
1  |   INTRODUCTION

Transactional databases of supermarket stores serve as
a primary source for mining interesting patterns that in-
dicate associations between different items purchased
by customers. This mining task is termed as association
rule mining (ARM) and used in many applications across
various domains, including text mining [1], bioinformat-
ics [2], and pharmacovigilance [3]. To obtain association
rules from a huge number of customer transactions, items
that co-occur frequently are enumerated to assert the va-
lidity and interestingness of associations. Hence, mining
such frequent itemsets forms the core phase of the ARM
task, which has been extensively researched [4].

More often than not, frequently purchased items do not
necessarily contribute adequately to the revenue of a su-
permarket store. This is due to the inherent nature of the
frequent itemset mining (FIM) model that relies only on
the presence or absence of an item in a transaction when
determining the frequency of the item. Formally, a mea-
sure called support is calculated as the ratio of the number
of transactions, in which the items of an itemset co-occur,
to the total number of transactions to decide whether the
itemset is frequent or not based on a threshold set by the
user. This measure does not rely on the quantity or unit
profit of the items that are essential in determining the
revenue incurred. Hence, a framework called the high
utility itemset mining (HUIM) has evolved to consider

Received: 5 August 2020  |  Revised: 18 December 2020  |  Accepted: 22 January 2021

DOI: 10.4218/etrij.2020-0300

O R I G I N A L A R T I C L E

A single-phase algorithm for mining high utility itemsets
using compressed tree structures

Anup Bhat B   | Harish SV  | Geetha M

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2021 ETRI

Department of Computer Science
and Engineering, Manipal Institute of
Technology, Manipal Academy of Higher
Education, Manipal, India

Correspondence
Harish SV, Department of Computer
Science and Engineering, Manipal
Institute of Technology, Manipal
Academy of Higher Education, Manipal,
India.
Email: harish.sv@manipal.edu

Abstract
Mining high utility itemsets (HUIs) from transaction databases considers such
factors as the unit profit and quantity of purchased items. Two-phase tree-based
algorithms transform a database into compressed tree structures and generate
candidate patterns through a recursive pattern-growth procedure. This proce-
dure requires a lot of memory and time to construct conditional pattern trees. To
address this issue, this study employs two compressed tree structures, namely,
Utility Count Tree and String Utility Tree, to enumerate valid patterns and thus
promote fast utility computation. Furthermore, the study presents an algorithm
called single-phase utility computation (SPUC) that leverages these two tree
structures to mine HUIs in a single phase by incorporating novel pruning strate-
gies. Experiments conducted on both real and synthetic datasets demonstrate
the superior performance of SPUC compared with IHUP, UP-Growth, and UP-
Growth+ algorithms.

K E Y W O R D S

data mining, high utility itemsets, utility mining

ETRI Journal. 2021;43(6):1024–1037.wileyonlinelibrary.com/journal/etrij1024

www.wileyonlinelibrary.com/journal/etrij
https://orcid.org/0000-0002-9910-6758
mailto:﻿
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:harish.sv@manipal.edu

such factors, which can be seen as a generalized form of
the FIM task.

The utility of an itemset is often measured as the prod-
uct of the quantity and unit profit of the items that form
the itemset. While the algorithms that mine frequent items
exploit the downward closure property with respect to the
support for effective search space exploration, the mea-
sure of utility is not downward closed. This void is filled by
various upper bounds on the utility, with the transaction-
weighted utility (TWU) being a prominent example. The
algorithms for mining HUIs have evolved from two-phase
to single-phase. The most efficient two-phase algorithms
such as IHUP, UP-Growth, and UP-Growth+ construct
tree structures and enumerate candidate patterns via a
recursive pattern-growth procedure. This bottom-up pro-
cedure constructs conditional pattern trees that consume
a lot of memory. This is a severe performance bottleneck.
Furthermore, once candidates are outputted from such a
procedure, the utility has to be determined from an addi-
tional database scan. This paper presents a single-phase
algorithm called single-phase utility computation (SPUC)
to efficiently utilize the concept of tree structures in min-
ing HUIs. SPUC has the following advantages:

•	 It utilizes two new tree structures, namely, Utility Count
Tree (UCT) and String Utility Tree (SUT). Both trees are
constructed from a single database scan and are com-
plete. While UCT guides the search space exploration
for enumerating valid patterns, SUT is a compact tree
that provides the utility of these patterns. This com-
pletely eliminates the need for rescanning the database
to calculate the utility.

•	 It executes faster than IHUP, UP-Growth, and UP-
Growth+ tree-based algorithms according to experi-
ments on real and synthetic datasets.

The rest of this paper is organized as follows. Section 2
provides a formal introduction to the problem of mining
HUIs, along with related work. The procedures of con-
structing the proposed trees, UCT and SUT, and proposed
algorithm incorporating novel pruning strategies are out-
lined in Section 3. The results of performance evaluation
are reported in Section 4. Section 5 concludes the paper.

2  |   BACKGROUND

2.1  |  Preliminaries

Given a transaction database D with n distinct items
I =

{
i1, i2, . . . , in

}
, each transaction Td in D is identified by

the transaction identifier TID and records a collection of
items purchased, along with their quantities or internal

utility (Table 1B). The ordered pair
(
ix , qx

)
 in each transac-

tion indicates that an item ix was purchased in a quantity
of qx in that transaction. Each item is also associated with
the unit profit or external utility (Table 1A).

Definition 1  (Utility of an item) The utility u
(
i,Td

)
 of

an item i in a transaction Td is measured as the prod-
uct of the quantity q

(
i,Td

)
 and unit profit p (i).

Definition 2  (Utility of an itemset) The utility u
(
X ,Td

)

of an itemset X in a transaction Td is defined as ∑
i∈X∧X⊆Td

u
�
i,Td

�
.

Definition 3  (Utility of an itemset in a database). The
utility u (X) of an itemset X in D is defined as

for example,

The utility measure is neither anti-monotone nor
monotone. The utility of a few subsets of {5, 1, 2} is com-
pared in Table 2. While the support is strictly increasing
across the subsets, the utility is neither increasing nor de-
creasing. Hence, while the support of an itemset is down-
ward closed, the utility measure is not.

u (X) =
∑

X ⊆Td ∧Td ∈D

u
(
X ,Td

)
.

u
(
{2} ,T2

)
=4×2=8

u
(
{2, 3} ,T2

)
=u

(
{2} ,T2

)
+u

(
{3} ,T2

)
=8+3=11

u ({2, 3}) =u
(
{2, 3} ,T1

)
+u

(
{2, 3} ,T2

)
+u

(
{2, 3} ,T5

)

=11+11+6=28

T A B L E 1   Sample database

(A) Profit Table

Item 1 2 3 4 5 6 7

Profit 5 2 1 2 3 5 1

(B) Transaction Table

TID Transaction

T1 {(3,1)(5,1)(1,1)(2,5)(4,3)(6,1)}

T2 {(3,3)(5,1)(2,4)(4,3)}

T3 {(3,1)(1,1)(4,1)}

T4 {(3,6)(5,2)(1,2)(7,5)}

T5 {(3,2)(5,1)(2,2)(7,2)}

T A B L E 2   Support vs Utility

Itemset Support Utility

{5, 1, 2} 1 18

{5, 1} 2 24

{1} 3 20

BHAT B et al. 1025

Definition 4  (Transaction Utility (TU)) The TU
TU

(
Td

)
 of a transaction Td is defined as the sum of

the utilities of all the items in that transaction, that
is,

∑
i⊆Td

u
�
i,Td

�
,

Definition 5  (High Utility Itemset (HUI)) An itemset X
is called a HUI if u (X) ≥min_util, where min_util is
the minimum utility provided by the user.

For instance, if the threshold is set to 35%, then
min_util = 0.35 × 96 = 33.6, where 96 is the sum of the TU
of all the transactions in the sample database. Then, HUIs
for this threshold are {2, 4, 5}, {2, 3, 5}, and {3, 5, 2, 4}, with
utilities of 36, 37, and 40, respectively.

Definition 6  (Transaction Weighted Utility (TWU)).
The TWU TWU (X) of an itemset X is de-
fined as the sum of the transaction utility of all
the transactions in D that contain X , that is,
TWU (X) =

∑
X⊆Td∧Td∈D

TU (Td).
Definition 7  (High-transaction Weighted Utility

Itemset (HTWUI)). An itemset X is a HTWUI,
if TWU (X) ≥min_util. If an itemset X is not a
HTWUI, then it cannot be a HUI.

Property 1  (TWU Downward Closure Property). If
an itemset X is a HTWUI, then all its subsets are
HTWUIs, or if an itemset X is not a HTWUI, then
none of its supersets can be a HTWUI.

For instance, TWU ({3, 1, 2}) = 30 <min_util. Hence,
higher-order itemsets need not be enumerated from
{3, 1, 2} as this property ensures they are neither HTWUI
nor HUI.

2.2  |  Related work

Algorithms for mining frequent itemsets explore the com-
binatorial search space by employing the downward clo-
sure property with respect to the support of an itemset.
However, the measure of utility is not downward closed
(Definition 3). Yao et al. [5,6] performed a theoretical
analysis of mining HUIs for the first time. In this study,
the authors proposed two properties, namely, utility
bound property and its extension, support bound prop-
erty, as heuristic for pruning the search space. While this
work formalized the problem of HUIM, the proposed
heuristic could not discover a complete set of HUIs. The
property of the TWU to be downward closed was proposed
by Liu et al. [7–9]. The two-phase algorithm proposed by
these authors employed the TWU to enumerate candidate
patterns in a level-wise manner analogous to the Apriori
algorithm [10]. The candidate generation phase of this
algorithms outputs all the k-itemsets that are HTWUIs

and whose utility calculation is performed by scanning
the database again, which is the second phase of the algo-
rithm. Overall, (k + 1) scans are required to output HUIs
of length k.

Another category of algorithms resulting in sig-
nificant performance gains are tree-based algorithms
[11–15]. These algorithms transform the database into
a compressed tree structure with at most two data-
base scans. Items that do not have the TWU of at least
min_util are discarded, while the remaining items of
the transactions are arranged in a predetermined order
(for example, descending or ascending) of the item
TWU or the lexicographic order. The tree construction
is similar to the FP-tree construction procedure [16].
In particular, the TWU [12] or TU [13] is stored instead
of storing the utility of items in the node of the tree.
To promote access to the nodes of the tree that carry
similar items in different branches, a header table is
also constructed. This table is scanned from the bot-
tom to obtain conditional pattern trees. Each item in
the tree is then appended to the item whose conditional
tree is constructed and output as a candidate. Pruning
strategies play a vital role in reducing the number of
candidates. In this regard, the UP-Growth algorithm
[14] discards the items that are unpromising in local
conditional trees (the DLU strategy) and decreases the
utilities of the remaining items by the utility of the dis-
carded items (the DLN strategy). These strategies are
further tightened by using minimal node utilities in the
UP-Growth+ algorithm [15].

List-based algorithms such as HUI-Miner [17] and
FHM eliminate candidate generation entirely. They adopt
the depth-first search strategy and its valid extensions in
a single phase to mine patterns by transforming the data-
base information into a utility list (UL) structure. Initially,
a UL is constructed for every item whose TWU is at least
min_util. Based on a predetermined order, items are ex-
tended recursively. Utility information remains intact
in the list and is accumulated as the lists are combined
during the extension of the item. Hence, unlike the tree-
based algorithms, the second phase of rescanning the da-
tabase for utility calculation is not required. The pruning
strategy aims mainly at determining the valid extensions
of an itemset. In this regard, U-Prune proposed for HUI-
Miner was extended in HUP-Miner [18] by adopting two
more pruning strategies, namely, PU-Prune and LA-Prune,
that use the utility information stored in partitioned ULs.
The FHM algorithm [19] uses the estimated utility co-
occurrence structure to store the TWU of two itemsets for
faster lookup.

Projection-based algorithms have proven to be more
efficient than list-based algorithms [20]. EFIM [21] and
d2hup [22,23] are examples of projection-based algorithms.

BHAT B et al.1026 

EFIM uses local tree and sub-tree utility pruning strate-
gies in conjunction with a database projection technique
for faster exploration of the search space, while d2hup ex-
plores search space via a reverse set enumeration tree and
makes use of the chain of accurate utility lists for utility
computation. Using real and synthetic datasets, the em-
pirical study conducted by Zhang et al. [20] demonstrated
the superior performance of EFIM and d2hup on dense
and sparse datasets, respectively. However, a recent study
modeling the utility measure via subadditivity and mono-
tonicity has revealed that neither list- nor projection-based
algorithms perform the best at all times [24].

Pattern-growth tree-based algorithms for HUIM con-
struct conditional pattern trees during recursive enumer-
ation of itemsets. This procedure requires a significant
amount of memory, especially for dense datasets. While
list structures offer tighter upper bounds on the utility to
facilitate effective pruning, the construction of ULs in-
volves significant comparison overhead. Further, when an
itemset X is extended with any of its valid extensions, it
is possible that they do not co-occur in any transactions,
thus waste CPU cycles for comparison operations. This
can be avoided by employing a prefix tree with bottom-up
traversal. Enumerated itemsets are guaranteed to be valid
patterns. Nevertheless, candidates are outputted only to-
ward the end of the first phase. Revisiting the transaction
database for the utility calculation incurs a significant
input/output cost. Several studies highlight the signifi-
cance of the compact representation of transaction data-
bases for FIM [25,26]. Hence, this study aims to compress
the entire database on a per transaction basis and leverage
the advantages of the prefix tree for mining HUIs effi-
ciently. While the prefix tree provides with valid patterns,
the compressed tree structure with utility information can
be accessed to output the HUIs without rescanning the da-
tabase, that is, ensuring the utility computation in a single
phase.

3  |   METHODOLOGY

A majority of tree-based algorithms eliminate unprom-
ising items during the initial tree construction and re-
quire two scans of the database. This section presents
two tree structures (UCT and SUT) that are constructed
using a single scan by incorporating all items. While
both structures ensure prefix sharing, UCT is con-
structed on per item basis, whereas SUT is constructed
on per transaction basis. Subsection 3.1 introduces the
tree structures and their respective construction pro-
cedures. Subsection 3.2 details the mining procedure
using these trees, along with the pruning strategy and
SPUC algorithm.

3.1  |  Proposed data structures

3.1.1  |  Utility count tree

A node in the UCT has the following fields:

1.	 item denoting the name of an item;
2.	 count denoting the count of an item in the given path of

the tree;
3.	 nodeUtility denoting the accumulated utility of an item

in the given path of the tree;
4.	 parent pointing to the parent of the node.

Utility Count Tree is constructed without discarding
any items during the initial tree construction. The data-
base is scanned, and a node N is constructed for every
item in a transaction Tj. Algorithm 1 outlines the proce-
dure of inserting transactions into UCT. Initially, N is set
to the root node of the tree. Items in a transaction are ar-
ranged in ascending order and inserted as child nodes of
one another. Hence, each path of the tree corresponds to
a particular transaction. If a transaction contains a node
that is already present in the tree, the procedure updates
the count and utility instead of creating a new node in the
given path. This ensures prefix sharing. Figure 1 shows
UCT for the sample database presented in Table 1.

3.1.2  |  String utility tree

Unlike UCT, SUT captures transaction-level information
in a node, resulting in a more compact representation of
a transaction database compared with FP-tree-like struc-
tures. A node in SUT has the following fields:

BHAT B et al. 1027

1.	 stringItems denoting the concatenation of items pur-
chased in a transaction;

2.	 TU denoting the TU of a transaction;
3.	 stringUtilities denoting the concatenation of utilities of

corresponding items;
4.	 parent pointing to the parent of the node.

Algorithm 2 outlines the construction procedure of
SUT. Once the items of a transaction Tj are arranged in
ascending order, they are concatenated using a delimiter
such as x and stored in the stringItems field. The utilities
are indexed per the order of the items and concatenated
in a similar manner. As each node corresponds to a trans-
action, the tree offers a compact representation without
eliminating any items. To ensure prefix sharing, substring
comparison is performed to check whether the stringItems
of a transaction Tj is present in existing nodes of the tree
(line 11). If there is a match, then the new node is ap-
pended as the child of this existing node. Figure 2 shows
SUT for the sample database presented in Table 1.

3.2  |  Proposed SPUC algorithm

A path for a node in UCT is a list containing items from
this node to the root. The nodeUtility field of a node stores
the cumulated utility value of the item the node repre-
sents. This value is the sum of the utilities of the item
in different transactions sharing a common prefix. From
the header list, if the node link for an item is traversed,
then the sum of the nodeUtility fields denotes the utility
of the item in the transaction database. With this item

as suffix, each path of the node is the prefix path for this
item. To mine UCT, the header list is traversed from the
bottom. The prefix path(s) for each item is (are) obtained,
which forms the conditional pattern base (CPB) for the
item. The sum of nodeUtility fields of all items, including
the suffix, is also calculated for each prefix path, which
denotes the path utility. All possible subsets from prefix
paths containing the suffix item are then generated. The

F I G U R E 1   Utility Count Tree (UCT) for the database presented in Table 1

BHAT B et al.1028 

rationale here is that these items represent the database
conditioned on the suffix item. Hence, it is sufficient to
mine only the k-itemsets generated from these items. The
value of k ranges from one to the length of the considered
prefix path.

Once the different subsets of a prefix path in the CPB
of an item are obtained, the actual utility value of them
cannot be obtained from UCT. Hence, SUT is employed in
mining. The utility of each itemset is accumulated using
level-order traversal. As each node in SUT represents a
transaction, the accumulated utility value for an itemset
post the traversal denotes its real utility value. The fol-
lowing strategy is adopted to enable efficient search of an
itemset in SUT.

•	 First, a check for the presence of the suffix item in the
current node is performed instead of the entire item-
set. The node is examined for the presence of the entire
itemset only if it contains the suffix item. Subsequently,
the current node's children are also examined.

•	 If the node does not contain the suffix item, the next
sibling is considered without examining the contents of
the current node or any of its children.

This procedure exploits the characteristic of SUT
and knowledge of the suffix item being considered. If
a node does not contain the suffix item, then none of
its children will contain this item since the children
of a node in SUT are substrings completely contained
in its parent. Furthermore, all subsets are formed con-
ditioned on this suffix item. Hence, it is sufficient to
check for the suffix before examining for the presence
of the entire itemset.

The following pruning strategy has been proposed by
us to improve the efficiency of the mining process:

Theorem 1  If the sum of path utilities for an item is lower
than min_util, then no itemset from the CPB will be a
HUI, and hence, these itemsets need not be generated
and evaluated.

Case 1 (Isolated path): An isolated path is a non-prefix
sharing path in a tree. Hence, nodeUtility for all items is
the utility value. For any suffix item ik in this path, the
path utility is the utility of the largest k-itemset possible.
For any subset of this k-itemset that contains ik as the suf-
fix, the utility cannot exceed the utility of the largest k
-itemset, that is, the path utility. Hence, if this utility is
lower than min_util, the utility of the subsets cannot ex-
ceed min_util. Therefore, the subsets for the paths in the
CPB do not need to be generated with respect to the suffix.

Case 2 (Non-isolated path): In the case of prefix shar-
ing, nodeUtility has the utility value greater than the real
utility value, that is, it denotes the sum of the utilities of
different transactions along the path for an item. Thus,
any subset formed for the suffix item ik will have a utility
lower than the path utility. If two or more prefix paths are
present for ik and a common subset exists, the sum of the
utilities of subsets will always be lower than the sum of
the path utilities (since individually, every utility is lower
than the path utility of the path they occur in).

An example of mining employing UCT, SUT, and the
proposed pruning strategy is described below.

•	 Consider mining HUIs for itemsets with a suffix item
7. As the header list is traversed, two prefix paths are
obtained, namely, P1: ⟨1, 3, 5, 7⟩ and P2: ⟨2, 3, 5, 7⟩ ,
with path utilities pu1 = 38 (5 + 6 + 7 + 20) and
pu2 = 22 (2 + 3 + 5 + 12), respectively (Figure 1). This
forms the CPB for item 7 as shown in Table 3. If min_util
is set to 30, then item 7 is not pruned as the sum of the
path utilities (38 + 22 = 60) exceeds min_util.

•	 Subsets with suffix 7 can be generated using these prefix
paths. Since both paths have a length of 4, the largest
possible subset is of length four. When the prefix path

F I G U R E 2   String Utility Tree (SUT) for the sample database presented in Table 1

T A B L E 3   Conditional pattern base for item 7

Prefix Path Items Path Utility

P1 1, 3, 5, 7 38

P2 2, 3, 5, 7 22

BHAT B et al. 1029

P1 is considered from the CPB, the generated subsets are
{{7} , {1, 7} , {3, 7} , {5, 7} , {1, 3, 7} , {1, 5, 7} , {3, 5, 7} ,

{1, 3, 5, 7}}.
•	 Next, SUT is traversed to obtain the utilities of these

itemsets. The traversal of SUT begins from its root node.
The first match to the suffix occurs at node 1x3x5x7. The
utilities of all itemsets are obtained from the utility field
of this node and are recorded in the hash_item_utilites
hash table. A snapshot of this table is shown in Table 4.

•	 The next sibling found during traversal, that is,
2x3x5x7 , contains the suffix. However, only the itemsets
{7} , {3, 7} , {5, 7} , and {3, 5, 7} are examined as present
in this node, and their utilities are updated in the hash
table as shown in Table 5.

•	 Once the traversal is complete, the next pre-
fix path, P2, is selected from the CPB.
The subsets generated from this path are
{{7} , {2, 7} , {3, 7} , {5, 7} , {2, 3, 7} , {2, 5, 7} , {3, 5, 7} , {2, 3, 5, 7}} .
Since the itemsets {{7} , {3, 7} , {5, 7} , {3, 5, 7}}
have already been generated in P1 and ex-
amined, only the remaining itemsets, that is,
{{2, 7} , {2, 3, 7} , {2, 5, 7} , {2, 3, 5, 7}} are taken up for
mining. The utilities of these itemsets are recorded in
hash_item_utilites as shown in Table 6.

•	 The above procedure is repeated for all items of
the header list in a bottom-up manner. Eventually,
hash_item_utilities is filtered to retain only those item-
sets whose utility is at least min_util.

3.2.1  |  Enhancing the mining process

As demonstrated in the above example, there is a possi-
bility that the prefix paths within a CPB can generate the
same subsets. While the same subsets are not considered
during SUT traversal for the utility calculation, they are
still generated. To tackle this problem, the CPB is checked
for the presence of a path that contains all the different
items in the CPB. Such a path has to be the longest path,
with the length equal to the suffix item being considered.
Such a path will generate all possible subsets, including
those generated by the remaining prefix paths in the CPB.

Consider the suffix item 5. The possible prefix paths are
P1: ⟨1, 2, 3, 4, 5⟩, P2: ⟨1, 3, 5⟩, P3: ⟨2, 3, 4, 5⟩, and P4: ⟨2, 3, 5⟩ .
Here, the longest prefix path with a length equal to the suf-
fix item is P1. The subsets generated out of P1 include those
generated by the paths from P2 to P4. Hence, it is sufficient
to generate subsets from P1 for subsequent mining. The
remaining paths can be ignored when generating subsets.

Once the subsets corresponding to a prefix path are
generated, their utilities can be obtained by traversing
SUT. The nodeUtility value stored in UCT is employed to
reduce the number of the subsets being evaluated for the
utility computation. The nodeUtility values corresponding
to every item in the CPB are accumulated as the prefix
paths are determined. This results in an overestimated
utility value that can be employed to filter itemsets as ex-
plained below using the subsets of P1 of CPB (7).

T A B L E 4   Utilities of subsets of P1 in hash_item_utilites after
examining the node 1x3x5x7

Itemset Utility

{7} 5

{1, 7} 15

{3, 7} 11

{5, 7} 11

{1, 3, 7} 21

{1, 5, 7} 21

{3, 5, 7} 17

{1, 3, 5, 7} 27

T A B L E 5   Utilities of subsets of P1 in hash_item_utilites after
examining the node 2x3x5x7

Itemset Utility

{7} 7

{1, 7} 15

{3, 7} 15

{5, 7} 16

{1, 3, 7} 21

{1, 5, 7} 21

{3, 5, 7} 24

{1, 3, 5, 7} 27

T A B L E 6   Utilities of subsets of P2 in hash_item_utilites after
examining the node 2x3x5x7

Itemset Utility

{7} 7

{1, 7} 15

{3, 7} 15

{5, 7} 16

{1, 3, 7} 21

{1, 5, 7} 21

{3, 5, 7} 24

{1, 3, 5, 7} 27

{2, 7} 6

{2, 3, 7} 8

{2, 5, 7} 9

{2, 3, 5, 7} 11

BHAT B et al.1030 

•	 An overestimated utility (OU) table for CPB (7) accumu-
lates the nodeUtility values corresponding to every item
in CPB (7). The OU values are accumulated as and when
items are added to the prefix path of the CPB. Table 7
shows the OU values for items {1, 2, 3, 5, 7} that form
CPB (7). Items {1}, {2} are present only in P1 and P2 ;
their OUs hold the corresponding nodeUtility values of
20 and 12, respectively. However, the OUs of the other
items in both P1 and P2 are also accumulated, that is,
OU ({3}) = P1 ({3}) .nodeUtility + P2 ({3}) .nodeUtility = 7 + 5 = 12 .

•	 Next, OUs of different subsets formed from P1 are deter-
mined using the above-mentioned OU table (Table 8).
It can be observed from Table 8 that only the itemsets
{1, 3, 7}, {1, 5, 7}, and {1, 3, 5, 7} have their OUs above
the min_util of 30. Hence, only the utilities of these
itemsets are computed using SUT (which is different
from Tables 4 and 5).

This strategy further enhances the mining process
in conjunction with the pruning strategy provided in
Theorem 1.

Algorithm 3 lists the SPUC algorithm that incorporates
the proposed pruning strategy. SPUC takes two trees (UCT
and SUT) and the min_util values provided by the user as
inputs. A global hash map acts as a table for storing the
utilities of subsets generated from different prefix paths as
shown in line 1. A bottom-up procedure is then initiated to
obtain the CPB of items for subsequent mining (lines 2 to

18). After calculating the path utilities for each prefix path,
the pruning strategy (Theorem 3.2) is applied (line 4). The
mining procedure considers the next item in the header
list if the sum of the path utilities is not at least min_util. 	

T A B L E 7   Overestimated utility table corresponding to items
of CPB (7)

Itemset OU

{1} 20

{2} 12

{3} 12

{5} 9

{7} 7

T A B L E 8   Overestimated utility table of subsets in P1 of CPB (7)

Itemset OU

{7} 7

{1, 7} 27

{3, 7} 19

{5, 7} 16

{1, 3, 7} 39

{1, 5, 7} 36

{3, 5, 7} 28

{1, 3, 5, 7} 48

BHAT B et al. 1031

For items that satisfy this condition, the longest path is
searched to avoid generating subsets from each path in the
CPB (lines 5 to 7). Itemsets that are subsets of each prefix
path and contain only the suffix item are then generated
(line 9). subset_List keeps track of different itemsets gen-
erated from the prefix paths considered till the current one
and thus can be used to eliminate any subsets common to
any of the previous paths (lines 10 and 11). As the OUs of
the itemsets are determined, only those itemsets whose OU
exceeds the threshold are retained in itemset_list (line 12
to 16). The procedure Mine takes the filtered itemset_list
as input and starts searching for the presence of itemsets
from the root of SUT (line 23 to 32). Line 24 is the sum-
mary of the search strategy explained before. If the suffix is
absent in the current SUT node, then none of the itemsets
in itemset_list will be present in the current node. Hence,
the search proceeds with the next sibling after the break
(line 34). The utility of the itemset is calculated and added
to hash_item_utilities if not present already (lines 26 to 30).
Traversal is continued as shown in lines 38 to 40 to mine
itemsets from the child of the current node or move to sib-
lings if the suffix item is not present.

3.3  |  Complexity analysis

The longest path in the CPB of an item is identified using
the assumption that its length matches the location of the
item in the header list of UCT. If such a path exists, then the
number of subsets with this item as prefix is 2n−1 (assum-
ing that the sum of the path utilities of this item exceeds
min_util). However, if such a path is absent, then in the
worst case, all prefix paths in the CPB have to be examined
for generating subsets. Hence, the computation load due to
item i depends on the number of prefix paths in its CPB.
Furthermore, the subsets of item i will visit each node in
SUT and perform the utility calculation when a match is
found. Subsequently, the subsets of i will visit all child nodes
as well. The utility computation is a trivial retrieval opera-
tion, whereas the number of node visits during mining is a
major component that adds to the complexity. Overall, the
complexity can be computed as the total number of subsets
generated for n items in the header list of UCT.

Hence, the computational complexity of the proposed
algorithm is � (2n).

The tree structures are constructed using a single da-
tabase scan without eliminating any items. To determine

the amount of memory taken by the two tree structures,
let |D| denote the total number of transactions in the data-
base and b denote the number of bytes taken up to allocate
memory for a field of a node in a tree. In the worst case
scenario, the sum of the numbers of nodes in each level of
UCT can determine the memory upper bound.

As UCT has three fields in each node, the total space
taken is upper-bounded by

3b∗

(
0+

(
n

1

)
+

(
n

2

)
+ ⋅ ⋅ ⋅ +

(
n

n

))
=3b∗ (2n−1) bytes .

Hence, in the worst case, UCT consumes � (2n) bytes of
memory. A tighter upper bound on the memory consumed
by SUT can be provided using the average length of trans-
actions, Tavg. Each of the fields stringItems and stringUtili-
ties consumes b ∗ Tavg bytes, and an additional b bytes will
be taken up by the TU field. Since the total number of
nodes in SUT is |D|, the taken space is
b ∗

(
2 ∗ |D| ∗ Tavg + 1

)
bytes. Hence, the worst case mem-

ory space for SUT is �
(
|D| ∗ Tavg

)
.

4  |   EXPERIMENTAL
EVALUATION

To evaluate the proposed algorithm, it was compared with
IHUP, UP-Growth, and UP-Growth+. The Java imple-
mentation of these algorithms is provided by SPMF [27].
IHUPTWU was used in the experiments as it has shown
to be efficient [13]. Foodmart provided by SPMF [28] was
used a real dataset. Furthermore, three synthetic datasets,
s1, s2, and s3, were generated using the transaction data-
base generator included in the SPMF toolbox. For these
datasets, the quantities of items (integral values) were
generated in the range of [1, 10] using a uniform distri-
bution, while the unit profit values followed a Gaussian
distribution. Table 9 summarizes the characteristics of the

Number of prefix paths =2n−1+2n−2+ ⋅ ⋅ ⋅ +2+1

=2
(
2n−1−1

)

≈2n, for large values of n

Number of item nodes at depth 0=0 (the root node)

Number of item nodes at depth 1=n1
Number of itemnodes at depth 2=n2

⋮

Number of itemnodes at depthn=nn

T A B L E 9   Characteristics of Datasets

Dataset |D| |I| T Density (%)

Foodmart 4141 1559 4.4 0.28

s1 10 000 1000 5.5 0.054

s2 10 000 50 000 5.5 0.016

s3 10 000 100 000 5.4 0.013

BHAT B et al.1032 

datasets, where |D| denotes the number of transactions in
the database, |I| denotes the number of distinct items, T
denotes the average number of items per transaction, and
Density indicates the extent to which each dataset is sparse
or dense and is calculated as T∕ |I|. The experiments were
conducted on a Windows 7 computer equipped with 8 GB
RAM and Intel Core i5 processor working at 3.00 GHz.

Section 4.1 presents the performance evaluation of the
proposed pruning strategies. The execution time of SPUC,
IHUP, UP-Growth, and UP-Growth+ is compared in
Section 4.2. The results of scalability tests using synthetic
datasets are presented in Section 4.3.

4.1  |  Evaluation of the
pruning strategies

Foodmart and s2 datasets were used to evaluate the effec-
tiveness of the proposed pruning strategies. The first prun-
ing strategy that employs the path utility upper bound
is denoted as SPUC_Prune (1) and the second pruning
strategy that discards the itemsets based on OU is termed
SPUC_Prune (2). Figure 3 compares the execution time
when SPUC was executed with only SPUC_Prune (1) as

against both, that is, SPUC_Prune (1 + 2). For both the
datasets, across higher thresholds the difference in execu-
tion time was more evident. SPUC_Prune (1) effectively
prunes the items that appear at the top of the header
list due to their lower path utility. Hence, as the thresh-
old increases, SPUC_Prune (1) avoids determination of
CPB for a greater number of items. In addition to this,
SPUC_Prune (2) ensures lesser itemsets to be evaluated for
utility computation and thus completes the mining faster.
Overall, an improvement of 0.8992% and 23.41% was ob-
served for Foodmart and s2 datasets, respectively. Figure
4 compares the pruning strategies in terms of the explored
number of itemsets. While the number of explored candi-
date itemsets for Foodmart remained same up to min_util
of 1000 for the first pruning strategy, SPUC_Prune (2)
further pruned given this low threshold, thus reducing
the mining time at low thresholds. The effectiveness of
SPUC_Prune (2) in conjunction with SPUC_Prune (1)
is more evident in the case of s2 with a lower number
of explored itemsets and a significant difference as the
threshold increased. Overall, SPUC_Prune (1 + 2) im-
proved the mining performance by reducing the number
of candidates and hence was adopted for the remaining
experiments.

F I G U R E 3   Comparison of the pruning strategy in terms of
their execution time

F I G U R E 4   Comparison of the pruning strategy in terms of the
number of candidates

BHAT B et al. 1033

4.2  |  Execution time comparison

Figure 5 shows the comparison of the execution times of
the different algorithms. It can be noticed from the figure
that the proposed SPUC algorithm clearly outperforms
the other algorithms. The time taken for mining gradu-
ally reduces at higher min_util due to the lower number
of candidates. However, the difference in time for any
two consecutive thresholds is significantly higher for the
benchmark algorithms (Table 10). In contrast, the execu-
tion time does not vary significantly in the case of SPUC.
This can be attributed to the fact that SPUC relies on UCT
and SUT that do not eliminate any items as unpromising;
hence, the tree structure remains the same across all the
thresholds. In contrast, the benchmark algorithms elimi-
nate unpromising items and hence explore a smaller part
of the search space for mining. In addition, the recursive
mining procedure involves tree construction after elimi-
nating local unpromising items. However, this is over-
come in the case of SPUC, where itemsets are directly
generated and filtered. Furthermore, the utilities are de-
termined on the fly, without requiring an additional da-
tabase scan. Table 11 lists the percentage improvement in
the execution time of SPUC over IHUP, UP-Growth+, and
UP-Growth.

4.3  |  Scalability test

Scalability tests were conducted to determine the impact of
the database size increase in terms of the number of trans-
actions on the performance of SPUC. The three synthetic
datasets were scaled in four steps by inserting 10 000 trans-
actions at each step. Figure 6 shows the execution times of

F I G U R E 5   Execution time of the algorithms on different
datasets

T A B L E 1 0   Average increase in the execution time (s)

Dataset SPUC UP-Growth+ UP-Growth IHUP

Foodmart 0.073 0.493 1.890 2.450

s1 4.974 131.162 104.560 29.520

s2 3.860 92.580 81.550 48.450

s3 8.028 106.397 106.676 89.675

T A B L E 1 1   Percentage improvement of the proposed algorithm
compared with the benchmark algorithms across the datasets

Datasets vs.
Algorithms UP-Growth+ UP-Growth IHUP

Foodmart 18.370 22.143 31.760

s1 69.640 79.640 83.780

s2 81.820 82.310 82.340

s3 62.460 70.576 84.650

BHAT B et al.1034 

SPUC and the benchmark algorithms. While all the algo-
rithms showed an increase in the execution time with the
increase in the number of transactions, the execution time
of SPUC increased by a small margin. This is because the
tree construction time required by the benchmark algo-
rithms, which use two scans, builds up as the number of
transactions to be processed increases. In contrast, SPUC
constructs the two trees in a single scan. Furthermore, un-
like the other algorithms, SPUC completely eliminates the
evaluation of candidates for the utility computation, thus
provides better scalability.

5  |   CONCLUSIONS

Tree-based algorithms for mining HUIs require two phases:
(1) constructing a tree structure and mining candidate pat-
terns and (2) rescanning the database for calculating can-
didate utilities. This paper proposed two tree structures
called UCT and SUT. While SUT stores transaction-level
information in a node, UCT stores item-level informa-
tion. Furthermore, the paper presented a mining algo-
rithm called SPUC for mining HUIs in a single phase by
employing new pruning strategies based on the path and
overestimated utility, respectively. In SPUC, UCT guides
the pattern generation process, while SUT helps in calcu-
lating candidate utilities. This enables SPUC to completely
eliminate the second phase and thus outperform existing
tree-based algorithms on both real and synthetic datasets.

With the profound improvement in storage technolo-
gies and explosion of data generation rate, mining itemsets
is considered to be feasible through big data technologies
such as MapReduce and Apache Spark. Accordingly, we
plan to extend SPUC for mining HUIs in distributed envi-
ronments and very large datasets.

ACKNOWLEDGMENTS
This work was supported by Manipal Academy of Higher
Education Dr. T.M.A Pai Research Scholarship under
Research Registration No. 170900117.

CONFLICT OF INTEREST
The authors declare no potential conflict of interest.

ORCID
Anup Bhat B https://orcid.org/0000-0002-9910-6758

REFERENCES
	 1.	 W. Zhang et al., Text clustering using frequent itemsets, Knowl-

Based Syst. 23 (2010), no. 5, 379–388.
F I G U R E 6   Execution time of the compared algorithms for
varying |D| on the synthetic datasets

BHAT B et al. 1035

https://orcid.org/0000-0002-9910-6758
https://orcid.org/0000-0002-9910-6758

	 2.	 S. Naulaerts, et al., A primer to frequent itemset mining for bioin-
formatics, Brief Bioinform. 16 (2015), 216–231.

	 3.	 R. Harpaz, H. S. Chase, and C. Friedman, Mining multi-item
drug adverse effect associations in spontaneous reporting systems,
BMC Bioinform. 11 (2010), no. 9, S7.

	 4.	 J. Han et al., Frequent pattern mining: Current status and future
directions, Data Min. Knowl. Disc. 15 (2007), no. 1, 55–86.

	 5.	 H. Yao, H. J. Hamilton, and C. J. Butz, A foundational approach
to mining itemset utilities from databases, in Proc. SIAM Int. Conf.
Data Min. (Lake Buena Vista, FL, USA), Apr. 2004, pp. 482–486.

	 6.	 H. Yao and H. J. Hamilton. Mining itemset utilities from transac-
tion databases, Data Knowl. Eng. 59 (2006), no. 3, 603–626.

	 7.	 Y. Liu and W.-K. Liao, A fast high utility itemsets mining algo-
rithm, in Proc. Int. Workshop Utility-Based Data Min. (New
York, NY, USA), Aug. 2005, pp. 90–99.

	 8.	 Y. Liu, W.-K. Liao, and A. Choudhary, A two-phase algorithm for
fast discovery of high utility itemsets, in Advances in Knowledge
Discovery and Data Mining, Springer, Berlin, Heidelberg,
Germany, 2005, pp. 689–695.

	 9.	 Y. Liu et al., High utility itemsets mining, Int. J. Inf. Tech. Decis.
Making 9 (2010), no. 6, 905–934.

	10.	 R. Agrawal and R. Srikant, Fast algorithms for mining associa-
tion rules, in Proc. Int. Conf. Very Large Data Bases (Santiago,
Chile), Sept. 1994, 487–499.

	11.	 C. W. Lin, T. P. Hong, and W. H. Lu, An effective tree structure for
mining high utility itemsets, Expert Syst. Appl. 38 (2011), no. 6,
7419–7424.

	12.	 C. F. Ahmed et al., HUC-Prune: An efficient candidate pruning
technique to mine high utility patterns, Appl. Intell. 34 (2011),
no. 2, 181–198.

	13.	 C. F. Ahmed et al., Efficient tree structures for high utility pattern
mining in incremental databases, IEEE Trans. Knowl. Data Eng.
21 (2009), no. 12, 1708–1721.

	14.	 V. S. Tseng et al., UP-Growth: An efficient algorithm for high util-
ity itemset mining, Discov. Data Min. (New York, NY, USA), July
(2010), 253–262.

	15.	 V. S. Tseng et al., Efficient algorithms for mining high utility
itemsets from transactional databases, IEEE Trans. Knowl. Data
Eng. 28 (2016), no 1, 54–67.

	16.	 J. Han et al., Mining frequent patterns without candidate genera-
tion: A frequent-pattern tree approach, Data Min. Knowl. Disc. 8
(2004), no. 1, 53–87.

	17.	 M Liu and J Qu, Mining high utility itemsets without candidate
generation, in Proc. ACM Int. Conf. Inform. Knowl. Manag.
(New York, NY, USA), Oct. 2012, pp. 55–64.

	18.	 S. Krishnamoorthy, Pruning strategies for mining high utility
itemsets, Expert Syst. Appl. 42 (2015), no. 5, 2371–2381.

	19.	 P. Fournier-Viger et al., Fhm: Faster high-utility itemset mining
using estimated utility co-occurrence pruning, in International
Symposium on Methodologies for Intelligent Systems, Springer,
Berlin, Heidelberg, Germany, 2014, pp. 83–92.

	20.	 C. Zhang et al., An empirical evaluation of high utility itemset
mining algorithms, Expert Syst. Appl. 101 (2018), 91–115.

	21.	 S. Zida et al., Efim: A fast and memory efficient algorithm for
high-utility itemset mining, Knowl. Inf. Syst. 51 (2017), no. 2,
595–625.

	22.	 J. Liu, K. E. Wang, and B. C. M. Fung, Direct discovery of high
utility itemsets without candidate generation, in Proc. IEEE
Int. Conf. Data Min. (Brussels, Belgium), Dec. 2012, pp.
984–989.

	23.	 J. Liu, K. Wang, and B. C. M. Fung, Mining high utility patterns
in one phase without generating candidates, IEEE Trans. Knowl.
Data Eng. 28 (2016), no. 5, 1245–1257.

	24.	 S. Dawar, D. Bera, and V. Goyal, High-utility itemset mining for
subadditive monotone utility functions, arXiv preprint, CoRR,
2018, arXiv:1812.07208.

	25.	 V. S. Ananthanarayana, D. K. Subramanian, and M. N. Murty,
Scalable, distributed and dynamic mining of association rules, in
High Performance Computing—HiPC 2000, vol. 1970, Springer,
Berlin, Heidelberg, Germany, 2000, pp. 559–566.

	26.	 M. Geetha and R. J. D’souza, An efficient reduced pattern count
tree method for discovering most accurate set of frequent itemsets,
Int. J. Comp. Sci. Netw. Sec. 8 (2008), no. 8, 121–126.

	27.	 P. Fournier-Viger, SPMF An Open-Source Data Mining Library,
Developer’s Guide, 2020, available at https://www.phili​ppe-
fourn​ier-viger.com/spmf/index.php?link=devel​opers.php

	28.	 P. Fournier-Viger, SPMF An Open-Source Data Mining Library,
Datasets, 2020. available at https://www.phili​ppe-fourn​ier-
viger.com/spmf/index.php?link=datas​ets.php

AUTHOR BIOGRAPHIES

Anup Bhat B received his BE degree
in Information and Communication
Technology and MTech degree in
Computer Science and Engineering
from the Manipal Institute of
Technology, Manipal Academy of
Higher Education, Manipal, India,
in 2013 and 2017, respectively. He

is currently pursuing a PhD degree in the same insti-
tute. His research interests include data mining and
machine learning.

Harish SV received his PhD degree
from the Department of Computer
Science and Engineering, National
Institute of Technology Karnataka,
in 2011. He is currently serving as a
Professor in the Department of
Computer Science and
Engineering, the Manipal Institute

of Technology, Manipal Academy of Higher Education,
Manipal, India. He published two book chapters and
many papers in reputable international journals. His
research interests include algorithms, machine learn-
ing, and data mining.

BHAT B et al.1036 

https://www.philippe-fournier-viger.com/spmf/index.php?link=developers.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=developers.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

Geetha M received her PhD degree
from the Department of
Mathematical and Computational
Sciences, National Institute of
Technology Karnataka, in 2010.
She is currently a Professor in the
Department of Computer Science
and Engineering, the Manipal

Institute of Technology, Manipal Academy of Higher
Education, Manipal, India. She has presented several
papers at national and international conferences. Her
work has also been published in several international
journals. Her current research interests include algo-
rithms, data mining, and text mining in healthcare and
financial sectors.

BHAT B et al. 1037

