DOI QR코드

DOI QR Code

Vibration analysis and dynamic performance improvement of high-frequency injection method

  • Peng, Wei (School of Electrical Engineering, Naval University of Engineering) ;
  • Qiao, Mingzhong (School of Electrical Engineering, Naval University of Engineering) ;
  • Jiang, Chao (School of Electrical Engineering, Naval University of Engineering) ;
  • Lu, Xihao (School of Electrical Engineering, Naval University of Engineering) ;
  • Zhu, Peng (School of Electrical Engineering, Naval University of Engineering)
  • Received : 2020.06.07
  • Accepted : 2020.11.13
  • Published : 2021.02.20

Abstract

This paper analyzes and compares the typical rotating high-frequency voltage injection (RTHF) method and the typical pulsating high-frequency voltage injection (PSHF) method in terms of torque ripple and vibration. Analysis and experiment results indicate that the PSHF performs better when it comes to torque pulsation and vibration. In addition, it is more suitable for rim motors which have strict restrictions on vibration. However, the estimated rotor position in PSHF has multiple convergence points. In addition, the filters used in PSHF can degrade the dynamic response of the PMSM sensorless field oriented control (SLFOC) system. An improved PSHF method compensated by Hall signals is proposed to accelerate the estimation process and improve the system stability in the presence of sudden load disturbances. The improved method is verified on an 11 kW rim motor experimental platform.

Keywords

Acknowledgement

This work was supported in part by National Natural Science Foundation of China (Project: 51877212 and 51807197).

References

  1. Mwasilu, F., Jung, J.: Enhanced fault-tolerant control of interior PMSMs based on an adaptive EKF for EV traction applications. IEEE Trans. Power Electron. 31(8), 5746-5758 (2016) https://doi.org/10.1109/TPEL.2015.2495240
  2. Idkhajine, L., Monmasson, E., Maalouf, A.: Fully FPGA-based sensorless control for synchronous AC drive using an extended kalman filter. IEEE Trans. Ind. Electron. 59(10), 3908-3918 (2012) https://doi.org/10.1109/TIE.2012.2189533
  3. An, Q., Zhang, J., An, Q., Liu, X., Shamekov, A., Bi, K.: Frequency-adaptive complex-coefcient filter-based enhanced sliding mode observer for sensorless control of permanent magnet synchronous motor drives. IEEE Trans. Ind. Appl. 56(1), 335-343 (2020) https://doi.org/10.1109/tia.2019.2951760
  4. Liang, D., Li, J., Qu, R.: Sensorless control of permanent magnet synchronous machine based on second-order sliding-mode observer with online resistance estimation. IEEE Trans. Ind. Appl. 53(4), 3672-3682 (2017) https://doi.org/10.1109/TIA.2017.2690218
  5. Kim, S., Choi, C., Lee, K., Lee, W.: An improved rotor position estimation with vector-tracking observer in pmsm drives with low-resolution hall-effect sensors. IEEE Trans. Ind. Electron. 58(9), 4078-4086 (2011) https://doi.org/10.1109/TIE.2010.2098367
  6. Kim, J., Jung, S., Nam, K.: PMSM angle detection based on the edge field measurements by hall sensors. J. Power Electron. 10(3), 300-305 (2010) https://doi.org/10.6113/JPE.2010.10.3.300
  7. Ni, Q., et al.: A new position and speed estimation scheme for position control of pmsm drives using low-resolution position sensors. IEEE Trans. Ind. Appl. 55(4), 3747-3758 (2019) https://doi.org/10.1109/tia.2019.2904934
  8. Yoon, S., Kim, J.: Sensorless control of a PMSM at low speeds using high frequency voltage injection. J. Power Electron. 5(1), 11-19 (2005)
  9. Jin, X., Ni, R., Chen, W., Blaabjerg, F., Xu, D.: High-frequency voltage-injection methods and observer design for initial position detection of permanent magnet synchronous machines. IEEE Trans. Power Electron. 33(9), 7971-7979 (2018) https://doi.org/10.1109/tpel.2017.2773094
  10. Song, E.Y., Im, J.H., Kim, S.I., Kim R.Y.: A rotor position estimation method in stationary reference frame of high frequency rotating voltage signal injection IPMSM sensorless control. 2015 IEEE 2nd international future energy electronics conference (IFEEC), Taipei, pp. 1-6 (2015)
  11. Luo, X., Tang, Q., Shen, A., Zhang, Q.: PMSM sensorless control by injecting HF pulsating carrier signal into estimated fixed-frequency rotating reference frame. IEEE Trans Ind Electron 63(4), 2294-2303 (2016) https://doi.org/10.1109/TIE.2015.2505679
  12. Liu, J.M., Zhu, Z.Q.: Novel sensorless control strategy with injection of high-frequency pulsating carrier signal into stationary reference frame. IEEE Trans. Ind. Appl. 50(4), 2574-2583 (2014) https://doi.org/10.1109/TIA.2013.2293000
  13. Tang, Q., Shen, A., Luo, X., Xu, J.: PMSM sensorless control by injecting HF pulsating carrier signal into ABC frame. IEEE Trans. Power Electron. 32(5), 3767-3776 (2017) https://doi.org/10.1109/TPEL.2016.2583787
  14. Kim, S., Im, J., Song, E., Kim, R.: A new rotor position estimation method of IPMSM using all-pass filter on high-frequency rotating voltage signal injection. IEEE Trans. Ind. Electron. 63(10), 6499-6509 (2016) https://doi.org/10.1109/TIE.2016.2592464
  15. Wang, T., Shi, B., Xu, J., Gerada, C.: Accuracy improvement of carrier signal injection sensorless control for IPMSM in consideration of inverter nonlinearity. IECON 2015-41st annual conference of the IEEE industrial electronics society, Yokohama, , pp. 000273-000278 (2015)
  16. Zhang, X., Li, H., Yang, S., Ma, M.: Improved initial rotor position estimation for PMSM drives based on HF pulsating voltage signal injection. IEEE Trans. Ind. Electron. 65(6), 4702-4713 (2018) https://doi.org/10.1109/tie.2017.2772204
  17. Jeong, Y.-S., Lorenz, R.D., Jahns, T.M., Sul, S.-K.: Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods. IEEE Trans. Ind. Appl. 41(1), 38-45 (2005) https://doi.org/10.1109/TIA.2004.840978
  18. Holtz, J.: Acquisition of position error and magnet polarity for sensorless control of pm synchronous machines. IEEE Trans. Ind. Appl. 44(4), 1172-1180 (2008) https://doi.org/10.1109/TIA.2008.921418
  19. Harke, M.C., Raca, D., Lorenz, R.D.: Implementation issues for fast initial position and magnet polarity identification of PM synchronous machines with near zero saliency. 2005 European conference on power electronics and applications, Dresden, pp. 1-10 (2005)
  20. Xu, P., Zhu, Z.Q.: Initial rotor position estimation using zero-sequence carrier voltage for permanent-magnet synchronous machines. IEEE Trans. Ind. Electron. 64(1), 149-158 (2017) https://doi.org/10.1109/TIE.2016.2596703
  21. Gong, L.M., Zhu, Z.Q.: Robust initial rotor position estimation of permanent-magnet brushless ac machines with carrier-signal-injection-based sensorless control. IEEE Trans. Ind. Appl. 49(6), 2602-2609 (2013) https://doi.org/10.1109/TIA.2013.2265072
  22. Kim, S., Ha, J., Sul, S.: PWM switching frequency signal injection sensorless method in IPMSM. IEEE Trans. Ind. Appl. 48(5), 1576-1587 (2012) https://doi.org/10.1109/TIA.2012.2210175
  23. Kim, S., Kwon, Y., Sul, S., Park, J., Kim, S.: Position sensorless operation of IPMSM with near PWM switching frequency signal injection. 8th international conference on power electronics-ECCE Asia, Jeju, pp. 1660-1665 (2011)
  24. Zhang, Y., Yin, Z., Liu, J., Zhang, R., Sun, X.: IPMSM sensorless control using high-frequency voltage injection method with random switching frequency for audible noise improvement. IEEE Trans. Ind. Electron. 67(7), 6019-6030 (2020) https://doi.org/10.1109/tie.2019.2937042
  25. Wang, G., Yang, L., Zhang, G., Zhang, X., Xu, D.: Comparative investigation of pseudorandom high-frequency signal injection schemes for sensorless IPMSM drives. IEEE Trans. Power Electron. 32(3), 2123-2132 (2017) https://doi.org/10.1109/TPEL.2016.2569418
  26. Suthep, S., Wang, Y., Ishida, M., Yamamura, N., Yubai, K., Komada, S.: Frame vibration suppression method for sensorless PMSM drive applications. J Power Electr 16(6), 2182-2191 (2016) https://doi.org/10.6113/JPE.2016.16.6.2182
  27. Yang, H., Chen, Y.: Influence of radial force harmonics with low mode number on electromagnetic vibration of PMSM. IEEE Trans. Energy Convers. 29(1), 38-45 (2014) https://doi.org/10.1109/TEC.2013.2290304