
1  |   INTRODUCTION

Transactional databases of supermarket stores serve as 
a primary source for mining interesting patterns that in-
dicate associations between different items purchased 
by customers. This mining task is termed as association 
rule mining (ARM) and used in many applications across 
various domains, including text mining [1], bioinformat-
ics [2], and pharmacovigilance [3]. To obtain association 
rules from a huge number of customer transactions, items 
that co-occur frequently are enumerated to assert the va-
lidity and interestingness of associations. Hence, mining 
such frequent itemsets forms the core phase of the ARM 
task, which has been extensively researched [4].

More often than not, frequently purchased items do not 
necessarily contribute adequately to the revenue of a su-
permarket store. This is due to the inherent nature of the 
frequent itemset mining (FIM) model that relies only on 
the presence or absence of an item in a transaction when 
determining the frequency of the item. Formally, a mea-
sure called support is calculated as the ratio of the number 
of transactions, in which the items of an itemset co-occur, 
to the total number of transactions to decide whether the 
itemset is frequent or not based on a threshold set by the 
user. This measure does not rely on the quantity or unit 
profit of the items that are essential in determining the 
revenue incurred. Hence, a framework called the high 
utility itemset mining (HUIM) has evolved to consider 
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such factors, which can be seen as a generalized form of 
the FIM task.

The utility of an itemset is often measured as the prod-
uct of the quantity and unit profit of the items that form 
the itemset. While the algorithms that mine frequent items 
exploit the downward closure property with respect to the 
support for effective search space exploration, the mea-
sure of utility is not downward closed. This void is filled by 
various upper bounds on the utility, with the transaction-
weighted utility (TWU) being a prominent example. The 
algorithms for mining HUIs have evolved from two-phase 
to single-phase. The most efficient two-phase algorithms 
such as IHUP, UP-Growth, and UP-Growth+ construct 
tree structures and enumerate candidate patterns via a 
recursive pattern-growth procedure. This bottom-up pro-
cedure constructs conditional pattern trees that consume 
a lot of memory. This is a severe performance bottleneck. 
Furthermore, once candidates are outputted from such a 
procedure, the utility has to be determined from an addi-
tional database scan. This paper presents a single-phase 
algorithm called single-phase utility computation (SPUC) 
to efficiently utilize the concept of tree structures in min-
ing HUIs. SPUC has the following advantages:

•	 It utilizes two new tree structures, namely, Utility Count 
Tree (UCT) and String Utility Tree (SUT). Both trees are 
constructed from a single database scan and are com-
plete. While UCT guides the search space exploration 
for enumerating valid patterns, SUT is a compact tree 
that provides the utility of these patterns. This com-
pletely eliminates the need for rescanning the database 
to calculate the utility.

•	 It executes faster than IHUP, UP-Growth, and UP-
Growth+ tree-based algorithms according to experi-
ments on real and synthetic datasets.

The rest of this paper is organized as follows. Section 2 
provides a formal introduction to the problem of mining 
HUIs, along with related work. The procedures of con-
structing the proposed trees, UCT and SUT, and proposed 
algorithm incorporating novel pruning strategies are out-
lined in Section 3. The results of performance evaluation 
are reported in Section 4. Section 5 concludes the paper.

2  |   BACKGROUND

2.1  |  Preliminaries

Given a transaction database D with n distinct items 
I =

{
i1, i2, . . . , in

}
, each transaction Td in D is identified by 

the transaction identifier TID and records a collection of 
items purchased, along with their quantities or internal 

utility (Table 1B). The ordered pair 
(
ix , qx

)
 in each transac-

tion indicates that an item ix was purchased in a quantity 
of qx in that transaction. Each item is also associated with 
the unit profit or external utility (Table 1A).

Definition 1  (Utility of an item) The utility u
(
i,Td

)
 of 

an item i in a transaction Td is measured as the prod-
uct of the quantity q

(
i,Td

)
 and unit profit p (i).

Definition 2  (Utility of an itemset) The utility u
(
X ,Td

)
 

of an itemset X  in a transaction Td is defined as ∑
i∈X∧X⊆Td

u
�
i,Td

�
.

Definition 3  (Utility of an itemset in a database). The 
utility u (X ) of an itemset X  in D is defined as

for example,

The utility measure is neither anti-monotone nor 
monotone. The utility of a few subsets of {5, 1, 2} is com-
pared in Table 2. While the support is strictly increasing 
across the subsets, the utility is neither increasing nor de-
creasing. Hence, while the support of an itemset is down-
ward closed, the utility measure is not.

u (X ) =
∑

X ⊆Td ∧Td ∈D

u
(
X ,Td

)
.

u
(
{2} ,T2

)
=4×2=8

u
(
{2, 3} ,T2

)
=u

(
{2} ,T2

)
+u

(
{3} ,T2

)
=8+3=11

u ({2, 3}) =u
(
{2, 3} ,T1

)
+u

(
{2, 3} ,T2

)
+u

(
{2, 3} ,T5

)

=11+11+6=28

T A B L E  1   Sample database

(A) Profit Table

Item 1 2 3 4 5 6 7

Profit 5 2 1 2 3 5 1

(B) Transaction Table

TID Transaction

T1 {(3,1)(5,1)(1,1)(2,5)(4,3)(6,1)}

T2 {(3,3)(5,1)(2,4)(4,3)}

T3 {(3,1)(1,1)(4,1)}

T4 {(3,6)(5,2)(1,2)(7,5)}

T5 {(3,2)(5,1)(2,2)(7,2)}

T A B L E  2   Support vs Utility

Itemset Support Utility

{5, 1, 2} 1 18

{5, 1} 2 24

{1} 3 20
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Definition 4  (Transaction Utility (TU)) The TU 
TU

(
Td

)
 of a transaction Td is defined as the sum of 

the utilities of all the items in that transaction, that 
is, 

∑
i⊆Td

u
�
i,Td

�
,

Definition 5  (High Utility Itemset (HUI)) An itemset X  
is called a HUI if u (X ) ≥min_util, where min_util is 
the minimum utility provided by the user.

For instance, if the threshold is set to 35%, then 
min_util = 0.35 × 96 = 33.6, where 96 is the sum of the TU 
of all the transactions in the sample database. Then, HUIs 
for this threshold are {2, 4, 5}, {2, 3, 5}, and {3, 5, 2, 4}, with 
utilities of 36, 37, and 40, respectively.

Definition 6  (Transaction Weighted Utility (TWU)). 
The TWU TWU (X ) of an itemset X  is de-
fined as the sum of the transaction utility of all 
the transactions in D that contain X , that is, 
TWU (X ) =

∑
X⊆Td∧Td∈D

TU (Td).
Definition 7  (High-transaction Weighted Utility 

Itemset (HTWUI)). An itemset X  is a HTWUI, 
if TWU (X ) ≥min_util. If an itemset X  is not a 
HTWUI, then it cannot be a HUI.

Property 1  (TWU Downward Closure Property). If 
an itemset X  is a HTWUI, then all its subsets are 
HTWUIs, or if an itemset X  is not a HTWUI, then 
none of its supersets can be a HTWUI.

For instance, TWU ({3, 1, 2}) = 30 <min_util. Hence, 
higher-order itemsets need not be enumerated from 
{3, 1, 2} as this property ensures they are neither HTWUI 
nor HUI.

2.2  |  Related work

Algorithms for mining frequent itemsets explore the com-
binatorial search space by employing the downward clo-
sure property with respect to the support of an itemset. 
However, the measure of utility is not downward closed 
(Definition 3). Yao et al. [5,6] performed a theoretical 
analysis of mining HUIs for the first time. In this study, 
the authors proposed two properties, namely, utility 
bound property and its extension, support bound prop-
erty, as heuristic for pruning the search space. While this 
work formalized the problem of HUIM, the proposed 
heuristic could not discover a complete set of HUIs. The 
property of the TWU to be downward closed was proposed 
by Liu et al. [7–9]. The two-phase algorithm proposed by 
these authors employed the TWU to enumerate candidate 
patterns in a level-wise manner analogous to the Apriori 
algorithm [10]. The candidate generation phase of this 
algorithms outputs all the k-itemsets that are HTWUIs 

and whose utility calculation is performed by scanning 
the database again, which is the second phase of the algo-
rithm. Overall, (k + 1) scans are required to output HUIs 
of length k.

Another category of algorithms resulting in sig-
nificant performance gains are tree-based algorithms 
[11–15]. These algorithms transform the database into 
a compressed tree structure with at most two data-
base scans. Items that do not have the TWU of at least 
min_util are discarded, while the remaining items of 
the transactions are arranged in a predetermined order 
(for example, descending or ascending) of the item 
TWU or the lexicographic order. The tree construction 
is similar to the FP-tree construction procedure [16]. 
In particular, the TWU [12] or TU [13] is stored instead 
of storing the utility of items in the node of the tree. 
To promote access to the nodes of the tree that carry 
similar items in different branches, a header table is 
also constructed. This table is scanned from the bot-
tom to obtain conditional pattern trees. Each item in 
the tree is then appended to the item whose conditional 
tree is constructed and output as a candidate. Pruning 
strategies play a vital role in reducing the number of 
candidates. In this regard, the UP-Growth algorithm 
[14] discards the items that are unpromising in local 
conditional trees (the DLU strategy) and decreases the 
utilities of the remaining items by the utility of the dis-
carded items (the DLN strategy). These strategies are 
further tightened by using minimal node utilities in the 
UP-Growth+ algorithm [15].

List-based algorithms such as HUI-Miner [17] and 
FHM eliminate candidate generation entirely. They adopt 
the depth-first search strategy and its valid extensions in 
a single phase to mine patterns by transforming the data-
base information into a utility list (UL) structure. Initially, 
a UL is constructed for every item whose TWU is at least 
min_util. Based on a predetermined order, items are ex-
tended recursively. Utility information remains intact 
in the list and is accumulated as the lists are combined 
during the extension of the item. Hence, unlike the tree-
based algorithms, the second phase of rescanning the da-
tabase for utility calculation is not required. The pruning 
strategy aims mainly at determining the valid extensions 
of an itemset. In this regard, U-Prune proposed for HUI-
Miner was extended in HUP-Miner [18] by adopting two 
more pruning strategies, namely, PU-Prune and LA-Prune, 
that use the utility information stored in partitioned ULs. 
The FHM algorithm [19] uses the estimated utility co-
occurrence structure to store the TWU of two itemsets for 
faster lookup.

Projection-based algorithms have proven to be more 
efficient than list-based algorithms [20]. EFIM [21] and 
d2hup [22,23] are examples of projection-based algorithms. 
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EFIM uses local tree and sub-tree utility pruning strate-
gies in conjunction with a database projection technique 
for faster exploration of the search space, while d2hup ex-
plores search space via a reverse set enumeration tree and 
makes use of the chain of accurate utility lists for utility 
computation. Using real and synthetic datasets, the em-
pirical study conducted by Zhang et al. [20] demonstrated 
the superior performance of EFIM and d2hup on dense 
and sparse datasets, respectively. However, a recent study 
modeling the utility measure via subadditivity and mono-
tonicity has revealed that neither list- nor projection-based 
algorithms perform the best at all times [24].

Pattern-growth tree-based algorithms for HUIM con-
struct conditional pattern trees during recursive enumer-
ation of itemsets. This procedure requires a significant 
amount of memory, especially for dense datasets. While 
list structures offer tighter upper bounds on the utility to 
facilitate effective pruning, the construction of ULs in-
volves significant comparison overhead. Further, when an 
itemset X  is extended with any of its valid extensions, it 
is possible that they do not co-occur in any transactions, 
thus waste CPU cycles for comparison operations. This 
can be avoided by employing a prefix tree with bottom-up 
traversal. Enumerated itemsets are guaranteed to be valid 
patterns. Nevertheless, candidates are outputted only to-
ward the end of the first phase. Revisiting the transaction 
database for the utility calculation incurs a significant 
input/output cost. Several studies highlight the signifi-
cance of the compact representation of transaction data-
bases for FIM [25,26]. Hence, this study aims to compress 
the entire database on a per transaction basis and leverage 
the advantages of the prefix tree for mining HUIs effi-
ciently. While the prefix tree provides with valid patterns, 
the compressed tree structure with utility information can 
be accessed to output the HUIs without rescanning the da-
tabase, that is, ensuring the utility computation in a single 
phase.

3  |   METHODOLOGY

A majority of tree-based algorithms eliminate unprom-
ising items during the initial tree construction and re-
quire two scans of the database. This section presents 
two tree structures (UCT and SUT) that are constructed 
using a single scan by incorporating all items. While 
both structures ensure prefix sharing, UCT is con-
structed on per item basis, whereas SUT is constructed 
on per transaction basis. Subsection 3.1 introduces the 
tree structures and their respective construction pro-
cedures. Subsection 3.2 details the mining procedure 
using these trees, along with the pruning strategy and 
SPUC algorithm.

3.1  |  Proposed data structures

3.1.1  |  Utility count tree

A node in the UCT has the following fields:

1.	 item denoting the name of an item;
2.	 count denoting the count of an item in the given path of 

the tree;
3.	 nodeUtility denoting the accumulated utility of an item 

in the given path of the tree;
4.	 parent pointing to the parent of the node.

Utility Count Tree is constructed without discarding 
any items during the initial tree construction. The data-
base is scanned, and a node N is constructed for every 
item in a transaction Tj. Algorithm 1 outlines the proce-
dure of inserting transactions into UCT. Initially, N is set 
to the root node of the tree. Items in a transaction are ar-
ranged in ascending order and inserted as child nodes of 
one another. Hence, each path of the tree corresponds to 
a particular transaction. If a transaction contains a node 
that is already present in the tree, the procedure updates 
the count and utility instead of creating a new node in the 
given path. This ensures prefix sharing. Figure 1 shows 
UCT for the sample database presented in Table 1.

3.1.2  |  String utility tree

Unlike UCT, SUT captures transaction-level information 
in a node, resulting in a more compact representation of 
a transaction database compared with FP-tree-like struc-
tures. A node in SUT has the following fields:
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1.	 stringItems denoting the concatenation of items pur-
chased in a transaction;

2.	 TU denoting the TU of a transaction;
3.	 stringUtilities denoting the concatenation of utilities of 

corresponding items;
4.	 parent pointing to the parent of the node.

Algorithm 2 outlines the construction procedure of 
SUT. Once the items of a transaction Tj are arranged in 
ascending order, they are concatenated using a delimiter 
such as x and stored in the stringItems field. The utilities 
are indexed per the order of the items and concatenated 
in a similar manner. As each node corresponds to a trans-
action, the tree offers a compact representation without 
eliminating any items. To ensure prefix sharing, substring 
comparison is performed to check whether the stringItems 
of a transaction Tj is present in existing nodes of the tree 
(line 11). If there is a match, then the new node is ap-
pended as the child of this existing node. Figure 2 shows 
SUT for the sample database presented in Table 1.

3.2  |  Proposed SPUC algorithm

A path for a node in UCT is a list containing items from 
this node to the root. The nodeUtility field of a node stores 
the cumulated utility value of the item the node repre-
sents. This value is the sum of the utilities of the item 
in different transactions sharing a common prefix. From 
the header list, if the node link for an item is traversed, 
then the sum of the nodeUtility fields denotes the utility 
of the item in the transaction database. With this item 

as suffix, each path of the node is the prefix path for this 
item. To mine UCT, the header list is traversed from the 
bottom. The prefix path(s) for each item is (are) obtained, 
which forms the conditional pattern base (CPB) for the 
item. The sum of nodeUtility fields of all items, including 
the suffix, is also calculated for each prefix path, which 
denotes the path utility. All possible subsets from prefix 
paths containing the suffix item are then generated. The 

F I G U R E  1   Utility Count Tree (UCT) for the database presented in Table 1
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rationale here is that these items represent the database 
conditioned on the suffix item. Hence, it is sufficient to 
mine only the k-itemsets generated from these items. The 
value of k ranges from one to the length of the considered 
prefix path.

Once the different subsets of a prefix path in the CPB 
of an item are obtained, the actual utility value of them 
cannot be obtained from UCT. Hence, SUT is employed in 
mining. The utility of each itemset is accumulated using 
level-order traversal. As each node in SUT represents a 
transaction, the accumulated utility value for an itemset 
post the traversal denotes its real utility value. The fol-
lowing strategy is adopted to enable efficient search of an 
itemset in SUT.

•	 First, a check for the presence of the suffix item in the 
current node is performed instead of the entire item-
set. The node is examined for the presence of the entire 
itemset only if it contains the suffix item. Subsequently, 
the current node's children are also examined.

•	 If the node does not contain the suffix item, the next 
sibling is considered without examining the contents of 
the current node or any of its children.

This procedure exploits the characteristic of SUT 
and knowledge of the suffix item being considered. If 
a node does not contain the suffix item, then none of 
its children will contain this item since the children 
of a node in SUT are substrings completely contained 
in its parent. Furthermore, all subsets are formed con-
ditioned on this suffix item. Hence, it is sufficient to 
check for the suffix before examining for the presence 
of the entire itemset.

The following pruning strategy has been proposed by 
us to improve the efficiency of the mining process:

Theorem 1  If the sum of path utilities for an item is lower 
than min_util, then no itemset from the CPB will be a 
HUI, and hence, these itemsets need not be generated 
and evaluated.

Case 1 (Isolated path): An isolated path is a non-prefix 
sharing path in a tree. Hence, nodeUtility for all items is 
the utility value. For any suffix item ik in this path, the 
path utility is the utility of the largest k-itemset possible. 
For any subset of this k-itemset that contains ik as the suf-
fix, the utility cannot exceed the utility of the largest k
-itemset, that is, the path utility. Hence, if this utility is 
lower than min_util, the utility of the subsets cannot ex-
ceed min_util. Therefore, the subsets for the paths in the 
CPB do not need to be generated with respect to the suffix.

Case 2 (Non-isolated path): In the case of prefix shar-
ing, nodeUtility has the utility value greater than the real 
utility value, that is, it denotes the sum of the utilities of 
different transactions along the path for an item. Thus, 
any subset formed for the suffix item ik will have a utility 
lower than the path utility. If two or more prefix paths are 
present for ik and a common subset exists, the sum of the 
utilities of subsets will always be lower than the sum of 
the path utilities (since individually, every utility is lower 
than the path utility of the path they occur in).

An example of mining employing UCT, SUT, and the 
proposed pruning strategy is described below.

•	 Consider mining HUIs for itemsets with a suffix item 
7. As the header list is traversed, two prefix paths are 
obtained, namely, P1: ⟨1, 3, 5, 7⟩ and P2: ⟨2, 3, 5, 7⟩ , 
with path utilities pu1 = 38 (5 + 6 + 7 + 20) and 
pu2 = 22 (2 + 3 + 5 + 12), respectively (Figure 1). This 
forms the CPB for item 7 as shown in Table 3. If min_util 
is set to 30, then item 7 is not pruned as the sum of the 
path utilities (38 + 22 = 60) exceeds min_util.

•	 Subsets with suffix 7 can be generated using these prefix 
paths. Since both paths have a length of 4, the largest 
possible subset is of length four. When the prefix path 

F I G U R E  2   String Utility Tree (SUT) for the sample database presented in Table 1

T A B L E  3   Conditional pattern base for item 7

Prefix Path Items Path Utility

P1 1, 3, 5, 7 38

P2 2, 3, 5, 7 22
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P1 is considered from the CPB, the generated subsets are 
{{7} , {1, 7} , {3, 7} , {5, 7} , {1, 3, 7} , {1, 5, 7} , {3, 5, 7} ,

{1, 3, 5, 7}}.
•	 Next, SUT is traversed to obtain the utilities of these 

itemsets. The traversal of SUT begins from its root node. 
The first match to the suffix occurs at node 1x3x5x7. The 
utilities of all itemsets are obtained from the utility field 
of this node and are recorded in the hash_item_utilites 
hash table. A snapshot of this table is shown in Table 4.

•	 The next sibling found during traversal, that is, 
2x3x5x7 , contains the suffix. However, only the itemsets 
{7} , {3, 7} , {5, 7} , and {3, 5, 7} are examined as present 
in this node, and their utilities are updated in the hash 
table as shown in Table 5.

•	 Once the traversal is complete, the next pre-
fix path, P2, is selected from the CPB. 
The subsets generated from this path are 
{{7} , {2, 7} , {3, 7} , {5, 7} , {2, 3, 7} , {2, 5, 7} , {3, 5, 7} , {2, 3, 5, 7}} . 
Since the itemsets {{7} , {3, 7} , {5, 7} , {3, 5, 7}} 
have already been generated in P1 and ex-
amined, only the remaining itemsets, that is, 
{{2, 7} , {2, 3, 7} , {2, 5, 7} , {2, 3, 5, 7}} are taken up for 
mining. The utilities of these itemsets are recorded in 
hash_item_utilites as shown in Table 6.

•	 The above procedure is repeated for all items of 
the header list in a bottom-up manner. Eventually, 
hash_item_utilities is filtered to retain only those item-
sets whose utility is at least min_util.

3.2.1  |  Enhancing the mining process

As demonstrated in the above example, there is a possi-
bility that the prefix paths within a CPB can generate the 
same subsets. While the same subsets are not considered 
during SUT traversal for the utility calculation, they are 
still generated. To tackle this problem, the CPB is checked 
for the presence of a path that contains all the different 
items in the CPB. Such a path has to be the longest path, 
with the length equal to the suffix item being considered. 
Such a path will generate all possible subsets, including 
those generated by the remaining prefix paths in the CPB.

Consider the suffix item 5. The possible prefix paths are 
P1: ⟨1, 2, 3, 4, 5⟩, P2: ⟨1, 3, 5⟩, P3: ⟨2, 3, 4, 5⟩, and P4: ⟨2, 3, 5⟩ . 
Here, the longest prefix path with a length equal to the suf-
fix item is P1. The subsets generated out of P1 include those 
generated by the paths from P2 to P4. Hence, it is sufficient 
to generate subsets from P1 for subsequent mining. The 
remaining paths can be ignored when generating subsets.

Once the subsets corresponding to a prefix path are 
generated, their utilities can be obtained by traversing 
SUT. The nodeUtility value stored in UCT is employed to 
reduce the number of the subsets being evaluated for the 
utility computation. The nodeUtility values corresponding 
to every item in the CPB are accumulated as the prefix 
paths are determined. This results in an overestimated 
utility value that can be employed to filter itemsets as ex-
plained below using the subsets of P1 of CPB (7).

T A B L E  4   Utilities of subsets of P1 in hash_item_utilites after 
examining the node 1x3x5x7

Itemset Utility

{7} 5

{1, 7} 15

{3, 7} 11

{5, 7} 11

{1, 3, 7} 21

{1, 5, 7} 21

{3, 5, 7} 17

{1, 3, 5, 7} 27

T A B L E  5   Utilities of subsets of P1 in hash_item_utilites after 
examining the node 2x3x5x7

Itemset Utility

{7} 7

{1, 7} 15

{3, 7} 15

{5, 7} 16

{1, 3, 7} 21

{1, 5, 7} 21

{3, 5, 7} 24

{1, 3, 5, 7} 27

T A B L E  6   Utilities of subsets of P2 in hash_item_utilites after 
examining the node 2x3x5x7

Itemset Utility

{7} 7

{1, 7} 15

{3, 7} 15

{5, 7} 16

{1, 3, 7} 21

{1, 5, 7} 21

{3, 5, 7} 24

{1, 3, 5, 7} 27

{2, 7} 6

{2, 3, 7} 8

{2, 5, 7} 9

{2, 3, 5, 7} 11
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•	 An overestimated utility (OU) table for CPB (7) accumu-
lates the nodeUtility values corresponding to every item 
in CPB (7). The OU values are accumulated as and when 
items are added to the prefix path of the CPB. Table 7 
shows the OU values for items {1, 2, 3, 5, 7} that form 
CPB (7). Items {1}, {2} are present only in P1 and P2 ; 
their OUs hold the corresponding nodeUtility values of 
20 and 12, respectively. However, the OUs of the other 
items in both P1 and P2 are also accumulated, that is, 
OU ({3}) = P1 ({3}) .nodeUtility + P2 ({3}) .nodeUtility = 7 + 5 = 12 .

•	 Next, OUs of different subsets formed from P1 are deter-
mined using the above-mentioned OU table (Table 8). 
It can be observed from Table 8 that only the itemsets 
{1, 3, 7}, {1, 5, 7}, and {1, 3, 5, 7} have their OUs above 
the min_util of 30. Hence, only the utilities of these 
itemsets are computed using SUT (which is different 
from Tables 4 and 5).

This strategy further enhances the mining process 
in conjunction with the pruning strategy provided in 
Theorem 1.

Algorithm 3 lists the SPUC algorithm that incorporates 
the proposed pruning strategy. SPUC takes two trees (UCT 
and SUT) and the min_util values provided by the user as 
inputs. A global hash map acts as a table for storing the 
utilities of subsets generated from different prefix paths as 
shown in line 1. A bottom-up procedure is then initiated to 
obtain the CPB of items for subsequent mining (lines 2 to 

18). After calculating the path utilities for each prefix path, 
the pruning strategy (Theorem 3.2) is applied (line 4). The 
mining procedure considers the next item in the header 
list if the sum of the path utilities is not at least min_util. 	

T A B L E  7   Overestimated utility table corresponding to items 
of CPB (7)

Itemset OU

{1} 20

{2} 12

{3} 12

{5} 9

{7} 7

T A B L E  8   Overestimated utility table of subsets in P1 of CPB (7)

Itemset OU

{7} 7

{1, 7} 27

{3, 7} 19

{5, 7} 16

{1, 3, 7} 39

{1, 5, 7} 36

{3, 5, 7} 28

{1, 3, 5, 7} 48
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For items that satisfy this condition, the longest path is 
searched to avoid generating subsets from each path in the 
CPB (lines 5 to 7). Itemsets that are subsets of each prefix 
path and contain only the suffix item are then generated 
(line 9). subset_List keeps track of different itemsets gen-
erated from the prefix paths considered till the current one 
and thus can be used to eliminate any subsets common to 
any of the previous paths (lines 10 and 11). As the OUs of 
the itemsets are determined, only those itemsets whose OU 
exceeds the threshold are retained in itemset_list (line 12 
to 16). The procedure Mine takes the filtered itemset_list 
as input and starts searching for the presence of itemsets 
from the root of SUT (line 23 to 32). Line 24 is the sum-
mary of the search strategy explained before. If the suffix is 
absent in the current SUT node, then none of the itemsets 
in itemset_list will be present in the current node. Hence, 
the search proceeds with the next sibling after the break 
(line 34). The utility of the itemset is calculated and added 
to hash_item_utilities if not present already (lines 26 to 30). 
Traversal is continued as shown in lines 38 to 40 to mine 
itemsets from the child of the current node or move to sib-
lings if the suffix item is not present.

3.3  |  Complexity analysis

The longest path in the CPB of an item is identified using 
the assumption that its length matches the location of the 
item in the header list of UCT. If such a path exists, then the 
number of subsets with this item as prefix is 2n−1 (assum-
ing that the sum of the path utilities of this item exceeds 
min_util). However, if such a path is absent, then in the 
worst case, all prefix paths in the CPB have to be examined 
for generating subsets. Hence, the computation load due to 
item i depends on the number of prefix paths in its CPB. 
Furthermore, the subsets of item i will visit each node in 
SUT and perform the utility calculation when a match is 
found. Subsequently, the subsets of i will visit all child nodes 
as well. The utility computation is a trivial retrieval opera-
tion, whereas the number of node visits during mining is a 
major component that adds to the complexity. Overall, the 
complexity can be computed as the total number of subsets 
generated for n items in the header list of UCT.

Hence, the computational complexity of the proposed 
algorithm is � (2n).

The tree structures are constructed using a single da-
tabase scan without eliminating any items. To determine 

the amount of memory taken by the two tree structures, 
let |D| denote the total number of transactions in the data-
base and b denote the number of bytes taken up to allocate 
memory for a field of a node in a tree. In the worst case 
scenario, the sum of the numbers of nodes in each level of 
UCT can determine the memory upper bound.

As UCT has three fields in each node, the total space 
taken is upper-bounded by 

3b∗

(
0+

(
n

1

)
+

(
n

2

)
+ ⋅ ⋅ ⋅ +

(
n

n

))
=3b∗ (2n−1) bytes . 

Hence, in the worst case, UCT consumes � (2n) bytes of 
memory. A tighter upper bound on the memory consumed 
by SUT can be provided using the average length of trans-
actions, Tavg. Each of the fields stringItems and stringUtili-
ties consumes b ∗ Tavg bytes, and an additional b bytes will 
be taken up by the TU field. Since the total number of 
nodes in SUT is |D|, the taken space is 
b ∗

(
2 ∗ |D| ∗ Tavg + 1

)
bytes. Hence, the worst case mem-

ory space for SUT is �
(
|D| ∗ Tavg

)
.

4  |   EXPERIMENTAL 
EVALUATION

To evaluate the proposed algorithm, it was compared with 
IHUP, UP-Growth, and UP-Growth+. The Java imple-
mentation of these algorithms is provided by SPMF [27]. 
IHUPTWU was used in the experiments as it has shown 
to be efficient [13]. Foodmart provided by SPMF [28] was 
used a real dataset. Furthermore, three synthetic datasets, 
s1, s2, and s3, were generated using the transaction data-
base generator included in the SPMF toolbox. For these 
datasets, the quantities of items (integral values) were 
generated in the range of [1, 10] using a uniform distri-
bution, while the unit profit values followed a Gaussian 
distribution. Table 9 summarizes the characteristics of the 

Number of prefix paths =2n−1+2n−2+ ⋅ ⋅ ⋅ +2+1

=2
(
2n−1−1

)

≈2n, for large values of n

Number of item nodes at depth 0=0 (the root node)

Number of item nodes at depth 1=n1
Number of itemnodes at depth 2=n2

⋮

Number of itemnodes at depthn=nn

T A B L E  9   Characteristics of Datasets

Dataset |D| |I| T Density (%)

Foodmart 4141 1559 4.4 0.28

s1 10 000 1000 5.5 0.054

s2 10 000 50 000 5.5 0.016

s3 10 000 100 000 5.4 0.013
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datasets, where |D| denotes the number of transactions in 
the database, |I| denotes the number of distinct items, T 
denotes the average number of items per transaction, and 
Density indicates the extent to which each dataset is sparse 
or dense and is calculated as T∕ |I|. The experiments were 
conducted on a Windows 7 computer equipped with 8 GB 
RAM and Intel Core i5 processor working at 3.00 GHz.

Section 4.1 presents the performance evaluation of the 
proposed pruning strategies. The execution time of SPUC, 
IHUP, UP-Growth, and UP-Growth+ is compared in 
Section 4.2. The results of scalability tests using synthetic 
datasets are presented in Section 4.3.

4.1  |  Evaluation of the 
pruning strategies

Foodmart and s2 datasets were used to evaluate the effec-
tiveness of the proposed pruning strategies. The first prun-
ing strategy that employs the path utility upper bound 
is denoted as SPUC_Prune (1) and the second pruning 
strategy that discards the itemsets based on OU  is termed 
SPUC_Prune (2). Figure 3 compares the execution time 
when SPUC was executed with only SPUC_Prune (1) as 

against both, that is, SPUC_Prune (1 + 2). For both the 
datasets, across higher thresholds the difference in execu-
tion time was more evident. SPUC_Prune (1) effectively 
prunes the items that appear at the top of the header 
list due to their lower path utility. Hence, as the thresh-
old increases, SPUC_Prune (1) avoids determination of 
CPB for a greater number of items. In addition to this, 
SPUC_Prune (2) ensures lesser itemsets to be evaluated for 
utility computation and thus completes the mining faster. 
Overall, an improvement of 0.8992% and 23.41% was ob-
served for Foodmart and s2 datasets, respectively. Figure 
4 compares the pruning strategies in terms of the explored 
number of itemsets. While the number of explored candi-
date itemsets for Foodmart remained same up to min_util 
of 1000 for the first pruning strategy, SPUC_Prune (2) 
further pruned given this low threshold, thus reducing 
the mining time at low thresholds. The effectiveness of 
SPUC_Prune (2) in conjunction with SPUC_Prune (1) 
is more evident in the case of s2 with a lower number 
of explored itemsets and a significant difference as the 
threshold increased. Overall, SPUC_Prune (1 + 2) im-
proved the mining performance by reducing the number 
of candidates and hence was adopted for the remaining 
experiments.

F I G U R E  3   Comparison of the pruning strategy in terms of 
their execution time

F I G U R E  4   Comparison of the pruning strategy in terms of the 
number of candidates
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4.2  |  Execution time comparison

Figure 5 shows the comparison of the execution times of 
the different algorithms. It can be noticed from the figure 
that the proposed SPUC algorithm clearly outperforms 
the other algorithms. The time taken for mining gradu-
ally reduces at higher min_util due to the lower number 
of candidates. However, the difference in time for any 
two consecutive thresholds is significantly higher for the 
benchmark algorithms (Table 10). In contrast, the execu-
tion time does not vary significantly in the case of SPUC. 
This can be attributed to the fact that SPUC relies on UCT 
and SUT that do not eliminate any items as unpromising; 
hence, the tree structure remains the same across all the 
thresholds. In contrast, the benchmark algorithms elimi-
nate unpromising items and hence explore a smaller part 
of the search space for mining. In addition, the recursive 
mining procedure involves tree construction after elimi-
nating local unpromising items. However, this is over-
come in the case of SPUC, where itemsets are directly 
generated and filtered. Furthermore, the utilities are de-
termined on the fly, without requiring an additional da-
tabase scan. Table 11 lists the percentage improvement in 
the execution time of SPUC over IHUP, UP-Growth+, and 
UP-Growth.

4.3  |  Scalability test

Scalability tests were conducted to determine the impact of 
the database size increase in terms of the number of trans-
actions on the performance of SPUC. The three synthetic 
datasets were scaled in four steps by inserting 10 000 trans-
actions at each step. Figure 6 shows the execution times of 

F I G U R E  5   Execution time of the algorithms on different 
datasets

T A B L E  1 0   Average increase in the execution time (s)

Dataset SPUC UP-Growth+ UP-Growth IHUP

Foodmart 0.073 0.493 1.890 2.450

s1 4.974 131.162 104.560 29.520

s2 3.860 92.580 81.550 48.450

s3 8.028 106.397 106.676 89.675

T A B L E  1 1   Percentage improvement of the proposed algorithm 
compared with the benchmark algorithms across the datasets

Datasets vs. 
Algorithms UP-Growth+ UP-Growth IHUP

Foodmart 18.370 22.143 31.760

s1 69.640 79.640 83.780

s2 81.820 82.310 82.340

s3 62.460 70.576 84.650
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SPUC and the benchmark algorithms. While all the algo-
rithms showed an increase in the execution time with the 
increase in the number of transactions, the execution time 
of SPUC increased by a small margin. This is because the 
tree construction time required by the benchmark algo-
rithms, which use two scans, builds up as the number of 
transactions to be processed increases. In contrast, SPUC 
constructs the two trees in a single scan. Furthermore, un-
like the other algorithms, SPUC completely eliminates the 
evaluation of candidates for the utility computation, thus 
provides better scalability.

5  |   CONCLUSIONS

Tree-based algorithms for mining HUIs require two phases: 
(1) constructing a tree structure and mining candidate pat-
terns and (2) rescanning the database for calculating can-
didate utilities. This paper proposed two tree structures 
called UCT and SUT. While SUT stores transaction-level 
information in a node, UCT stores item-level informa-
tion. Furthermore, the paper presented a mining algo-
rithm called SPUC for mining HUIs in a single phase by 
employing new pruning strategies based on the path and 
overestimated utility, respectively. In SPUC, UCT guides 
the pattern generation process, while SUT helps in calcu-
lating candidate utilities. This enables SPUC to completely 
eliminate the second phase and thus outperform existing 
tree-based algorithms on both real and synthetic datasets.

With the profound improvement in storage technolo-
gies and explosion of data generation rate, mining itemsets 
is considered to be feasible through big data technologies 
such as MapReduce and Apache Spark. Accordingly, we 
plan to extend SPUC for mining HUIs in distributed envi-
ronments and very large datasets.
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