.06.034
  30. Kim JH, EH Jeong, SR Kim and SK Kim. 2019. Changes in water quality and hematological parameters according to the stocking density of olive flounder, Paralichthys olivaceus raised in bio-floc environment. Korean J. Environ. Biol. 37:155-163. https://doi.org/10.11626/KJEB.2019.37.2.155
  31. Kim JH, YB Yu and JH Choi. 2021. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review. J. Hazard. Mater. 413:125423. https://doi.org/10.1016/j.jhazmat.2021.125423
  32. Kim KM, HJ Lee, HB Yun, JH Cho and SR Kim. 2020. Changes of hematological parameters and plasma components in the hybrid grouper (Epinephelus fuscoguttatus ♀×E. lanceolatus ♂) by acute ammonia exposure. Korean J. Environ. Biol. 38:40-46. https://doi.org/10.11626/KJEB.2020.38.1.040
  33. Krishnapriya K, G Shobana, S Narmadha, M Ramesh and V Maruthappan. 2017. Sublethal concentration of bisphenol A induces hematological and biochemical responses in an Indian major carp Labeo rohita. Ecohydrol. Hydrobiol. 17:306-313. https://doi.org/10.1016/j.ecohyd.2017.06.003
  34. Kumar R and TK Banerjee. 2016. Arsenic induced hematological and biochemical responses in nutritionally important catfish Clarias batrachus (L.). Toxicol. Rep. 3:148-152. https://doi.org/10.1016/j.toxrep.2016.01.001
  35. Lalles JP. 2019. Biology, environmental and nutritional modulation of skin mucus alkaline phosphatase in fish: A review. Fish Shellfish Immunol. 89:179-186. https://doi.org/10.1016/j.fsi.2019.03.053
  36. Lei L, S Wu, S Lu, M Liu, Y Song, Z Fu and D He. 2018. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci. Total Environ. 619:1-8. https://doi.org/10.1016/j.scitotenv.2017.11.103
  37. Mak CW, KCF Yeung and KM Chan. 2019. Acute toxic effects of polyethylene microplastic on adult zebrafish. Ecotox. Environ. Safe. 182:109442. https://doi.org/10.1016/j.ecoenv.2019.109442
  38. Molina R, I Moreno, S Pichardo, A Jos, R Moyano, JG Monterde and A Camean. 2005. Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromis sp.) exposed subchronically to microcystins from toxic cyanobacterial blooms under laboratory conditions. Toxicon 46:725-735. https://doi.org/10.1016/j.toxicon.2005.07.012
  39. Montuori P, E Jover, M Morgantini, JM Bayona and M Triassi. 2008. Assessing human exposure to phthalic acid and phthalate esters from mineral water stored in polyethylene terephthalate and glass bottles. Food Addit. Contam. 25:511-518. https://doi.org/10.1080/02652030701551800
  40. Pannetier P, B Morin, C Clerandeau, J Laurent, C Chapelle and J Cachot. 2019. Toxicity assessment of pollutants sorbed on environmental microplastics collected on beaches: Part II-adverse effects on Japanese medaka early life stages. Environ. Pollut. 248:1098-1107. https://doi.org/10.1016/j.envpol.2018.10.129
  41. Pottinger TG and TR Carrick. 1999. A comparison of plasma glucose and plasma cortisol as selection markers for high and low stress-responsiveness in female rainbow trout. Aquaculture 175:351-363. https://doi.org/10.1016/S0044-8486(99)00107-6
  42. Pratap HB, H Fu, RAC Lock and SW Bonga. 1989. Effect of waterborne and dietary cadmium on plasma ions of the teleost Oreochromis mossambicus in relation to water calcium levels. Arch. Environ. Contam. Toxicol. 18:568-575. https://doi.org/10.1007/BF01055024
  43. Ramaswamy M, P Thangavel and N Panneer Selvam. 1999. Glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) enzyme activities in different tissues of Sarotherodon mossambicus (Peters) exposed to a carbamate pesticide, carbaryl. Pestic. Sci. 55:1217-1221. https://doi.org/10.1002/(SICI)1096-9063(199912)55:12<1217::AID-PS78>3.0.CO;2-G
  44. Roda JFB, MM Lauer, WE Risso and CB dos Reis Martinez. 2020. Microplastics and copper effects on the neotropical teleost Prochilodus lineatus: Is there any interaction? Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 242:110659. https://doi.org/10.1016/j.cbpa.2020.110659
  45. Siddeswaran S, S Umamaheswari and M Ramesh. 2020. Toxicity assessment of acetylsalicylic acid to a freshwater fish Cyprinus carpio: haematological, biochemical, enzymological and antioxidant responses. pp. 191-215. In: Non-Steroidal Anti-Inflammatory Drugs in Water: Emerging Contaminants and Ecological Impact. Springer. Berlin.
  46. Srivastava B and PB Reddy. 2020. Haematological and Serum Biomarker Responses in Heteropneustes fossilis Exposed to Bisphenol A. Nat. Environ. Pollut. Technol. 19:1577-1584. https://doi.org/10.46488/nept.2020.v19i04.024
  47. Su L, H Deng, B Li, Q Chen, V Pettigrove, C Wu and H Shi. 2019. The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. J. Hazard. Mater. 365:716-724. https://doi.org/10.1016/j.jhazmat.2018.11.024
  48. Suvetha L, M Ramesh and M Saravanan. 2010. Influence of cypermethrin toxicity on ionic regulation and gill Na+/K+ -AT-Pase activity of a freshwater teleost fish Cyprinus carpio. Environ. Toxicol. Pharmacol. 29:44-49. https://doi.org/10.1016/j.etap.2009.09.005
  49. Suzuki N, A Kambegawa and A Hattori. 2003. Bisphenol A influences the plasma calcium level and inhibits calcitonin secretion in goldfish. Zool. Sci. 20:745-748. https://doi.org/10.2108/zsj.20.745
  50. Suzuki N, M Yamamoto, K Watanabe, A Kambegawa and A Hattori. 2004. Both mercury and cadmium directly influence calcium homeostasis resulting from the suppression of scale bone cells: the scale is a good model for the evaluation of heavy metals in bone metabolism. J. Bone Miner. Metab. 22:439-446.
  51. Svoboda M. 2001. Stress in fishes. A review. Bull. VURH Vodnany (Czech Republic) 37:169-191.
  52. Ter Halle A, L Ladirat, M Martignac, AF Mingotaud, O Boyron and E Perez. 2017. To what extent are microplastics from the open ocean weathered? Environ. Pollut. 227:167-174. https://doi.org/10.1016/j.envpol.2017.04.051
  53. Villanueva J, R Vanacore, O Goicoechea and R Amthauer. 1997. Intestinal alkaline phosphatase of the fish Cyprinus carpio: regional distribution and membrane association. J. Exp. Zool. 279:347-355. https://doi.org/10.1002/(SICI)1097-010X(19971101)279:4<347::AID-JEZ4>3.0.CO;2-O
  54. Wen B, SR Jin, ZZ Chen, JZ Gao, YN Liu, JH Liu and XS Feng. 2018. Single and combined effects of microplastics and cadmium on the cadmium accumulation, antioxidant defence and innate immunity of the discus fish (Symphysodon aequifasciatus). Environ. Pollut. 243:462-471. https://doi.org/10.1016/j.envpol.2018.09.029
  55. Yong CQY, S Valiyaveetill and BL Tang. 2020. Toxicity of microplastics and nanoplastics in mammalian systems. Int. J. Environ. Health Res. 17:1509. https://doi.org/10.3390/ijerph17051509
  56. Yu P, Z Liu, D Wu, M Chen, W Lv and Y Zhao. 2018. Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver. Aquat. Toxicol. 200:28-36. https://doi.org/10.1016/j.aquatox.2018.04.015