DOI QR코드

DOI QR Code

High-Temperature-Tolerant Fungus and Oomycetes in Korea, Including Saksenaea longicolla sp. nov.

  • Nam, Bora (Department of Biology, College of Natural Sciences, Kunsan National University) ;
  • Lee, Dong-Jae (Department of Biology, College of Natural Sciences, Kunsan National University) ;
  • Choi, Young-Joon (Department of Biology, College of Natural Sciences, Kunsan National University)
  • 투고 : 2021.08.09
  • 심사 : 2021.09.17
  • 발행 : 2021.10.31

초록

Global temperatures are steadily increasing, leading to significant changes in microbial diversity and ecology. In the present study, we isolated high-temperature-growing fungi and fungi-like group (Oomycota) strains from freshwater environments of Korea and identified them based on cultural, morphological, and multilocus phylogenetic analyses. As a result, we introduce Saksenaea (Fungi) isolates as a new species, Saksenaea longicolla sp. nov. and record Phytophthora chlamydospora and P. lagoariana (Oomycota) new to Korea. In the growth experiments, they exhibited high-temperature tolerance, which can grow at 35-40 ℃ but become inactive at 4 ℃ and below. This study confirms the presence of high-temperature-tolerant fungi and oomycetes in Korea and suggests that the Korean climate conditions are changing in favor of these species. This indicates that climate warming is altering microbial distributions in freshwater environments.

키워드

과제정보

This research was supported by the Nakdonggang National Institute of Biological Resources (NNIBR) and by the National Research Foundation of Korea (NRF) under Grant funded by the Korea government (MSIT) (2019R1C1C1002791).

참고문헌

  1. Putten WHVd. Climate change, abovegroundbelowground interactions, and species' range shifts. Annu Rev Ecol Evol Syst. 2012;43(1):365-383. https://doi.org/10.1146/annurev-ecolsys-110411-160423
  2. Shade A, Peter H, Allison SD, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417. https://doi.org/10.3389/fmicb.2012.00417
  3. Singh BK, Bardgett RD, Smith P, et al. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol. 2010;8(11):779-790. https://doi.org/10.1038/nrmicro2439
  4. Classen AT, Sundqvist MK, Henning JA, et al. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere. 2015;6(8):1-12.
  5. Barcenas-Moreno G, Gomez-Brandon M, Rousk J, et al. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Global Change Biol. 2009; 15(12):2950-2957. https://doi.org/10.1111/j.1365-2486.2009.01882.x
  6. Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88(6): 1386-1394. https://doi.org/10.1890/06-0219
  7. Compant S, Sessitsch A, Van Der Heijden MGA. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol. 2010;73(2):197-214.
  8. Larionova AA, Yevdokimov IV, Bykhovets SS. Temperature response of soil respiration is dependent on concentration of readily decomposable C. Biogeosciences. 2007;4(6):1073-1081. https://doi.org/10.5194/bg-4-1073-2007
  9. Andrew C, Halvorsen R, Heegaard E, et al. Continental-scale macrofungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition. J Biogeogr. 2018;45(8):1942-1953. https://doi.org/10.1111/jbi.13374
  10. Mohan JE, Cowden CC, Baas P, et al. Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecol. 2014; 10:3-19. https://doi.org/10.1016/j.funeco.2014.01.005
  11. Boddy L, Buntgen U, Egli S, et al. Climate variation effects on fungal fruiting. Fungal Ecol. 2014; 10:20-33. https://doi.org/10.1016/j.funeco.2013.10.006
  12. Scott J, Burgess T, Hardy G, et al. Climate modelling to determine the impacts of Phytophthora cinnamomi under future climate scenarios. Western Australia: Centre for Phytophthora Science and Management; 2013.
  13. Ghini R, Hamada E, Bettiol W. Climate change and plant diseases. Sci Agric. 2008;65:98-107. https://doi.org/10.1590/S0103-90162008000700015
  14. Boyero L, Pearson RG, Gessner MO, et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol Lett. 2011;14(3):289-294. https://doi.org/10.1111/j.1461-0248.2010.01578.x
  15. Woodward G, Perkins Daniel M, Brown Lee E. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc Lond B Biol Sci. 2010; 365(1549):2093-2106. https://doi.org/10.1098/rstb.2010.0055
  16. Doll P, Zhang J. Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrol Earth Syst Sci. 2010;14(5):783-799. https://doi.org/10.5194/hess-14-783-2010
  17. Grossart H-P, Van den Wyngaert S, Kagami M, et al. Fungi in aquatic ecosystems. Nat Rev Microbiol. 2019;17(6):339-354. https://doi.org/10.1038/s41579-019-0175-8
  18. Grossart H-P, Rojas-Jimenez K. Aquatic fungi: targeting the forgotten in microbial ecology. Curr Opin Microbiol. 2016;31:140-145. https://doi.org/10.1016/j.mib.2016.03.016
  19. Marano A, Jesus A, De Souza J, et al. Ecological roles of saprotrophic Peronosporales (Oomycetes, Straminipila) in natural environments. Fungal Ecol. 2016;19:77-88. https://doi.org/10.1016/j.funeco.2015.06.003
  20. Song H-J, Sohn B-J. An evaluation of WRF microphysics schemes for simulating the warm-type heavy rain over the Korean peninsula. Asia-Pacific J Atmos Sci. 2018;54(2):225-236. https://doi.org/10.1007/s13143-018-0006-2
  21. Lee M-H, Ho C-H, Kim J, et al. Assessment of the changes in extreme vulnerability over East Asia due to global warming. Clim Change. 2012;113(2): 301-321. https://doi.org/10.1007/s10584-011-0345-9
  22. Jung I-W, Bae D-H, Kim G. Recent trends of mean and extreme precipitation in Korea. Int J Climatol. 2011;31(3):359-370. https://doi.org/10.1002/joc.2068
  23. Kim Y, Lee S. Trends of extreme cold events in the Central regions of Korea and their influence on the heating energy demand. Weather Clim Extremes. 2019;24:100199. https://doi.org/10.1016/j.wace.2019.100199
  24. Kim B-M, Son S-W, Min S-K, et al. Weakening of the stratospheric polar vortex by arctic sea-ice loss. Nat Commun. 2014;5(1):4646. https://doi.org/10.1038/ncomms5646
  25. Francis JA, Vavrus SJ. Evidence linking arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett. 2012;39(6):L06801.
  26. Honda M, Inoue J, Yamane S. Influence of low arctic sea-ice minima on anomalously cold Eurasian winters. Geophys Res Lett. 2009;36(8): L08707. https://doi.org/10.1029/2008GL037079
  27. Saksena SB. A new genus of the Mucorales. Mycologia. 1953;45(3):426-436. https://doi.org/10.1080/00275514.1953.12024280
  28. Claudette L. M., Caballero M., I. S, editors. Microorganism infection of olive ridley eggs. the 12th Annual Workshop on Sea Turtle Biology and Conservation; 1992; Jekyll Island, Georgia: NOAA Technical Memorandum NMFSSEFSC.28.
  29. Cheen C-Y. Education in medical mycology of Taiwan. Nihon Ishinkin Gakkai Zasshi. 1987;28(1): 32-38.
  30. Goos RD. Further observations on soil fungi in Honduras. Mycologia. 1963;55(2):142-150. https://doi.org/10.2307/3756285
  31. Joffe AZ, Borut SY. Soil and kernel mycoflora of groundnut fields in Israel. Mycologia. 1966;58(4): 629-640. https://doi.org/10.2307/3757043
  32. Watanabe T. Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. 3 ed. Watanabe T, editor. Boca Raton, Florida: CRC press; 2010.
  33. Hodges CS. Fungi isolated from Southern Forest tree nursery soils. Mycologia. 1962;54(3):221-229. https://doi.org/10.2307/3756411
  34. Farrow WM. Tropical soil fungi. Mycologia. 1954; 46(5):632-646. https://doi.org/10.1080/00275514.1954.12024399
  35. Alvarez E, Garcia-Hermoso D, Sutton DA, et al. Molecular phylogeny and proposal of two new species of the emerging pathogenic fungus saksenaea. J Clin Microbiol. 2010;48(12):4410-4416. https://doi.org/10.1128/JCM.01646-10
  36. Labuda R, Bernreiter A, Hochenauer D, et al. Saksenaea dorisiae sp. nov., a new opportunistic pathogenic fungus from Europe. Int J Microbiol. 2019;2019:6253829.
  37. Vukovic A, Vujadinovic M, Rendulic S, et al. Global warming impact on climate change in Serbia for the period 1961-2100. Therm Sci. 2018; 22(6 Part A):2168-2267.
  38. Baradkar VP, Mathur M, Taklikar S, et al. Fatal rhino-orbito-cerebral infection caused by Saksenaea vasiformis in an immunocompetent individual: first case report from India. Indian J Med Microbiol. 2008;26(4):385-387. https://doi.org/10.4103/0255-0857.43572
  39. Gkegkes ID, Kotrogiannis I, Konstantara F, et al. Cutaneous mucormycosis by Saksenaea vasiformis: an unusual case report and review of literature. Mycopathologia. 2019;184(1):159-167. https://doi.org/10.1007/s11046-018-0249-6
  40. Relloso S, Romano V, Landaburu MF, et al. Saksenaea erythrospora infection following a serious sailing accident. J Med Microbiol. 2014;63(2): 317-321. https://doi.org/10.1099/jmm.0.062174-0
  41. Kaufman L, Padhye AA, Parker S. Rhinocerebral zygomycosis caused by Saksenaea vasiformis. J Med Vet Mycol. 1988;26(4):237-241. https://doi.org/10.1080/02681218880000331
  42. Martin FN, Abad Z, Balci Y, et al. Identification and detection of Phytophthora: reviewing our progress, identifying our needs. Plant Dis. 2012;96(8): 1080-1103. https://doi.org/10.1094/pdis-12-11-1036-fe
  43. Davidson JM, Werres S, Garbelotto M, et al. Sudden oak death and associated diseases caused by Phytophthora ramorum. Plant Health Prog. 2003;4(1):12. https://doi.org/10.1094/php-2003-0707-01-dg
  44. Brasier CM, Kirk SA, Delcan J, et al. Phytophthora alni sp. nov. and its variants: designation of emerging heteroploid hybrid pathogens spreading on alnus trees. Mycol Res. 2004;108(10): 1172-1184. https://doi.org/10.1017/S0953756204001005
  45. Erwin DC, Ribeiro OK. Phytophthora diseases worldwide. St. Paul (MN): American Phytopathological Society (APS Press); 1996.
  46. Nowicki M, Foolad MR, Nowakowska M, et al. Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Dis. 2012;96(1): 4-17. https://doi.org/10.1094/pdis-05-11-0458
  47. Hansen EM, Reeser PW, Sutton W. Phytophthora beyond agriculture. Annu Rev Phytopathol. 2012; 50:359-378. https://doi.org/10.1146/annurev-phyto-081211-172946
  48. Jung T, Stukely MJC, Hardy GESJ, et al. Multiple new Phytophthora species from ITS clade 6 associated with natural ecosystems in Australia: evolutionary and ecological implications. Persoonia. 2011;26:13-39. https://doi.org/10.3767/003158511X557577
  49. Nagel J, Gryzenhout M, Slippers B, et al. Characterization of Phytophthora hybrids from ITS clade 6 associated with riparian ecosystems in South Africa and Australia. Fungal Biol. 2013; 117(5):329-347. https://doi.org/10.1016/j.funbio.2013.03.004
  50. Oh E, Gryzenhout M, Wingfield BD, et al. Surveys of soil and water reveal a goldmine of Phytophthora diversity in South African natural ecosystems. IMA Fungus. 2013;4(1):123-131. https://doi.org/10.5598/imafungus.2013.04.01.12
  51. Reeser PW, Sutton W, Hansen EM, et al. Phytophthora species in Forest streams in Oregon and Alaska. Mycologia. 2011;103(1):22-35. https://doi.org/10.3852/10-013
  52. Blair JE, Coffey MD, Park SY, et al. A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet Biol. 2008;45(3):266-277. https://doi.org/10.1016/j.fgb.2007.10.010
  53. Kroon LP, Brouwer H, de Cock AW, et al. The genus Phytophthora anno 2012. Phytopathology. 2012;102(4):348-364. https://doi.org/10.1094/PHYTO-01-11-0025
  54. Nechwatal J, Mendgen K. Widespread detection of Phytophthora taxon salixsoil in the Littoral zone of Lake Constance, Germany. Eur J Plant Pathol. 2006;114(3):261-264. https://doi.org/10.1007/s10658-005-5593-y
  55. Yang X, Gallegly ME, Hong C. A high-temperature tolerant species in clade 9 of the genus Phytophthora: P. hydrogena sp. nov. Mycologia. 2014;106(1):57-65. https://doi.org/10.3852/13-043
  56. Hong C, Richardson PA, Hao W, et al. Phytophthora aquimorbida sp. nov. and Phytophthora taxon 'aquatilis' recovered from irrigation reservoirs and a stream in Virginia, USA. Mycologia. 2012;104(5):1097-1108. https://doi.org/10.3852/11-055
  57. Huberli D, Hardy GSJ, White D, et al. Fishing for Phytophthora from Western Australia's waterways: a distribution and diversity survey. Australasian Plant Pathol. 2013;42(3):251-260. https://doi.org/10.1007/s13313-012-0195-6
  58. Sims LL, Sutton W, Reeser P, et al. The Phytophthora species assemblage and diversity in riparian alder ecosystems of Western Oregon, USA. Mycologia. 2015;107(5):889-902. https://doi.org/10.3852/14-255
  59. Hansen EM, Reeser PW, Sutton W. Phytophthora borealis and Phytophthora riparia, new species in Phytophthora ITS clade 6. Mycologia. 2012;104(5): 1133-1142. https://doi.org/10.3852/11-349
  60. White T, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA GD, Sninsky JJ, White TJ, editor. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315-322.
  61. Kurtzman CP, Robnett CJ. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol. 1997;35(5):1216-1223. https://doi.org/10.1128/jcm.35.5.1216-1223.1997
  62. O'Donnell K, Lutzoni F, J. Ward T, et al. Evolutionary relationships among mucoralean fungi (Zygomycota): evidence for family polyphyly on a large scale. Mycologia. 2001;93(2):286-296. https://doi.org/10.2307/3761650
  63. Bala K, Robideau G, Desaulniers N, et al. Taxonomy, DNA barcoding and phylogeny of three new species of Pythium from Canada. Persoonia. 2010;25:22-31. https://doi.org/10.3767/003158510X524754
  64. Hudspeth DSS, Nadler SA, Hudspeth MES. cox2 molecular phylogeny of the Peronosporomycetes. Mycobiology. 2000;92(4):674.
  65. Choi Y-J, Beakes G, Glockling S, et al. Towards a universal barcode of oomycetes-a comparison of the cox1 and cox2 loci. Mol Ecol Resour. 2015; 15(6):1275-1288. https://doi.org/10.1111/1755-0998.12398
  66. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30(4):772-780. https://doi.org/10.1093/molbev/mst010
  67. Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics. 2011;27(2):171-180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  68. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7): 1870-1874. https://doi.org/10.1093/molbev/msw054
  69. Hansen E, Reeser P, Sutton W, et al. Redesignation of Phytophthora taxon pgchlamydo as Phytophthora chlamydospora sp. nov. N Am Fungi. 2015;10(2):1-14.
  70. Wallace SF. Diversity of Phytophthora species in Costa Rica's Tropical Forest. [Master Thesis]: University of Maryland 2015.
  71. Crous PW, Wingfield MJ, Burgess TI, et al. Fungal planet description sheets: 558-624. Persoonia. 2017;38:240-384. https://doi.org/10.3767/003158517X698941
  72. Crous PW, Wingfield MJ, Burgess TI, et al. Fungal planet description sheets: 469-557. Persoonia. 2016;37:218-403. https://doi.org/10.3767/003158516X694499
  73. Blanchet D, Dannaoui E, Fior A, et al. Saksenaea vasiformis infection, French Guiana. Emerg Infect Dis. 2008;14(2):342-344. https://doi.org/10.3201/eid1402.071079
  74. Vega W, Orellana M, Zaror L, et al. Saksenaea vasiformis infections: case report and literature review. Mycopathologia. 2006;162(4):289-294. https://doi.org/10.1007/s11046-006-0061-6
  75. Stewardson AJ, Holmes NE, Ellis DH, et al. Cutaneous zygomycosis caused by Saksenaea vasiformis following water-related wound in a 24-year-old immunocompetent woman. Mycoses. 2009; 52(6):547-549. https://doi.org/10.1111/j.1439-0507.2008.01648.x
  76. Wilson PA. Zygomycosis due to Saksenaea vasiformis caused by a magpie peck. Med J Aust. 2008; 189(9):521-522. https://doi.org/10.5694/j.1326-5377.2008.tb02150.x
  77. Padhye AA, Koshi G, Anandi V, et al. First case of subcutaneous zygomycosis caused by Saksenaea vasiformis in India. Diagn Microbiol Infect Dis. 1988;9(2):69-77. https://doi.org/10.1016/0732-8893(88)90099-5
  78. Tanphaichitr VS, Chaiprasert A, Suvatte V, et al. Subcutaneous mucormycosis caused by Saksenaea vasiformis in a thalassaemic child: first case report in Thailand. Mycoses. 1990;33(6):303-309. https://doi.org/10.1111/myc.1990.33.6.303
  79. Brasier CM, Cooke DE, Duncan JM, et al. Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyidesP. megasperma ITS clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile. Mycol Res. 2003;107(3):277-290. https://doi.org/10.1017/S095375620300738X
  80. Brasier CM, Hamm PB, Hansen EM. Cultural characters, protein patterns and unusual mating behaviour of Phytophthora gonapodyides isolates from Britain and North America. Mycol Res. 1993; 97(11):1287-1298. https://doi.org/10.1016/s0953-7562(09)80160-3
  81. Burgess TI, Webster JL, Ciampini JA, et al. Reevaluation of Phytophthora species isolated during 30 years of vegetation health surveys in Western Australia using molecular techniques. Plant Dis. 2009;93(3):215-223. https://doi.org/10.1094/pdis-93-3-0215
  82. Jung T, Blaschke M. Phytophthora root and collar rot of alders in Bavaria: distribution, modes of spread and possible management strategies. Plant Pathol. 2004;53(2):197-208. https://doi.org/10.1111/j.0032-0862.2004.00957.x
  83. Huai W-X, Tian G, Hansen EM, et al. Identification of Phytophthora species baited and isolated from Forest soil and streams in northwestern Yunnan province, China. For Path. 2013;43(2):87-103. https://doi.org/10.1097/PAT.0b013e3283429f6c
  84. Browne GT, Ott NJ, Forbes H, et al. First report of Phytophthora chlamydospora causing crown and root rot on almond in California. Plant Dis. 2020; 104(7):2033-2033. https://doi.org/10.1094/pdis-10-19-2072-pdn
  85. Turkolmez S, Dervis S, Ciftci O, et al. First report of Phytophthora chlamydospora causing root and crown rot on almond (Prunus dulcis) trees in Turkey. Plant Dis. 2016;100(8):1796-1796. https://doi.org/10.1094/PDIS-02-16-0155-PDN
  86. Hong C, Gallegly ME, Richardson PA, et al. Phytophthora irrigata, a new species isolated from irrigation reservoirs and Rivers in Eastern United States of America. FEMS Microbiol Lett. 2008; 285(2):203-211. https://doi.org/10.1111/j.1574-6968.2008.01226.x
  87. Redondo MA, Boberg J, Stenlid J, et al. Contrasting distribution patterns between aquatic and terrestrial Phytophthora species along a climatic gradient are linked to functional traits. Isme J. 2018;12(12):2967-2980. https://doi.org/10.1038/s41396-018-0229-3