DOI QR코드

DOI QR Code

Disturbance rejection speed sensorless control of PMSMs based on full order adaptive observer

  • Xu, Yanping (School of Electrical Engineering, Xi'an University of Technology) ;
  • Wang, Li (Xi'an Key Laboratory of Power Electronic Devices and High Efficiency Power Conversion) ;
  • Yuan, Weiwen (School of Electrical Engineering, Xi'an University of Technology) ;
  • Yin, Zhonggang (School of Electrical Engineering, Xi'an University of Technology)
  • 투고 : 2020.09.25
  • 심사 : 2021.02.02
  • 발행 : 2021.05.20

초록

Speed sensorless control systems with a full order adaptive observer of the permanent magnet synchronous motor (PMSM) have received wide attention due to their advantages of simple structure, easy implementation and strong universality. However, they are sensitive to the load disturbances, which affects the speed performance of the control system. To solve this problem, this paper presents a disturbance rejection speed sensorless control of PMSMs based on full order adaptive observer to improve robustness against load disturbances. A load disturbance observer (LDO) is used to observe load disturbances, which feed-forward compensates the q-axis current to reduce the speed drop and accelerate the recovery time. Experimental results show that the proposed method has better anti-interference capability than full order adaptive speed sensorless control under the same steady-state performance.

키워드

과제정보

This work is supported by the Xi'an Key Laboratory of Power Electronic Devices and High Efficiency Power Conversion (2019219814SYS013CG035).

참고문헌

  1. Dieterle, O., Greiner, T., Heidrich, P.: Control of a PMSM with quadruple three-phase star-connected windings under inverter short-circuit fault. IEEE Trans. Ind. Electron. 66(1), 685-695 (2019) https://doi.org/10.1109/tie.2018.2835422
  2. Cai, X., Zhang, Z., Wang, J., Kennel, R.: Optimal control solutions for PMSM drives: a comparison study with experimental assessments. IEEE J. Emerge. Sel. Topics Power Electron 6(1), 352-362 (2018) https://doi.org/10.1109/JESTPE.2017.2717195
  3. Rotor surface ferrite permanent magnets in electrical machines: advantages and limitations. IEEE Trans. Ind. Electron. 64(7), 5314-5322 (2017) https://doi.org/10.1109/TIE.2017.2677320
  4. Rovere, L., Formentini, A., Gaeta, A., Marchesoni, M.: Sensorless finite-control set model predictive control for IPMSM drives. IEEE Trans. Ind. Electron. 63(9), 5921-5931 (2016) https://doi.org/10.1109/TIE.2016.2578281
  5. Zerdali, E., Barut, M.: The comparisons of optimized extended Kalman filters for speed-sensorless control of induction motors. IEEE Trans. Ind. Electron. 64(6), 4340-4351 (2017) https://doi.org/10.1109/TIE.2017.2674579
  6. Khayam Hoseini, S.R., Farjah, E., Ghanbari, T., Givi, H.: extended Kalman filter-based method for inter-turn fault detection of the switched reluctance motors. IET Electr. Power Appl. 10(8), 714-722 (2016) https://doi.org/10.1049/iet-epa.2015.0602
  7. Davari, S.A., Wang, F., Kennel, R.M.: Robust deadbeat control of an induction motor by stable MRAS speed and stator estimation. IEEE Trans. Ind. Inform. 14(1), 200-209 (2018) https://doi.org/10.1109/tii.2017.2756900
  8. Zbede, Y.B., Gadoue, S.M., Atkinson, D.J.: Model predictive MRAS estimator for sensorless induction motor drives. IEEE Trans. Ind. Electron. 63(6), 3511-3521 (2016) https://doi.org/10.1109/TIE.2016.2521721
  9. Sun, X., Chen, L., Yang, Z., Zhu, H.: Speed-sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer. IEEE/ASME Trans. Mechatronics. 18(4), 1357-1366 (2013) https://doi.org/10.1109/TMECH.2012.2202123
  10. Lin, T.C., Zhu, Z.Q.: Sensorless operation capability of surface-mounted permanent-magnet machine based on high-frequency signal injection methods. IEEE Trans. Ind. Appl. 51(3), 2161-2171 (2015) https://doi.org/10.1109/TIA.2014.2382762
  11. Tuovinen, T., Hinkkanen, M., Harnefors, L., Luomi, J.: Comparison of a reduced-order observer and a full-order observer for sensorless synchronous motor drives. IEEE Trans. Ind. Appl. 48(6), 1959-1967 (2012) https://doi.org/10.1109/TIA.2012.2226200
  12. Sun, W., Yu, Y., Wang, G., Li, B., Xu, D.: Design method of adaptive full order observer with or without estimated flux error in speed estimation algorithm. IEEE Trans. Power Electron. 31(3), 2609-2626 (2016) https://doi.org/10.1109/TPEL.2015.2440373
  13. Kubota, H., Matsuse, K., Nakano, T.: DSP-based speed adaptive flux observer of induction motor. IEEE Trans. Ind. Appl. 29(2), 344-348 (1993) https://doi.org/10.1109/28.216542
  14. Yang, G., Chin, T.: Adaptive-speed identification scheme for a vector-controlled speed sensorless inverter-induction motor drive. IEEE Trans. Ind. Appl. 29(4), 820-825 (1993) https://doi.org/10.1109/28.232001
  15. Zhang, Y., Zhu, J., Zhao, Z., Xu, W., Dorrell, D.G.: An improved direct torque control for three-level inverter-fed induction motor sensorless drive. IEEE Trans. Power Electron. 27(3), 1502-1513 (2012) https://doi.org/10.1109/TPEL.2010.2043543
  16. Traore, D., Leon, J.D., Glumineau, A.: Sensorless induction motor adaptive observer-backstepping controller: experimental robustness tests on low frequencies benchmark. IET Control Theo. Appl. 4(10), 1989-2002 (2010) https://doi.org/10.1049/iet-cta.2009.0648
  17. Gao, Y., Liu, W.G.: A new method research of fuzzy dtc based on full-order state observer for stator flux linkage. 2011 IEEE International Conference on Computer Science and Automation Engineering, Shanghai, pp. 104-108 (2011)
  18. Yang, J., Zheng, W.X., Li, S., Wu, B., Cheng, M.: Design of a prediction-accuracy-enhanced continuous-time MPC for disturbed systems via a disturbance observer. IEEE Trans. Ind. Electron. 62(9), 5807-5816 (2015) https://doi.org/10.1109/TIE.2015.2450736
  19. Tuovinen, T., Hinkkanen, M., Luomi, J.: Analysis and design of a position observer with resistance adaptation for synchronous reluctance motor drives. IEEE Trans. Ind. Appl. 49(1), 66-73 (2013) https://doi.org/10.1109/TIA.2012.2228616
  20. Traore, D., Leon, J.D., Glumineau, A.: Sensorless induction motor adaptive observer-backstepping controller: Experimental robustness tests on low frequencies benchmark. IET Control Theo. Appl. 4(10), 1989-2002 (2010) https://doi.org/10.1049/iet-cta.2009.0648
  21. Chen, W., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods-an overview. IEEE Trans. Ind. Electron. 63(2), 1083-1095 (2016) https://doi.org/10.1109/TIE.2015.2478397
  22. Yang, J., Chen, W., Li, S., Guo, L., Yan, Y.: Disturbance/Uncertainty estimation and attenuation techniques in PMSM drives-a survey. IEEE Trans. Ind. Electron. 64(4), 3273-3285 (2017) https://doi.org/10.1109/TIE.2016.2583412
  23. Wang, S., Wan, S.: Full digital deadbeat speed control for permanent magnet synchronous motor with load compensation. IET Power Electron. 6(4), 634-641 (2013) https://doi.org/10.1049/iet-pel.2012.0114
  24. Xiaoquan, L., Heyun, L., Junlin, H.: Load disturbance observer-based control method for sensorless PMSM drive. IET Electr. Power Appl. 10(8), 735-743 (2016) https://doi.org/10.1049/iet-epa.2015.0550