DOI QR코드

DOI QR Code

Full-bridge resonant converter with hybrid control for wide input voltage range applications

  • Zhou, Yufei (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • He, Xin'an (College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Sheng, Lunhui (Huawei Technologies Co., Ltd.)
  • Received : 2020.04.06
  • Accepted : 2020.09.22
  • Published : 2021.01.20

Abstract

This paper proposes a hybrid control strategy for a full-bridge resonant converter. In the applications with a wide input voltage, a resonant converter with variable frequency control (VFC) has to modulate the converter operating in a wide switching frequency range to satisfy gain requirements, which results in some problems such as difficulty in optimizing the design of magnetic components, increased power loss and deteriorated electromagnetic interference. By use of VFC, primary-side phase shift control and secondary-side phase shift control, the frequency variable range can be greatly reduced and the conversion efficiency can be increased, which make the converter appropriate for a wide input voltage range. With this hybrid control strategy, the converter can automatically convert to the corresponding control mode according to variations of the input voltage and load, which has a good transient performance. The working principle, gain characteristics and design considerations of a hybrid controlled CLL resonant converter are introduced in detail. Experimental results are shown to demonstrate its validity and feasibility.

Keywords

References

  1. Zeng, B., Zhang, J., Yang, X., Wang, J., Dong, J., Zhang, Y.: Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response. IEEE Trans. Power Syst. 29(3), 1153-1165 (2014) https://doi.org/10.1109/TPWRS.2013.2291553
  2. Yao, C., Ruan, X., Wang, X., Tse, C.K.: Isolated buck-boost DC/DC converters suitable for wide input-voltage range. IEEE Trans. Power Electron. 26(9), 2599-2613 (2011) https://doi.org/10.1109/TPEL.2011.2112672
  3. Morales-Morales, J., Cervantes, I., Cano-Castillo, U.: On the design of robust energy management strategies for FCHEV. IEEE Trans. Vehicul. Technol. 64(5), 1716-1728 (2015) https://doi.org/10.1109/TVT.2014.2336214
  4. Wu, H., Xing, Y.: Families of forward converters suitable for wide input voltage range applications. IEEE Trans. Power Electron. 29(11), 6006-6017 (2014) https://doi.org/10.1109/TPEL.2014.2298617
  5. Wang, H., Shang, M., Khaligh, A.: A PSFB-based integrated PEV onboard charger with extended ZVS range and zero duty cycle loss. IEEE Trans. Ind. Appl. 53(1), 585-595 (2017) https://doi.org/10.1109/TIA.2016.2615034
  6. Shin, Y., Kim, C., Han, S.: A pulse-frequency-modulated full-bridge DC/DC converter with series boost capacitor. IEEE Trans. Ind. Electron. 58(11), 5154-5162 (2011) https://doi.org/10.1109/TIE.2011.2123855
  7. Kim, Chong-Eun, Baek, Jaeil, Lee, Jae-Bum: Improved three switch-active clamp forward converter with low switching and conduction losses. IEEE Trans. Power Electron. 34(6), 5209-5216 (2019) https://doi.org/10.1109/tpel.2018.2866761
  8. Lin, J., Lee, S., Ting, C., Syu, F.: Active-clamp forward converter with lossless-snubber on secondary-side. IEEE Trans. Power Electron. 34(8), 7650-7661 (2019) https://doi.org/10.1109/tpel.2018.2879721
  9. Yeon, C., Lee, J., Lee, I., Moon, G.: Wide ZVS range asymmetric half-bridge converter with clamp switch and diode for high conversion efficiency. IEEE Trans. Ind. Electron. 63(5), 2862-2870 (2016) https://doi.org/10.1109/TIE.2016.2515567
  10. Jeong, Y., Kim, J., Lee, J., Moon, G.: An asymmetric half-bridge resonant converter having a reduced conduction loss for DC/DC power applications with a wide range of low input voltage. IEEE Trans. Power Electron. 32(10), 7795-7804 (2017) https://doi.org/10.1109/TPEL.2016.2639069
  11. Yang, B., Lee, F.C., Zhang, A.J., Huang, G.: LLC resonant converter for front end DC/DC conversion. In: IEEE Applied Power Electronics Conference and Exposition, Dallas, TX, pp. 1108-1112 (2002)
  12. Wu, H., Li, Y., Xing, Y.: LLC resonant converter with semiactive variable-structure rectifier (SA-VSR) for wide output voltage range application. IEEE Trans. Power Electron. 31(5), 3389-3394 (2016) https://doi.org/10.1109/TPEL.2015.2499306
  13. Shang, M., Wang, H.: A voltage quadrupler rectifier based pulsewidth modulated LLC converter with wide output range. IEEE Trans. Ind. Appl. 54(6), 6159-6168 (2018) https://doi.org/10.1109/tia.2018.2850033
  14. Wu, H., Mu, T., Gao, X., Xing, Y.: A secondary-side phase-shift-controlled LLC resonant converter with reduced conduction loss at normal operation for hold-up time compensation application. IEEE Trans. Power Electron. 30(10), 5352-5357 (2015) https://doi.org/10.1109/TPEL.2015.2418786
  15. Asa, E., Colak, K., Czarkowski, D.: Analysis of a CLL resonant converter with semi-bridgeless active rectifier and hybrid control. IEEE Trans. Ind. Electron. 62(11), 6877-6886 (2015) https://doi.org/10.1109/TIE.2015.2448688
  16. Sun, X., Shen, Y., Zhu, Y., Guo, X.: Interleaved boost-integrated LLC resonant converter with fixed-frequency PWM control for renewable energy generation applications. IEEE Trans. Power Electron. 30(8), 4312-4326 (2015) https://doi.org/10.1109/TPEL.2014.2358453
  17. Sun, X., Li, X., Shen, Y., Wang, B., Guo, X.: Dual-bridge LLC resonant converter with fixed-frequency PWM control for wide input applications. IEEE Trans. Power Electron. 32(1), 69-80 (2017) https://doi.org/10.1109/TPEL.2016.2530748
  18. Sun, W., Xing, Y., Wu, H., Ding, J.: Modifed high-efficiency LLC converters with two split resonant branches for wide input-voltage range applications. IEEE Trans. Power Electron. 33(9), 7867-7879 (2018) https://doi.org/10.1109/tpel.2017.2773484
  19. Huang, D., Fu, D., Lee, F.C.: High switching frequency, high efficiency CLL resonant converter with synchronous rectifier. In: IEEE Energy Conversion Congress and Exposition, San Jose, CA, pp. 804-809 (2009)
  20. Asa, E., Colak, K., Bojarski, M., et al.: Asymmetrical duty-cycle and phase-shift control of a novel multiport CLL resonant converter. IEEE J. Emerg. Sel. Top. Power Electron. 3(4), 1122-1131 (2015) https://doi.org/10.1109/JESTPE.2015.2408565
  21. Zong, S., Luo, H., Li, W., Deng, Y., He, X.: Asymmetrical duty cycle-controlled LLC resonant converter with equivalent switching frequency double. IEEE Trans. Power Electron. 31(7), 4963-4973 (2016) https://doi.org/10.1109/TPEL.2015.2478422
  22. Inam, W., Afridi, K.K., Perreault, D.J.: "Variable frequency multiplier technique for high-efficiency conversion over a wide operating range. IEEE J. Emerg. Sel. Top. Power Electron. 4(2), 335-343 (2016) https://doi.org/10.1109/JESTPE.2015.2461615
  23. Huang, D., Fu, F., Lee, C., Kong, P.: High-frequency high-efficiency CLL resonant converters with synchronous rectifiers. IEEE Trans. Ind. Electron. 58(8), 3461-3470 (2011) https://doi.org/10.1109/TIE.2010.2093474
  24. Patil, U., Nagendrappa, H.: Analysis and design of a high frequency isolated full bridge CLL resonant DC-DC converter for renewable energy applications. In: 2018 International Conference on Power, Instrumentation, Control and Computing (PICC), Thrissur, pp. 1-6 (2018)