DOI QR코드

DOI QR Code

Overexpression of Long Non-Coding RNA MIR22HG Represses Proliferation and Enhances Apoptosis via miR-629-5p/TET3 Axis in Osteosarcoma Cells

  • Zhao, Haoliang (Orthopedics Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences) ;
  • Zhang, Ming (Orthopedics Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences) ;
  • Yang, Xuejing (Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences) ;
  • Song, Dong (Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences)
  • Received : 2021.06.11
  • Accepted : 2021.08.07
  • Published : 2021.10.28

Abstract

In this study, we evaluated the mechanism of long non-coding RNA MIR22 host gene (LncRNA MIR22HG) in osteosarcoma cells. Forty-eight paired osteosarcoma and adjacent tissues samples were collected and the bioinformatic analyses were performed. Target genes and potential binding sites of MIR22HG, microRNA (miR)-629-5p and tet methylcytosine dioxygenase 3 (TET3) were predicted by Starbase and TargetScan V7.2 and confirmed by dual-luciferase reporter assay. Cell Counting Kit-8, colony formation and flow cytometry assays were utilized to determine the viability, proliferation and apoptosis of transfected osteosarcoma cells. Pearson's analysis was introduced for the correlation analysis between MIR22HG and miR-629-5p in osteosarcoma tissue. Relative expressions of MIR22HG, miR-629-5p and TET3 were measured by quantitative real-time polymerase chain reaction or Western blot. MiR-629-5p could competitively bind with and was negatively correlated with MIR22HG, the latter of which was evidenced by the high expression of miR-629-5p and low expression of MIR22HG in osteosarcoma tissues. Overexpressed MIR22HG repressed the viability and proliferation but enhanced apoptosis of osteosarcoma cells, which was reversed by miR-629-5p upregulation. TET3 was the target gene of miR-629-5p, and the promotive effects of upregulated miR-629-5p on the viability and proliferation as well as its repressive effect on apoptosis were abrogated via overexpressed TET3. To sum up, overexpressed MIR22HG inhibits the viability and proliferation of osteosarcoma cells, which was achieved via regulation of the miR-629-5p/TET3 axis.

Keywords

References

  1. Akhade VS, Pal D, Kanduri C. 2017. Long noncoding RNA: Genome organization and mechanism of action. Adv. Exp. Med. Biol. 1008: 47-74. https://doi.org/10.1007/978-981-10-5203-3_2
  2. Almeida RS, Costa ESM, Coutinho LL, Garcia Gomes R, Pedrosa F, Massaro JD, et al. 2019. MicroRNA expression profiles discriminate childhood T- from B-acute lymphoblastic leukemia. Hematol. Oncol. 37: 103-112.
  3. Anastasiadou E, Jacob LS, Slack FJ. 2017. Non-coding RNA networks in cancer. Nat. Rev. Cancer 18: 5-18. https://doi.org/10.1038/nrc.2017.99
  4. Arman K, Saadat K, Igci YZ, Bozgeyik E, Ikeda MA, Cakmak EA, et al. 2020. Long noncoding RNA ERICD interacts with ARID3A via E2F1 and regulates migration and proliferation of osteosarcoma cells. Cell Biol. Int. 44: 2263-2274. https://doi.org/10.1002/cbin.11434
  5. Botti G, Giordano A, Feroce F, De Chiara AR, Cantile M. 2019. Noncoding RNAs as circulating biomarkers in osteosarcoma patients. J. Cell. Physiol. 234: 19249-19255. https://doi.org/10.1002/jcp.28744
  6. Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. 2019. Deciphering miRNAs' action through miRNA editing. Int. J. Mol. Sci. 20: 6249. https://doi.org/10.3390/ijms20246249
  7. Czarnecka AM, Synoradzki K, Firlej W, Bartnik E, Sobczuk P, Fiedorowicz M, et al. 2020. Molecular biology of osteosarcoma. Cancers (Basel) 12: 2130. https://doi.org/10.3390/cancers12082130
  8. de Azevedo JWV, de Medeiros Fernandes TAA, Fernandes JV, Jr., de Azevedo JCV, Lanza DCF, Bezerra CM, et al. 2020. Biology and pathogenesis of human osteosarcoma. Oncol. Lett. 19: 1099-1116.
  9. Gao C, Gao J, Zeng G, Yan H, Zheng J, Guo W. 2021. MicroRNA-629-5p promotes osteosarcoma proliferation and migration by targeting caveolin 1. Braz. J. Med. Biol. Res. 54: e10474. https://doi.org/10.1590/1414-431x202010474
  10. Gao L, Xiong DD, He RQ, Yang X, Lai ZF, Liu LM, et al. 2019. MIR22HG as a tumor suppressive lncRNA In HCC: a comprehensive analysis integrating RT-qPCR, mRNA-Seq, and microarrays. Onco Targets Ther. 12: 9827-9848. https://doi.org/10.2147/OTT.S227541
  11. Han M, Wang S, Fritah S, Wang X, Zhou W, Yang N, et al. 2020. Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling. Brain 143: 512-530. https://doi.org/10.1093/brain/awz406
  12. Hu X, Sood AK, Dang CV, Zhang L. 2018. The role of long noncoding RNAs in cancer: the dark matter matters. Curr. Opin. Genet. Dev. 48: 8-15. https://doi.org/10.1016/j.gde.2017.10.004
  13. Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, et al. 2019. Insights into the roles of miRNAs; miR-193 as one of small molecular silencer in osteosarcoma therapy. Biomed. Pharmacother. 111: 873-881. https://doi.org/10.1016/j.biopha.2018.12.106
  14. Jin C, Jia L, Tang Z, Zheng Y. 2020. Long non-coding RNA MIR22HG promotes osteogenic differentiation of bone marrow mesenchymal stem cells via PTEN/ AKT pathway. Cell Death Dis. 11: 601. https://doi.org/10.1038/s41419-020-02813-2
  15. Jin H, Luo S, Wang Y, Liu C, Piao Z, Xu M, et al. 2017. miR-135b stimulates osteosarcoma recurrence and lung metastasis via notch and Wnt/β-Catenin signaling. Mol. Ther. Nucleic Acids 8: 111-122. https://doi.org/10.1016/j.omtn.2017.06.008
  16. Kager L, Tamamyan G, Bielack S. 2017. Novel insights and therapeutic interventions for pediatric osteosarcoma. Future Oncol. 13: 357-368. https://doi.org/10.2217/fon-2016-0261
  17. Kotake Y, Goto T, Naemura M, Inoue Y, Okamoto H, Tahara K. 2017. Long noncoding RNA PANDA positively regulates proliferation of osteosarcoma cells. Anticancer Res. 37: 81-85. https://doi.org/10.21873/anticanres.11292
  18. Li X, Li N, Niu Q, Zhu H, Wang Z, Hou Q. 2020. Elevated expression of miR-629 predicts a poor prognosis and promotes cell proliferation, migration, and invasion of osteosarcoma. Onco. Targets Ther. 13: 1851-1857. https://doi.org/10.2147/OTT.S232479
  19. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  20. Longhi A, Errani C, De Paolis M, Mercuri M, Bacci G. 2006. Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat. Rev. 32: 423-436. https://doi.org/10.1016/j.ctrv.2006.05.005
  21. Meazza C, Scanagatta P. 2016. Metastatic osteosarcoma: a challenging multidisciplinary treatment. Expert Rev. Anticancer Ther. 16: 543-556. https://doi.org/10.1586/14737140.2016.1168697
  22. Melamed P, Yosefzon Y, David C, Tsukerman A, Pnueli L. 2018. Tet enzymes, variants, and differential effects on function. Front. Cell Dev. Biol. 6: 22. https://doi.org/10.3389/fcell.2018.00022
  23. Misawa A, Orimo H. 2018. lncRNA HOTAIR inhibits mineralization in osteoblastic osteosarcoma cells by epigenetically repressing ALPL. Calcif. Tissue Int. 103: 422-430. https://doi.org/10.1007/s00223-018-0434-0
  24. Otoukesh B, Abbasi M, Gorgani HO, Farahini H, Moghtadaei M, Boddouhi B, et al. 2020. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int. 20: 254. https://doi.org/10.1186/s12935-020-01342-4
  25. Rao-Bindal K, Kleinerman ES. 2011. Epigenetic regulation of apoptosis and cell cycle in osteosarcoma. Sarcoma 2011: 679457. https://doi.org/10.1155/2011/679457
  26. Ross SE, Bogdanovic O. 2019. TET enzymes, DNA demethylation and pluripotency. Biochem. Soc. Trans. 47: 875-885. https://doi.org/10.1042/BST20180606
  27. Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T. 2018. Emerging roles of long non-coding RNA in cancer. Cancer Sci. 109: 2093-2100. https://doi.org/10.1111/cas.13642
  28. Sekar D, Mani P, Biruntha M, Sivagurunathan P, Karthigeyan M. 2019. Dissecting the functional role of microRNA 21 in osteosarcoma. Cancer Gene Ther. 26: 179-182. https://doi.org/10.1038/s41417-019-0092-z
  29. Shabani P, Izadpanah S, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, et al. 2019. Role of miR-142 in the pathogenesis of osteosarcoma and its potential as therapeutic approach. J. Cell. Biochem. 120: 4783-4793. https://doi.org/10.1002/jcb.27857
  30. Song Y-N, Shi L-L, Liu Z-Q, Qiu G-F. 2014. Global analysis of the ovarian microRNA transcriptome: implication for miR-2 and miR133 regulation of oocyte meiosis in the Chinese mitten crab, Eriocheirsinensis (Crustacea:Decapoda). BMC Genomics 15: 547. https://doi.org/10.1186/1471-2164-15-547
  31. Su W, Feng S, Chen X, Yang X, Mao R, Guo C, et al. 2018. Silencing of long noncoding RNA MIR-22HG triggers cell survival/death signaling via oncogenes YBX1, MET, and p21 in lung cancer. Cancer Res. 78: 3207-3219. https://doi.org/10.1158/0008-5472.CAN-18-0222
  32. Tang Q, Jiang X, Ma S, Wang L, Li R, Ma J. 2020. MIR22HG regulates miR-486/PTEN axis in bladder cancer to promote cell proliferation. Biosci. Rep. 40: SR20193991.
  33. Trilla-Fuertes L, Miranda N, Castellano D, Lopez-Vacas R, Farfan Tello CA, de Velasco G, et al. 2020. miRNA profiling in renal carcinoma suggest the existence of a group of pro-angionenic tumors in localized clear cell renal carcinoma. PLoS One 15: e0229075. https://doi.org/10.1371/journal.pone.0229075
  34. Uhr K, Prager-van der Smissen WJC, Heine AAJ, Ozturk B, van Jaarsveld MTM, Boersma AWM, et al. 2019. MicroRNAs as possible indicators of drug sensitivity in breast cancer cell lines. PLoS One 14: e0216400. https://doi.org/10.1371/journal.pone.0216400
  35. Wang JY, Yang Y, Ma Y, Wang F, Xue A, Zhu J, et al. 2020. Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomed. Pharmacother. 121: 109627. https://doi.org/10.1016/j.biopha.2019.109627
  36. Wen JJ, Ma YD, Yang GS, Wang GM. 2017. Analysis of circulating long non-coding RNA UCA1 as potential biomarkers for diagnosis and prognosis of osteosarcoma. Eur. Rev. Med. Pharmacol. Sci. 21: 498-503.
  37. Xiao X, Wang W, Wang Z. 2014. The role of chemotherapy for metastatic, relapsed and refractory osteosarcoma. Paediatr. Drugs 16: 503-512. https://doi.org/10.1007/s40272-014-0095-z
  38. Xu S, Gong Y, Yin Y, Xing H, Zhang N. 2020. The multiple function of long noncoding RNAs in osteosarcoma progression, drug resistance and prognosis. Biomed. Pharmacother. 127: 110141. https://doi.org/10.1016/j.biopha.2020.110141
  39. Ye Z, Li J, Han X, Hou H, Chen H, Zheng X, et al. 2016. TET3 inhibits TGF-β1-induced epithelial-mesenchymal transition by demethylating miR-30d precursor gene in ovarian cancer cells. J. Exp. Clin. Cancer Res. 435: 72.
  40. Zhang J, Yan YG, Wang C, Zhang SJ, Yu XH, Wang WJ. 2015. MicroRNAs in osteosarcoma. Clin. Chim. Acta 444: 9-17. https://doi.org/10.1016/j.cca.2015.01.025
  41. Zhang L, Li C, Su X. 2020. Emerging impact of the long noncoding RNA MIR22HG on proliferation and apoptosis in multiple human cancers. J. Exp. Clin. Cancer Res. 39: 271. https://doi.org/10.1186/s13046-020-01784-8
  42. Zheng Y, Wang G, Chen R, Hua Y, Cai Z. 2018. Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications. Stem Cell Res. Ther. 9: 22. https://doi.org/10.1186/s13287-018-0780-x
  43. Zhou RS, Zhang EX, Sun QF, Ye ZJ, Liu JW, Zhou DH, et al. 2019. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue. BMC Cancer 19: 779. https://doi.org/10.1186/s12885-019-5983-8