DOI QR코드

DOI QR Code

Fenton pre-activated grafted modified PVDF membrane and its application in DCMD desalination

  • Li, Zheng (School of Chemistry Engineering, Northeast Electric Power University) ;
  • Niu, Jingdong (School of Chemistry Engineering, Northeast Electric Power University) ;
  • He, Guangze (School of Chemistry Engineering, Northeast Electric Power University) ;
  • Zhu, Chuntao (School of Chemistry Engineering, Northeast Electric Power University) ;
  • Chen, Zicheng (School of Chemistry Engineering, Northeast Electric Power University) ;
  • Zhang, Lanhe (School of Chemistry Engineering, Northeast Electric Power University) ;
  • Zhang, Jian (School of Chemistry Engineering, Northeast Electric Power University) ;
  • Li, Lin (School of Chemistry Engineering, Northeast Electric Power University) ;
  • Ming, Jian (School of Chemistry Engineering, Northeast Electric Power University)
  • 투고 : 2021.01.04
  • 심사 : 2021.08.17
  • 발행 : 2021.11.25

초록

As an efficient membrane separation technology, membrane distillation (MD) technology has broad application prospects in desalination of marine and high-salt wastewater. However, membrane fouling/wetting is still the main factor limiting the industrialization of MD technology. In this paper, a polyvinylidene fluoride (PVDF) micro/nano superhydrophobic membrane was prepared using Fenton pretreatment combined with a surface grafting method. Membrane surface hydrophobicity, chemistry and morphology were characterized using measurements of water contact angle (WCA) and liquid entry pressure (LEP), along with observations using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The grafted fluorinated SiO2 nanoparticles reduced the surface energy of the PVDF base membrane while at the same time increasing the surface roughness. After modification, the WCA of the PVDF base membrane surface increased from 99° to 155° and the LEP was enhanced from 204 kPa to 235 kPa. Furthermore, the composite membrane revealed stable performance due to the pre-activation by the Fenton solution. The proposed superhydrophobic composite membrane has a great potential to solve the problems of complex membrane pretreatment and prevent damage to the base membrane. The simple method demonstrated here also reduces costs which opens up multiple opportunities for applications in industry.

키워드

과제정보

This work was supported by the Jilin Province Science and Technology Development Project of China [20180101309 JC].

참고문헌

  1. Abdolmaleki, A., Mallakpour, S. and Borandeh, S. (2011), "Preparation, characterization and surface morphology of novel optically active poly(ester-amide)/functionalized ZnO bionanocomposites via ultrasonication assisted process", Appl. Surf. Sci., 257(15), 6725-6733. https://doi.org/10.1016/j.apsusc.2011.02.112.
  2. Berthelot, T., Le, X.T., Jegou, P., Viel, P., Boizot, B., Baudin, C. and Palacin, S. (2011), "Photoactivated surface grafting from PVDF surfaces", Appl. Surf. Sci., 257(22), 9473-9479. https://doi.org/10.1016/j.apsusc.2011.06.039.
  3. Cassie, A.B.D. (1948), "Contact angles", Discuss. Faraday. Soc., 3(5), 11-16. https://doi.org/10.1039/DF9480300011.
  4. Choi, J., Choi, Y., Jang, Y., Shin, Y. and Lee, S. (2017), "Effect of aeration on CaSO4 scaling in membrane distillation process", Desalin. Water Treat, 90, 7-15. https://doi.org/10.5004/dwt.2017.21349.
  5. Choudhury, M.R., Anwar, N., Jassby, D. and Rahaman, M.S. (2019), "Fouling and wetting in the membrane distillation driven wastewater reclamation process-A review", Adv. Colloid Interf. Sci., 269(1), 370-399. https://doi.org/10.1016/j.cis.2019.04.008.
  6. Deng, B.O., Ming, Y.U., Yang, X., Zhang, B., Linfan, L.I., Xie, L., Jingye, L.I. and Xiaofeng, L.U. (2010), "Antifouling microfiltration membranes prepared from acrylic acid or methacrylic acid grafted poly (vinylidene fluoride) powder synthesized via pre-irradiation induced graft polymerization", J. Membr. Sci., 350(1), 252-258. https://doi.org/10.1016/j.memsci.2009.12.035.
  7. Dong, S., Yun, Y., Wang, M., Li, C., Fu, H., Li, X., Yang, W. and Liu, G. (2020), "Superhydrophobic alumina hollow ceramic membrane modified by TiO2 nanorod array for vacuum membrane distillation", J. Taiwan Inst. Chem. E, 117, 56-62. https://doi.org/10.1016/j.jtice.2020.11.030.
  8. Drioli, E., Ali, A. and Macedonio, F. (2015), "Membrane distillation: Recent developments and perspectives", Desalination, 356, 56-84. https://doi.org/10.1016/j.desal.2014.10.028.
  9. El-Bourawi, M.S., Ding, Z., Ma, R. and Khayet, M. (2006), "A framework for better understanding membrane distillation separation process", J. Membr. Sci., 285(1), 4-29. https://doi.org/10.1016/j.memsci.2006.08.002.
  10. Eykens, L., De Sitter, K., Dotremont, C., Pinoy, L. and Van der Bruggen, B. (2017), "Membrane synthesis for membrane distillation: A review", Sep. Purif. Technol., 182, 36-51. https://doi.org/10.1016/j.seppur.2017.03.035.
  11. Fan, Y., Chen, S., Zhao, H. and Liu, Y. (2017), "Distillation membrane constructed by TiO2 nanofiber followed by fluorination for excellent water desalination performance", Desalination, 405, 51-58. https://doi.org/10.1016/j.desal.2016.11.028.
  12. Franken, A.C.M., Nolten, J.A.M., Mulder, M.H.V., Bargeman, D. and Smolders, C.A. (1987), "Wetting criteria for the applicability of membrane distillation", J. Membr. Sci., 33(3), 315-328. https://doi.org/10.1016/S0376-7388(00)80288-4.
  13. Gao, J., Wang, X., Wei, Y. and Yang, W. (2006), "Synthesis and characterization of a novel fluorine-containing polymer emulsion with core/shell structure", J. Fluorine. Chem., 127(2), 282-286. https://doi.org/10.1016/j.jfluchem.2005.12.002.
  14. Gao, X., Wen, G. and Guo, Z. (2018), "Durable superhydrophobic and underwater superoleophobic cotton fabrics growing zinc oxide nanoarrays for application in separation of heavy/light oil and water mixtures as need", Colloid Surface A, 559, 115-126. https://doi.org/10.1016/j.colsurfa.2018.09.041.
  15. Garcia Payo, M.D.C., Essalhi, M., Khayet Souhaimi, M., Garcia Fernandez, L., Charfi, K. and Arafat, H. (2010), "Water desalination by membrane distillation using PVDF-HFP hollow fiber membranes", Membr. Water Treat., 1(3), 215-230. https://doi.org/10.12989/mwt.2010.1.3.215.
  16. Gaur, M.S., Indolia, A.P., Rogachev, A.A. and Rahachou, A.V. (2015), "Influence of SiO2 nanoparticles on morphological, thermal, and dielectric properties of PVDF", J. Therm. Anal. Calorim., 122(3), 1403-1416. https://doi.org/10.1007/s10973-015-4872-x.
  17. Ge, B., Zhang, Z., Men, X., Zhu, X. and Zhou, X. (2014), "Sprayed superamphiphobic coatings on copper substrate with enhanced corrosive resistance", Appl. Surf. Sci., 293, 271-274. https://doi.org/10.1016/j.apsusc.2013.12.148.
  18. Han, Y., Song, S., Lu, Y., Zhu, D. (2016), "A method to modify PVDF microfiltration membrane via ATRP with lowtemperature plasma pretreatment", Appl. Surf. Sci., 379, 474-479. https://doi.org/10.1016/j.apsusc.2016.04.114.
  19. Jafari, R., Asadollahi, S. and Farzaneh, M. (2013), "Applications of plasma technology in development of superhydrophobic surfaces", Plasma Chem. Plasma P, 33(1), 177-200. https://doi.org/10.1007/s11090-012-9413-9.
  20. Jimenez-Meneses, P., Banuls, M., Puchades, R. and Maquieira, A . (2019), "Novel and rapid activation of polyvinylidene fluoride membranes by UV light", React Funct. Polym, 140, 56-61. https://doi.org/10.1016/j.reactfunctpolym.2019.04.012.
  21. Kamyar, S., Peter, F., Dianne, L. and Ranil, W.S. (2018), "Combined electrocoagulation and membrane distillation for treating high salinity produced waters", J. Membr. Sci., 564, 82-96. https://doi.org/10.1016/j.memsci.2018.06.041.
  22. Kiss, A.A. and Kattan Readi, O.M. (2018), "An industrial perspective on membrane distillation processes", J. Chem. Technol. Biot, 93(8), 2047-2055. https://doi.org/10.1002/jctb.5674.
  23. Kummu, M., Guillaume, J.H., De, M.H., Eisner, S., Florke, M., Porkka, M., Siebert, S., Veldkamp, T.I. and Ward, P.J. (2016), "The world's road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability", Sci. Rep., 6(1), 38495. https://doi.org/10.1038/srep38495.
  24. Lai, C.Y., Groth, A., Gray, S. and Duke, M. (2014), "Enhanced abrasion resistant PVDF/nanoclay hollow fibre composite membranes for water treatment", J. Membr. Sci., 449, 146-157. https://doi.org/10.1016/j.memsci.2013.07.062.
  25. Li, H., Shi, W., Zeng, X., Huang, S., Zhang, H. and Qin, X. (2020), "Improved desalination properties of hydrophobic GO-ncorporated PVDF electrospun nanofibrous composites for vacuum membrane distillation", Sep. Purif. Technol., 230, 15889. https://doi.org/10.1016/j.seppur.2019.115889.
  26. Li, H., Zi, X., Shi, W., Qin, L., Zhang, H. and Qin, X. (2019), "Preparation of highly hydrophobic PVDF hollow fiber composite membrane with lotus leaf-like surface and its desalination properties", Membr. Water Treat., 10(4), 287-298. https://doi.org/10.12989/mwt.2019.10.4.287
  27. Lin, J., Wu, X., Zheng, C., Zhang, P., Huang, B., Guo, N. and Jin, L. (2014), "Synthesis and properties of epoxy-polyurethane/silica nanocomposites by a novel sol method and in-situ solution polymerization route", Appl. Surf. Sci., 303, 67-75. https://doi.org/10.1016/j.apsusc.2014.02.075.
  28. Liu, C., Fang, Y., Miao, X., Pei, Y., Yan, Y., Xiao, W. and Wu, L. (2019), "Facile fabrication of superhydrophobic polyurethane sponge towards oil-water separation with exceptional flame-retardant performance", Sep. Purif. Technol., 229, 15801. https://doi.org/10.1016/j.seppur.2019.115801.
  29. Liu, F., Zhu, B. and Xu, Y. (2006), "Improving the hydrophilicity of poly (vinylidene fluoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers", Appl. Surf. Sci., 253(4), 2096-2101. https://doi.org/10.1016/j.apsusc.2006.04.007.
  30. Liu, Q., Chen, D. and Kang, Z. (2015), "One-step electrodeposition process to fabricate corrosion resistant superhydrophobic surface on magnesium alloy", ACS Appl. Mater. Interf., 7(3), 1859-67. https://doi.org/10.1021/am507586u.
  31. Liu, T., Liu, Z., Li, N., Li, X., Wang, D., Huang, Q. and Xiao, C. (2017), "Superhydrophobicity and regeneration of PVDF/SiO2 composite films", Appl. Surf. Sci., 396, 1443-1449. https://doi.org/10.1016/j.apsusc.2016.11.184.
  32. Liu, Y., Wang, J., Xiao, Z., Liu, L., Li, D., Li, X., Yin, H. and He, T. (2020), "Anisotropic performance of a superhydrophobic polyvinyl difluoride membrane with corrugated pattern in direct contact membrane distillation", Desalination, 481, 114363. https://doi.org/10.1016/j.desal.2020.114363.
  33. Lu, X., Peng, Y., Ge, L., Lin, R., Zhu, Z. and Liu, S. (2016), "Amphiphobic PVDF composite membranes for anti-fouling direct contact membrane distillation", J. Membr. Sci., 505, 61-69. https://doi.org/10.1016/j.memsci.2015.12.042.
  34. Ma, W., Zhao, J., Oderinde, O., Han, J., Liu, Z., Gao, B., Xiong, R., Zhang, Q., Jiang, S. and Huang, C. (2018), "Durable superhydrophobic and superoleophilic electrospun nanofibrous membrane for oil-water emulsion separation", J. Colloid Interf. Sci., 532, 12-23. https://doi.org/10.1016/j.jcis.2018.06.067.
  35. Mcgaughey, A.L., Gustafson, R.D. and Childress, A.E. (2017), "Effect of long-term operation on membrane surface characteristics and perforamance in membrane distillation", J. Membr. Sci., 543, 143-150. https://doi.org/10.1016/j.memsci.2017.08.040.
  36. Meng, H., Wang, S., Xi, J., Tang, Z. and Jiang, L. (2008), "Facile means of preparing superamphiphobic surfaces on common engineering metals", J. Phys. Chem. C, 112(30), 11454-11458. https://doi.org/10.1021/jp803027w.
  37. Naidu, G., Jeong, S. and Vigneswaran, S. (2014), "Influence of feed/permeate velocity on scaling development in a direct contact membrane distillation", Sep. Purif. Technol., 125, 291-300. https://doi.org/10.1016/j.seppur.2014.01.049.
  38. Nosonovsky, M. (2007), "On the range of applicability of the Wenzel and Cassie equations", Langmuir, 23(19), 9919-9920. https://doi.org/10.1021/la701324m.
  39. Panagopoulos, A. and Haralambous, K.J. (2020), "Environmental impacts of desalination and brine treatment - Challenges and mitigation measures", Mar Pollut Bull, 161, 111773. https://doi.org/10.1016/j.marpolbul.2020.111773.
  40. Panagopoulos, A., Haralambous, K.J. and Loizidou, M. (2019), "Desalination brine disposal methods and treatment technologies - A review", Sci Total Environ, 693, 133545. https://doi.org/10.1016/j.scitotenv.2019.07.351.
  41. Qin, A., Wu, X., Ma, B., Zhao, X. and He, C. (2014), "Enhancing the antifouling property of poly (vinylidene fluoride)/SiO2 hybrid membrane through TIPS method", J. Mater. Sci., 49(22), 7797-7808. https://doi.org/10.1007/s10853-014-8490-y.
  42. Rezaei, M., Warsinger, D.M., Lienhard, J.H.V., Duke, M.C., Matsuura, T. and Samhaber, W.M. (2018), "Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention", Water Res., 139, 329-352. https://doi.org/10.1016/j.watres.2018.03.058.
  43. Saifaldeen, Z.S., Khedir, K.R., Camci, M.T., Ucar, A., Suzer, S. and Karabacak, T. (2016), "The effect of polar end of long-chain fluorocarbon oligomers in promoting the superamphiphobic property over multi-scale rough Al alloy surfaces", Appl. Surf. Sci., 379, 55-65. https://doi.org/10.1016/j.apsusc.2016.04.050
  44. Saleh, J.M., Ali, E.M., Orfi, J.A. and Najib, A.M. (2019), "Water cost analysis of different membrane distillation process configurations", Membr. Water Treat., 11(5), 363-374. https://doi.org/10.12989/mwt.2020.11.5.363.
  45. Tang, Y.P., Cai, T., Loh, D., O'Brien, G.S. and Chung, T.S. (2017), "Construction of antifouling lumen surface on a poly (vinylidene fluoride) hollow fiber membrane via a zwitterionic graft copolymerization strategy", Sep. Purif. Technol., 176, 294-305. https://doi.org/10.1016/j.seppur.2016.12.012.
  46. Vejayakumaran, P., Rahman, I.A., Sipaut, C.S., Ismail, J. and Chee, C.K. (2008), "Structural and thermal characterizations of silica nanoparticles grafted with pendant maleimide and epoxide groups", J. Colloid Interf. Sci., 328(1), 81-91. https://doi.org/10.1016/j.jcis.2008.08.054.
  47. Viswanadam, G. and Chase, G.G. (2012), "Contact angles of drops on curved superhydrophobic surfaces", J. Colloid Interf. Sci., 367(1), 472-477. https://doi.org/10.1016/j.jcis.2011.11.004.
  48. Wang, H., Fang, J., Cheng, T., Ding, J., Qu, L., Dai, L., Wang, X. and Lin, T. (2008), "One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity", Chem. Commun., 7, 877-879. https://doi.org/10.1039/B714352D.
  49. Wang, J.L. and Xu, L.J. (2012), "Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application", Crit. Rev. Env. Sci. Tec., 42(3), 251-325. https://doi.org/10.1080/10643389.2010.507698.
  50. Wang, Y., He, G., Shao, Y., Zhang, D., Ruan, X., Xiao, W., Li, X., Wu, X. and Jiang, X. (2019), "Enhanced performance of superhydrophobic polypropylene membrane with modified antifouling surface for high salinity water treatment", Sep. Purif. Technol., 214, 11-20. https://doi.org/10.1016/j.seppur.2018.02.011.
  51. Wang, Z. and Lin, S. (2017), "Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability", Water Res., 112, 38-47. https://doi.org/10.1016/j.watres.2017.01.022.
  52. Wei, C., Dai, F., Lin, L., An, Z., He, Y., Chen, X., Chen, L. and Zhao, Y. (2018), "Simplified and robust adhesive-free superhydrophobic SiO2-decorated PVDF membranes for efficient oil/water separation", J. Membr. Sci., 555, 220-228. https://doi.org/10.1016/j.memsci.2018.03.058.
  53. Xiao, Z., Zheng, R., Liu, Y., He, H., Yuan, X., Ji, Y., Li, D., Yin, H., Zhang, Y., Li, X. and He, T. (2019), "Slippery for scaling resistance in membrane distillation: A novel porous micropillared superhydrophobic surface", Water Res., 155, 152-161. https://doi.org/10.1016/j.watres.2019.01.036.
  54. Yu, L.Y., Xu, Z.L., Shen, H.M. and Yang, H. (2009), "Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method", J. Membr. Sci., 337(1-2), 257-265. https://doi.org/10.1016/j.memsci.2009.03.054.
  55. Zhang, F., Shi, Z., Chen, L., Jiang, Y., Xu, C., Wu, Z., Wang, Y. and Peng, C. (2017), "Porous superhydrophobic and superoleophilic surfaces prepared by template assisted chemical vapor deposition", Surf. Coat. Technol., 315, 385-390. https://doi.org/10.1016/j.surfcoat.2017.02.058.
  56. Zhang, Y., Wang, X., Wang, C., Liu, J., Zhai, H., Liu, B., Zhao, X. and Fang, D. (2018), "Facile fabrication of zinc oxide coated superhydrophobic and superoleophilic meshes for efficient oil/water separation", RSC Advances, 8(61), 35150-35156. https://doi.org/10.1039/C8RA06059B.
  57. Zhu, Z. and Dou, J. (2018), "Current status of reclaimed water in China: An overview", J. Water Reuse Desal., 8(3), 293-307. https://doi.org/10.2166/wrd.2018.070.