DOI QR코드

DOI QR Code

Reduced-order thermal behavior of universal motor-driven domestic food mixers/grinders using AC and DC supplies

  • Mercy, A. (Department of Electrical and Electronics Engineering, Anna University) ;
  • Umamaheswari, B. (Department of Electrical and Electronics Engineering, Anna University) ;
  • Latha, K. (Department of Electrical and Electronics Engineering, Anna University)
  • Received : 2020.11.26
  • Accepted : 2021.05.12
  • Published : 2021.09.20

Abstract

This paper presents an improvement in the thermal performance of universal motor, which improves the efficiency and increases the life of the motor. Excessive heating in the winding can lead to an insulation failure of a universal motor and reduce the life of a food mixer. Hence, to avoid hot spots in machine parts and obtain a homogenous temperature distribution, it is necessary to take the thermal limits into consideration. To monitor temperature increase, a lumped parameter thermal model is designed with 12 nodes for a food mixer driven by a universal motor. This paper proposes a reduced-order thermal model for a universal motor used in food mixers to monitor its thermal behavior. In this paper, a 12th-order model is reduced to a 5th-order model using a balanced truncation reduction method. The reduced-order model is validated through simulation and experimental results by comparing its response with a full-order model. A thermal analysis is carried out using AC and DC supplies along with experimentation. It can be seen that when the universal motor is operated with a DC supply, its thermal performance is improved, which increases the life of the machine. This results in energy savings, since the efficiency of the universal motor is increased when it is operated using the DC supply.

Keywords

References

  1. Mellor, P.H., Roberts, D., Turner, D.R.: Lumped parameter thermal model for electrical motors of TEFC design. IEE Proc. B 138(5), 205-218 (1991)
  2. Eva Belicov, A., Valeria Axial Hrabovcov, A.: Analysis of a flux permanent magnet machine (AFPM) based on coupling of two separated simulation models. J. Electr. Eng. 58(1), 3-9 (2007)
  3. Xie, Y., Wang, Y.: 3D temperature field analysis of the induction motors with broken bar fault. Appl. Therm. Eng. 66(1-2), 25-34 (2014) https://doi.org/10.1016/j.applthermaleng.2014.02.008
  4. Li, G.J., Ojeda, J., Hoang, E., Lecrivain, M., Gabsi, M.: Comparative studies between classical and mutually coupled switched reluctance motors using thermal-electromagnetic analysis for driving cycles. IEEE Trans. Magn. 47(4), 839-847 (2011) https://doi.org/10.1109/TMAG.2011.2104968
  5. Satrustegui, M., Martinez-Iturralde, M., Ramos, J.C., Gonzalez, P., Astarbe, G., Elosegui, I.: Design criteria for water cooled system of Induction machines. Appl. Therm. Eng. 114, 1018-1028 (2016) https://doi.org/10.1016/j.applthermaleng.2016.12.031
  6. Melkaa, B., Smolkaa, J., Hetmanczykb, J., Bulinskia, Z., Makielab, D., Ryfaa, A.: Experimentally validated numerical model of thermal and flow processes within the permanent magnet brushless direct current motor. Int. J. Therm. Sci. 130, 406-415 (2018) https://doi.org/10.1016/j.ijthermalsci.2018.04.029
  7. Hyeon Park, M., Chul Kim, S.: Thermal characteristics and effects of oil spray cooling on in-wheel motors in electric vehicles. Appl. Therm. Eng. 63(2), 577-587 (2019) https://doi.org/10.1016/j.applthermaleng.2013.11.057
  8. Kolondzovski, Z., Belahcen, A., Arkkio, A.: Multiphysics thermal design of a high-speed permanent-magnet machine. Appl. Therm. Eng. 29(13), 2693-2700 (2009) https://doi.org/10.1016/j.applthermaleng.2009.01.001
  9. Broussely, M., Bertin, Y., Lagonotte, P.: Reduction and optimisation of thermal models using Kirchoff's network theory. Int. J. Therm. Sci. 42(8), 795-804 (2002) https://doi.org/10.1016/S1290-0729(03)00052-8
  10. Bertin, Y., Videcoq, E., Thieblin, S., Petit, D.: Thermal behavior of an electrical motor through a reduced model. IEEE Trans. Energy Convers. 15(2), 129-134 (2000) https://doi.org/10.1109/60.866989
  11. Tovar-Barranco, A., Briz, F., Lopez-de-Heredia, A, Villara, I.: Reduced lumped parameter thermal model for external rotor permanent magnet motor design. In: IEEE Energy Conversion, 2017 IEEE Energy Congress and Exposition (ECCE). https://doi.org/10.1109/ECCE.2017.8096797
  12. Qi, F., An Ly, D., Christoph van der, B., Yan, D., Rik, W.: Model order reduction suitable for online linear parameter-varying thermal models of electric motors. In: 2017 IEEE Energy Conversion Congress and Exposition (ECCE). https://doi.org/10.1109/ECCE.2017.8096797
  13. Jaljal, N., Trigeol, J.F., Lagonotte, P.: Reduced thermal model of an induction machine for real-time thermal monitoring. IEEE Trans. Ind. Electron. 55(10), 3535-3542 (2008) https://doi.org/10.1109/TIE.2008.2003196
  14. Gao, Z., Colby, R.S., Habetler, T.G., Ronald, G.: A model reduction perspective on thermal models for induction machine overload relays. IEEE Trans. Ind. Electron. 55(10), 3525-3534 (2008) https://doi.org/10.1109/TIE.2008.926772
  15. Lazcano, U., Bauml, T., Aldasoro, L.: Geometry based reduced order thermal model for totally enclosed machines. In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion (2014). https://doi.org/10.1109/SPEEDAM.2014.6871922
  16. Wallscheid, O., Bocker, J.: Global identification of a low-order lumped-parameter thermal network for permanent magnet synchronous motors. IEEE Trans. Energy Convers. 31(1), 354-365 (2016) https://doi.org/10.1109/TEC.2015.2473673
  17. Beguenane, R., Benbouzid, M.E.H.: Induction motors thermal monitoring by means of rotor resistance identification. IEEE Trans. Energy Convers. 14(3), 566-570 (1999) https://doi.org/10.1109/60.790915
  18. Kral, C.: Rotor temperature estimation of squirrel-cage induction motors by means of a combined scheme of parameter estimation and a thermal equivalent model. IEEE Trans. Ind. Appl. 40(4), 1049-1057 (2004) https://doi.org/10.1109/TIA.2004.830759
  19. Cirrincione, M., Pucci, M., Cirrincione, G., Capolino, G.-A.: Constrained minimization for parameter estimation of induction motors in saturated and unsaturated conditions. IEEE Trans. Ind. Electron. 52(5), 1391-1402 (2005) https://doi.org/10.1109/TIE.2005.855657
  20. Karanayil, B., Rahman, M.F., Grantham, C.: Online stator and rotor resistance estimation scheme using artificial neural networks for vector controlled speed sensorless induction motor drive. IEEE Trans. Ind. Electron. 54(1), 167-176 (2007) https://doi.org/10.1109/TIE.2006.888778
  21. Gao, Z., Habetler, T.G., Harley, R.G., Colby, R.S.: A sensorless rotor temperature estimator for induction machines based on a current harmonic spectral estimation scheme. IEEE Trans. Ind. Electron. 55(1), 407-416 (2008) https://doi.org/10.1109/TIE.2007.896282
  22. Al-Tayie, J.K., Acaruley, P.P.: Estimation of speed, stator temperature and rotor temperature in cage induction motor drive using the extended Kalman filter algorithm. Electr. Power Appl. IEEE Proc. 144(5), 301-309 (1997) https://doi.org/10.1049/ip-epa:19971166
  23. Foulon, E., Guibert, C., Loron, L.: Reduced-order electrical model extensions for induction machine temperature monitoring with extended Kalman filter. In: (2005) European Conference on Power Electronics and Applications. https://doi.org/10.1109/EPE.2005.219612
  24. Deekshitha, S.N., Shivarudraswamy, R.: Efficiency and loss analysis of proposed BLDC motor drive and existing universal motor drive used in a mixer grinder. Int. J. Mech. Eng. Robot. Res. 9(6), 808-812 (2020)
  25. Mellor, P.H.: Improvements in the efficiency and thermal aging of single and parallel machine drives. Ph.D. Thesis, University of Liverpool (1983)
  26. Taylor, G.I.: Distribution of velocity and temperature between concentric cylinders. Proc. R. Soc. A 159, 546-578 (1935)
  27. Gazley, C.: Heat transfer characteristics of rotational and axial flow between concentric cylinders. Trans. ASME 80, 79-89 (1958)
  28. Luke, G.E.: The cooling of electric machines. Trans. AIEE. 45, 1278-1288 (1923)
  29. Jacquelien, M.A.S.: The control handbook control system advanced methods. University of Groningen (2011)
  30. Nicolai, J., Bally, A.: Sensorless universal motor speed controller .US patent no: 5,986,417 (1999)