DOI QR코드

DOI QR Code

A Study on the Induction of Infertility of Largemouth Bass (Micropterus salmoides) by CRISPR/Cas9 System

CRISPR/Cas9 System을 활용한 배스의 불임 유도에 대한 연구

  • Received : 2021.07.30
  • Accepted : 2021.09.30
  • Published : 2021.10.31

Abstract

A largemouth bass (Micropterus salmoides) is an ecosystem disturbance fish species at the highest rank in the aquatic ecosystem, causing a serious imbalance in freshwater ecosystems. Although various attempts have been made to eradicate and control largemouth bass, no effective measures were found. Therefore, it is necessary to find an approach to maximize the effective population reduction based on the unique characteristics of largemouth bass. This study used the transcriptome analysis to derive 182,887 unigene contigs and select 12 types of final target sequences for applying the CRISPR/Cas9 system in the genes of IZUMO1 and Zona pellucida sperm-binding protein, which are proteins involved in sperm-egg recognition. After synthesizing 12 types of sgRNA capable of recognizing each target sequence, 12 types of Cas9-sgRNA ribonucleoprotein (RNP) complexes to be used in subsequent studies were prepared. This study searched the protein-coding gene of sperm-egg through the Next Generation Sequencing (NGS) and edited genes through the CRISPR/Cas9 system to induce infertile individuals that produced reproductive cells but could not form fertilized eggs. Through such a series of processes, it successfully established a composition development process for largemouth bass. It is judged that this study contributed to securing the valuable basic data for follow-up studies to verify its effect for the management of ecological disturbances without affecting the habitat of other endemic species in the same water system with the largemouth bass.

배스(Micropterus salmoides)는 수생태계에서 최상위단계에 위치하는 생태계교란 어종으로 심각한 담수생태계의 불균형을 초래하고 있다. 배스의 퇴치 및 관리를 위한 다양한 시도를 하고 있지만 효과적인 방안은 없는 상황이므로 배스의 고유한 특성에 기반한 개체군 감소의 효율성을 극대화할 수 있는 방식을 모색하였다. 본 연구에서는 배스의 Transcriptom 분석으로 Unigene contigs는 182,887개, 그리고 정자-난자 인식 단백질인 IZUMO1과 Zona pellucida sperm-binding protein의 유전자에서 CRISPR/Cas9 system을 적용할 최종 Target sequence는 12종을 산출하였다. 각 Target sequence를 인식할 수 있는 12종의 sgRNA를 합성한 후 후속 연구에 사용할 12종의 Cas9-sgRNA ribonucleoprotein (RNP) complex를 제작하였다. 본 연구에서는 차세대염기서열 분석법으로 정자-난자 인식 단백질을 암호화하는 유전자를 탐색하였고, CRISPR/Cas9 system으로 유전자를 편집하여 번식행동은 하지만 수정란을 형성하지 못하는 생식세포를 생산하는 불임개체를 유도하기 위한 조성물 개발 과정을 확립하였다. 그리고 배스와 동일한 수계에 있는 고유 생물종의 서식에는 영향을 미치지 않는 생태교란종 관리 방안으로서의 유용성을 검증하기 위한 후속 연구의 귀중한 기초 자료를 확보하는데 기여했다고 판단된다.

Keywords

Acknowledgement

본 연구는 국립공원공단 국립공원연구원 「생태계교란 어종 관리방안 연구」의 일환으로 수행되었습니다. 도움을 주신 모든 분께 감사드립니다.

References

  1. Avella, M.A., B. Baibakov and J. Dean(2014) A single domain of the ZP2 zona pellucida protein mediates gamete recognition in mice and humans. Journal of Cell Biology 205(6): 801-9. https://doi.org/10.1083/jcb.201404025
  2. Bianchi, E. and G.J. Wright(2015) Cross-species fertilization the hamster egg receptor, Juno, binds the human sperm ligand, Izumo1. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 370(1661): 20140101. https://doi.org/10.1098/rstb.2014.0101
  3. Bianchi, E., B. Doe, D. Goulding and G.J. Wright(2014) Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508(7497): 483-7. https://doi.org/10.1038/nature13203
  4. Elaswad, A., K. Khalil, D. Cline, P.P. McCaw, W. Chen, M. Michel, R. Cone and R. Dunham(2018) Microinjection of CRISPR/Cas9 Protein into Channel Catfish, Ictalurus punctatus, Embryos for Gene Editing. Journal of Visualized Experiments 20(131) :56275.
  5. Foltz, K.R. and W.J. Lennarz(1992) Identification of the sea urchin egg receptor for sperm using an antiserum raised against a fragment of its extracellular domain. Journal of Cell Biology 116(3): 647-58. https://doi.org/10.1083/jcb.116.3.647
  6. Fu, B. and S. He(2012) Transcriptome Analysis of Silver Carp (Hypophthalmichthys molitrix) by Paired-End RNA Sequencing. DNA Research 19: 131-142. https://doi.org/10.1093/dnares/dsr046
  7. Gantz, V.M., N. Jasinskiene, O. Tatarenkova, A. Fazekas, V.M. Macias, E. Bier and A.A. James(2015) Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences of the United States of America 112(49): E6736-43.
  8. Graney, R.L., J.H. Kennedy and J.H. Rodgers(1994) Aquatic mesocosm studies in ecological risk assessment. Lewis Publishers, pp.69-176.
  9. Hashimoto, M. and T. Takemoto(2015) Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPRCas9-based genome editing. Scientific Reports 5: 11315. https://doi.org/10.1038/srep11315
  10. Herberg, S., K.R. Gert, A. Schleiffer and A. Pauli(2018) The Ly6uPAR protein Bouncer is necessary and sufficient for species-specific fertilization. Science 361(6406): 1029-1033. https://doi.org/10.1126/science.aat7113
  11. Hirohashi, N., N. Kamei, H. Kubo, H. Sawada, M. Matsumoto and M. Hoshi(2008) Egg and sperm recognition systems during fertilization. Development, Growth & Differentiation 50(Suppl 1): S221-S238. https://doi.org/10.1111/j.1440-169X.2008.01017.x
  12. Kim, I.S.(1997) Illustrated encyclopedia of fauna & flora of Korea. Vol. 37. Freshwater fishes. Ministry of Education, Seoul, Korea, 629pp. (in Korean)
  13. Klangnurak, W., T. Fukuyo, M.D. Rezanujjaman, M. Seki, S. Sugano, Y. Suzuki and T. Tokumoto(2018) Candidate gene identification of ovulation-inducing genes by RNA sequencing with an in vivo assay in zebrafish. Plos One 13(5): e0196544. https://doi.org/10.1371/journal.pone.0196544
  14. KNPS(Korea National Park Service)(2020) 2020 National Park basic statistics. Korea National Park Service, Wonju, Korea, 31pp. (in Korean)
  15. Kyrou, K., A.M. Hammond, R. Galizi, N. Kranjc, A. Burt, A.K. Beaghton, T. Nolan and A. Crisanti(2018) A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology 36(11): 1062-1066. https://doi.org/10.1038/nbt.4245
  16. Lehmann, R.(2018) Matchmaking molecule for egg and sperm. Science 361(6406): 974-975. https://doi.org/10.1126/science.aau8356
  17. Martyniuk, C.J., M.S. Prucha, N.J. Doperalski, P. Antczak, K.J. Kroll, F. Falciani, D.S. Barber and N.D. Denslow(2013) Gene expression networks underlying ovarian development in wild largemouth bass (Micropterus salmoides). Plos One 8(3): e59093. https://doi.org/10.1371/journal.pone.0059093
  18. ME(Ministry of Environment)(2010) A study on the effective removal plan of invasive species using artificial spawning bed. Ministry of Environment, Sejong, Korea, 104pp. (in Korean)
  19. ME(Ministry of Environment)(2012) Standardization of technology and method for restoration of Han river ecosystem. Ministry of Environment, Sejong, Korea, pp.20-29. (in Korean)
  20. Miwa, N.(2015) Protein-Carbohydrate Interaction between Sperm and the the Egg-Coating Envelope and Its Regulation by Dicalcin, a Xenopus laevis Zona Pellucida Protein-Associated Protein. Molecules 20(5): 9468-86. https://doi.org/10.3390/molecules20059468
  21. Nelson, J.S.(2006) Fishes of the world(4th ed.). John Wiley & Sons Inc., Hoboken, New Jersey, 601pp.
  22. NFRDI(National Fisheries Research & Development Institute) (2011) A effect research of artificial spawning bed in inland water, 2010. National Fisheries Research & Development Institute, Gapyeong, Korea, 116pp. (in Korean)
  23. NIER(National Institute of Environmental Research)(1995) Survey for ecological impact by naturalized organisms (I). National Institute of Biological Resources, Incheon, Korea, pp.1-215. (in Korean)
  24. NPRI(National Park Research Institute)(2014) A study on the management of specific foreign species. National Park Research Institute, Wonju, Korea, 140pp. (in Korean)
  25. NPRI(National Park Research Institute)(2020) A study on the management of invasion fishes. National Park Research Institute, Wonju, Korea, 64pp. (in Korean)
  26. Raj, I., H.S.A. Hosseini, E. Dioguardi, K. Nishimura, L. Han, A. Villa, D.D. Sanctis and L. Jovine(2017) Structural basis of egg coat-sperm recognition at fertilization. Cell 169(7): 1315-1326. https://doi.org/10.1016/j.cell.2017.05.033
  27. Trionnaire, G.L., S. Tanguy, S. Hudaverdian, F. Gleonnec, G. Richard, B. Cayrol, B. Monsion, E. Pichon, M. Deshoux, C. Webster, M. Uzest, A. Herpin and D. Tagu(2019) An integrated protocol for targeted mutagenesis with CRISPR-Cas9 system in the pea aphid. Insect Biochemistry and Molecular Biology 110: 34-44. https://doi.org/10.1016/j.ibmb.2019.04.016
  28. Vicens, A., L. Luke and E.R.S. Roldan(2014) Proteins Involved in Motility and Sperm-Egg Interaction Evolve More Rapidly in Mouse Spermatozoa. Plos One 9(3): e91302. https://doi.org/10.1371/journal.pone.0091302
  29. Zhao, C., P. Wang and L. Qiu(2018) RNA-Seq-based transcriptome analysis of reproduction and growth related genes in Lateolabrax japonicus ovaries at four different ages. Molecular Biology Reports 45: 2213-2225. https://doi.org/10.1007/s11033-018-4383-5
  30. Zheng, X., D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, Y. Liang, X. Pan, L. Hu, Q. Sun, X. Wang, Y. Wei, J. Zhu, W. Qian, Z. Yan, A.G. Parker, J.R. Gilles, K. Bourtzis, J. Bouyer, M. Tang, B. Zheng, J. Yu, J. Liu, J. Zhuang, Z. Hu, M. Zhang, J.T. Gong, X.Y. Hong, Z. Zhang, L. Lin, Q. Liu, Z. Hu, Z. Wu, L.A. Baton, A.A. Hoffmann and Z. Xi(2019) Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572(7767): 56-61. https://doi.org/10.1038/s41586-019-1407-9