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Abstract

The study incorporates model uncertainty into the private equity (PE) valuation model (SWY model) (Sorensen et al., 2014) to evaluate 
how model uncertainty distorts the leverage and valuations of PE funds. This study applies a continuous-time model to PE project valuation, 
modeling the LPs’ goal as multiplier preferences provided by Anderson et al. (2003), and assuming that LPs’ aversion to model uncertainty 
causes endogenous belief distortions with entropy as a measure of model discrepancies. Concerns regarding model uncertainty, according 
to the theoretical model, have an unclear effect on LPs’ risk attitude and GPs’ decision, which is based on the value of the PE asset. 
It also demonstrates that model uncertainty lowers the certainty-equivalent valuation of the LPs. Finally, we compare the outcomes of 
the Full-spanning risk model with the Non-spanned risk model, and they match the intuitive economic reasoning. The most important 
implication is that model uncertainty will have negative effects on the LPs’ certainty-equivalent valuation but has ambiguous effects on 
the portfolio allocation choice of liquid wealth. Our works contribute to two literature streams. The first is the literature that models the 
PE funds. The second is the literature introduces model uncertainty into standard finance models. 
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2018). Unlike hedge funds, which are mostly short-term 
traders, PE takes ownership and management control of 
corporations. Nowadays, Private Equity has emerged as 
an important area of the economy in the last decades and 
accounts for a substantial share of aggregate investment 
and production. The phenomenon that the average return 
of Private Equity exceeds the return on the market is 
widely accepted (Harris et al., 2014). So the academic 
literature focuses on whether this out-performance is 
sufficient to LPs due to the cost of risks and long-term 
illiquidity. 

In response to the global financial crisis that began 
in 2007, governments are rethinking their approach to 
regulating financial institutions. For its features of illiquid 
and long term, PE funds and the secondary markets for PE 
positions are opaque, making the LPs is hard to rebalance 
their investments. In addition, regulars, politicians, and 
labor organizers have long expressed concern about the 
impact of PE pointing to their need to rapidly return capital 
to investors and the potentially deleterious effects of such 
practices as the extensive leverage of firms (Bernstein 
et al., 2017). 

Security Exchange Commission (SEC) inquiries have 
examined the possibility of PE general partners (GP) 
overstating portfolio net asset values (NAV) in an attempt 
to attract investors to future funds. Chung et al. (2012) 
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1.  Introduction 

The rise of Private Equity (PE) is inextricably linked 
to the financial system and the politics of debt. Debt, 
according to Jensen and Meekling (1976), lowers free 
cash flow agency costs, and the popularity of LBOs 
(Leveraged Buyouts) is largely attributable to this debt 
control function. Axelson et al. (2013) also showed that 
the use of leverage is strongly associated with higher 
valuation levels and lower PE return. Essentially, Private 
Equity is a closed-ended, finite partnership whereby the 
limited partner (LPs) and the general partner (GPs) share 
the residual profits after paying debt holders (Liu et al., 
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found that GPs trade off the short-term profits with long-
term consequences and the information asymmetry about 
the  valuation bias persists even after a fund is resolved. 
Due  to the different status and information asymmetry 
between LPs and GPs. They treat risk and ambiguity in 
different ways. Just as documented by Hansen and Sargent 
(2001), economic agents believe that the observed economic 
data come from a set of unspecified models. Concerns 
regarding model misspecification induce economic agents to 
make a robust decision.

To study how model uncertainty impacts the leverage 
and values of PE funds, this paper introduces model 
uncertainty into Sorensen et al. (2014) (SWY model). In the 
classic approach to agency contract difficulties, both the 
principal and the agent are assumed to believe in the same 
level of uncertainty. Concern about model misspecification, 
according to Miao and Rivera (2016), leads a decision-maker 
to demand robust decision rules that work across a variety of 
near models. We assume that the GPs are risk-averse and that 
they are aware of the actual output distribution, so they have 
faith in the reference model. We model the LPs’ objective as 
the multiplier preferences proposed by Andersen et al. (2003) 
and our model has an essential building block, LPs’ aversion 
to model uncertainty generates endogenous belief distor
tions and we use entropy to measure model discrepancies, 
which is wildly used in statistics and econometrics for 
model detection. 

After introducing model uncertainty into the previous 
model, we find the following main innovative conclusions. 
First, we find that model uncertainty reduces LPs’ total 
valuation of partnership interests, particularly when PE 
value is high. The higher the value of PE assets, the higher 
the LPs’  valuation of partnership interests rises. This is 
understandable because taking model uncertainty into 
account will result in a more accurate model. This makes 
sense because taking into account model uncertainty causes 
LPs to lose faith in the ex-ante plan and become more 
risk-averse. Furthermore, including model uncertainty has 
an equivocal impact on liquid wealth dynamics portfolio 
allocation. With the private asset value increases LPs 
tend to allocate more weight to public equity rather than the 
risk-free asset. 

Furthermore, while PE investments are dangerous, 
a portion of the risk can be mitigated by public liquid 
wealth, while the remaining risk cannot be mitigated 
by the market. As  a result, we include the full-spanning 
situation in our model. Our findings show that, regard-
less of model uncertainty, the  full-spanning situation  
has a greater valuation of the LP’s partnership interest  
than the non-spanned case since there is no cost of 
illiquidity in this case. These findings show that  
avoiding unspanned risk is the most effective method to 
protect LP equity.

2.  Literature Review 

Our research is related to the growing literature that 
introduces model uncertainty into standard fund valua- 
tion models. Model uncertainty has been extensively 
discussed in asset pricing and corporate finance. Uppal and 
Wang (2003) study the problem of investors’ intertemporal 
portfolio selection under model uncertainty and obtain 
steady investment strategies under continuous time. 
Maenhout (2004) presented an approach to the dynamic 
portfolio and consumption problem of an investor with 
model uncertainty based on the Anderson et al. (2003) 
model. Nishimura and Ozaki (2007) introduced Knightian 
uncertainty into the standard real options framework. Ju 
and Miao (2012) proposed a novel smooth ambiguity 
model that permits a three-way separation among risk  
aversion, ambiguity aversion, and intertemporal substi-
tution, and showed that ambiguity aversion and model 
uncertainty plays a key role in explaining asset pricing 
puzzles. Szydlowski and Yoon (2021) investigated model 
uncertainty based on dynamic contract theory. Chen et al. 
(2014) studied the investors’ optimal consumption and 
portfolio choice problem when he was confronted with 
two possibly misspecified models of stock returns. Miao 
and Rivera (2016) studied how to design robust contracts 
under hidden actions in a dynamic environment. However, 
the impact of model uncertainty in the valuation of funds 
has not received enough attention. Therefore, our paper 
introduces model uncertainty into SWY to study the 
leverage and valuation of PE funds. 

Our work is also related to the literature about agency 
contracts and private equity investment. DeMarzo and 
Sannikov (2006) derived the optimal contract in a continuous-
time setting. Axelson et al. (2009) developed a model and 
demonstrated that profit-sharing arrangements in PE funds 
should be nonlinear. Vijayakumaran and Vijayakumaran 
(2019) investigated the governance and capital structure 
decisions of Chinese listed companies; Saleem and Usman 
(2021) studied the Role of Stock Price Crash Risk with the 
consideration of information risk and equity cost; Kakinuma 
(2020) examined financial distress and investigated the return 
premium and negative book value in the emerging financial 
market; Lee (2020) examined R&D investment lagged effect 
on firm value using evidence from manufacturing firms 
listed in Chinese markets, and Sukesti et al. (2021) examined 
the factors affecting stock price and firm performance. 

3.  Model Setup 

3.1.  Public Equity

An institutional investor with an infinite horizon  
invests in three assets: risk-free asset, public equity, and 
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private equity. The risk-free asset and public equity represent 
the standard investment opportunities as in the classic 
Merton  (1975) model. The risk-free asset pays a constant 
interest rate r. Public equity can be interpreted as the public 
market portfolio, and its value, St, follows the geometric 
Brownian motion (GBM):

dS dBSt
S S t

t

dt
S

µ σ= + ,� (1)

where S
tB  is a standard Brownian motion, and µS and σS 

are the constant drift and volatility parameters. The Sharpe 

ratio for the public equity is: S

S

rµ
η

σ
−

= .

3.2.  Private Equity 

3.2.1.  PE Asset Risk 

PE asset is illiquid, and must hold it to maturity time, 
T. We assume that maturity equals the life of the PE fund. 
The value of the PE asset is the total value of the portfolio 
companies. Between times 0 and T, the value of PE asset, At, 
follows the GBM: 

		  

dA dBAt
A A t

t

dt
A

µ σ= + ,� (2)

where A
tB  is a standard Brownian motion, µA is the drift, 

and σA is the volatility. At times T, the PE asset is liquidated 
for total proceeds of At, and these proceeds are divided 
among the creditors, LPs, and GPs according to the waterfall 
structure specified below. 

The correlation between the S
tB , and A

tB  processes are 
denoted ρ to capture its systematic risk. When |σ| < 1, the two 
processes are not perfectly correlated; the risk of the PE asset 
is not fully spanned by the market, and the LPs cannot fully 
hedge the risk of the PE investment by dynamically trading 
the public equity and risk-free asset. 

The unlevered beta (or asset beta) of the PE asset is given 

as A

S

ρσ
β

σ
= , The total volatility of the PE asset is σA. The 

fraction of this volatility that is spanned by the public market 
is ρσA. The remaining unspanned volatility is denoted, given 
as 2 2 2 2 2 2

A A A S∈ σ ρ σ σ β σ= − = − .

3.2.2.  Return of PE Asset 

An important feature of our model is that it allows the 
value of the underlying PE asset to appreciate faster than 

the overall market and earn an excess risk-adjusted return,  
called alpha Formally, alpha is defined as: 

	 	   α = µA – r – β (µS – r).� (3)

3.2.3.  Structure and Waterfall 

Following the definition of waterfall in Sorensen 
et  al. (2014), GPs’ compensation can be demonstrate as 
management fees and an incentive fee. The management 
fee is an ongoing payment by the LPs to the GPs, 
specified as a fraction m of the committed capital, X0. The 
committed capital is the sum of the initial investment, 
I0, and the total management fee paid over the life of the 
fund: X0 = I0 + mTX0.

When the fund matures, the final proceeds, At , are 
divided among the creditors, the LPs, and the GPs according 
to the waterfall schedule. For the creditors, let y  denote the 
continuous yield on the debt. Assuming balloon debt, the 
payment due to the creditors, at maturity T, is: Z0 = D0eyT. 
Which includes both principals D0 and interest payments. 
Any remaining proceeds after repaying the creditors, Z0, 
and returning the LP’s committed capital, X0, constitute the 
funds’ profits, given as: At – X0 – Z0.

3.2.4.  Region 0: Debt Repayment (AT ≤ Z0) 

Our model applies to general forms of debt, but for 
simplicity, we consider balloon debt with no intermediate 
payments. The principal and accrued interest are due at 
maturity T. Let y denote the debt yield, which we derive 
below to ensure creditors break even. At maturity T, the 
payment to the creditors is:

		    D(AT, T) = min (AT, Z0).� (4)

The debt is senior, and when the final proceeds, AT, fall 
below this boundary, the LP and GP receive nothing.

3.2.5.  Region 1: Preferred Return (Z0 ≤ AT ≤ Z1)

After repaying the creditors, the investors and managers 
share the residual benefits. First, the investors must receive 
a preferred (hurdle) return before any profits can be 
distributed to managers. Formally, let F denote the amount 
that investors require to meet the hurdle: 

  
( )0

0 0 00
1

ThT hs hT hTmX
F I e mX e ds I e e

h
= + = − −∫ .� (5)

The first term is the required return based on the 
initial investment. The second term measures the required 
return  due to the payment of management fees during 



Yuxiang BIAN / Journal of Asian Finance, Economics and Business Vol 9 No 1 (2022) 0001–00114

the PE  investment period. The upper boundary, Z1, of the 
preferred-return region satisfies Z1 = F + Z0. The LPs payoff 
in this region, at maturity T, is: 

    LP1(AT, T) = max{AT – Z0, 0} – max{AT – Z1, 0}.� (6)

3.2.6.  Region 2: Catch-up (Z1 ≤ AT ≤ Z2)

With a positive hurdle rate, the LPs require some of 
the funds’ initial profits to meet the hurdle. The catch-up 
region then awards a large fraction, denoted n (typically, 
100%), of the subsequent profits to the GPs to catch up 
to the pre-scribed profit share, denoted k (typically, 20%). 
The upper boundary of this region, Z2, is the amount of 
final proceeds that are required for the GP to fully catch 
up, and it solves: k(Z2 – (X0 + Z0)) = n(Z2 – Z1). When  
n < 100%, LPs receive the following residual payoff in 
this region:

LP2(AT, T) = (1 – n) max{AT – Z1, 0} – max{AT – Z2, 0}.� (7)

3.2.7.  Region 3: Profit-sharing (AT > Z2)

After the GPs catch up with the prescribed profit share, k, 
The LPs’ payoff in this profit-sharing is given as: 

	     LP3(AT, T) = (1 – k)max{AT – Z2, 0}.� (8)

3.2.8.  LPs’ Partnership Interest

At maturity T, the value of the LPs’ partnership interest 
is the sum of the values of the LPs’ individual payoffs in the 
three regions: 

  LP(AT, T) = LP1 (AT, T) + LP2 (AT, T) + LP3 (AT, T).� (9)

Before maturity T, the value of the LPs’ partnership 
interest under full spanning is denoted LP(At, t):

LP(At, t) = �LP1 (At, t) + LP2 (At, t)  
+ LP3 (At, t) – MF (At, t).�

(10)

3.3.  LPs’ Problem

3.3.1.  Preferences

For simplicity, the LPs and GPs are both risk-neutral and 
we use risk-free rate r to discount the LPs’ utility function. 
Thus the LPs have standard time-separable preferences, 
represented by: 

		    0
( ) .rt

te U C dt
∞ − 

  ∫ � (11)

For tractability, we choose ( )
CeU C

C

γ−

= − , where γ > 0 is 
the coefficient of absolute risk aversion (CARA).

3.3.2.  Liquid Wealth Dynamics 

Let Wt denote the LPs’ liquid wealth process, which 
excludes the value of the LPs’ partnership interest. The LPs 
allocate πt to public equity and the remaining Wt – πt to the 
risk-free asset. Over the life of the PE investment, the liquid 
wealth evolves as: 

( )0( ) ( ) ,

.

S
t t t t S S tdW rW mX C dt r dt dB

t T

π µ σ= − − + − +

<
� (12)

The first term in (11) is the wealth accumulation  
when the LPs are fully invested in the risk-free asset, net 
of management fees, mX0, and the LPs’ consumption, Ct.  
The second term is the excess return from the LPs’ invest-
ment in public equity. At time T, when the fund is liquidated 
and the proceeds are distributed, the LPs’ liquid wealth 
jumps: WT = WT– + LP(AT, T).

And the liquid wealth process simplifies to:

( )( ) ( ) , .S
t t t t S S tdW rW C dt r dt dB t Tπ µ σ= − + − + > �(13)

3.3.3.  Certainty-equivalent Valuation 

Let J(W, A, t) be the LPs’ value function before the PE 
investment matures. Given J*(W) the value function is: 

J W A e U C dt e J W
C

T
rt

t
rT

T0 0
0

0, , max .
,

*� � � � � � � �
�

�
�

�

�
�� � �

�
 �(14)

The LPs’ optimal consumption and public equity alloca-
tion solve the Hamilton-Jacobi-Bellman (HJB) equation:

r J W A t

U C J
rW r
mX C

J

C

t
S

W

S

, , max
,

� � �
� � � �

� �� �
� �

�

�
��

�

�
��

��

� �

� �

0

2 21
2

JJ AJ A J

AJ

WW A A A AA

S A WA

� �

�

� �
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1
2

2 2

.� (15)

In Appendix, we verify that the value function takes the 
exponential form:

J W A t
r
exp r W b V A t, , , .� � � � � � � � �� ��� ��

1
�

� � (16)
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V(A, t) is the LPs certainty-equivalent valuation of the 
partnership interest.

3.3.4.  Belief Distortions and Model Uncertainty

We now introduce belief distortions and concerns 
about  model uncertainty. The LPs may not trust this 
model and consider alternative models to protect them
selves from model misspecification. Let   reflect the 
previously definitized measure of the model, and   
denotes the probability measure of the alternative model. 
Where ηt  is its Radon-Nikodym derivative with the 
respect to  .

		    

d gt

t
t t

A�
�

� dB , � (17)

where gt  is a real-valued process satisfying 
0

2
t

sg ds� � �  

for all t > 0, and �0 1� . Then, we can define the standard 
Brownian process Ag

tB  by dB dB g dtt
Ag

t
A

t� � . Thus, under 
the new measure  , the value of a public asset and private 
value can be given by:

dA
A

dt g dt dB

g dt dB

t

t
A A t t

Ag

A A t A t
Ag

� � �� �
� �� � �

� �

� � � .

� (18)

dS
S

dt dB dB

g dt dB d

t

t
S S t

A
t
A

S S t S t
Ag

� � � �� �
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� � � �
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1

1

2

2

�

BBt
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� (19)

Following Anderson et al. (2003), Hansen et al. (2006), 
and Hansen and Sargent (2012), we can calculate the 
discounted relative entropy to measure the discrepancy 
between   and  :

r e ln dt e g dt

e

rt
t t

rt
t tE E

E

P P

G
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�
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rt
tg dt
2 .

� (20)

To incorporate a concern about the robustness of 
belief  distortions, we present the LP’s objective to 
maximize:
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�
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� (21)

Where the parameter θ can be interpreted as an ambiguity 
aversion parameter. A small θ implies a small degree 
of concern about robustness. According to the definite 
formulation of J(W, A, t) in (15), the absolute value of  
J(W, A, t) is negative. But in our model, the entropy penalty 
term of (21) should be positive. So that’s the reason why 
we add the absolute value sign in (21). Additionally, as θ 
converges to zero, the manager’s objective will reduce 
to the case without model uncertainty. In addition, when 
considering belief distortions and model uncertainty, the 
liquid wealth dynamics conforms to: 

dW rW mX C r g dt

dB dB t

t t t S S

S t
Ag

t
A

t

� � � � �� � �� �
� � �� � �

0

21

� � �� �

� � � � � , TT .
� (22)

4.  Solution

4.1.  Complete-markets Solution

First, consider the case with complete markets and the 
risk of PE can be fully spanned by the public equity and 
risk-free asset. Thus the PE investment can be perfectly 
replicated and investors demand neither idiosyncratic  
nor illiquidity risk premia by dynamically trading a few 
long-lived assets. In this circumstance, under complete 
markets, there cannot be excess returns, adjusting for 
systematic risks. α = 0, and the equilibrium expected 
rate of return Aµ  for the PE asset is � � �A Rr r� � �� � .  
LPs will trust the GPs investment strategy and it’s 
unnecessary to talk about incorporating model uncertainty 
in our model.

4.2.  Incomplete Markets with Non-spanned Risk

Different from the full-spanning case, with non-spanned 
risks, the risk of PE asset is not fully spanned by the public 
market, so the PE investment illiquidity will impact the cost 
of LP. In our model, we consider model uncertainty with the 
incorporation into SWY. 

We can solve the LPs’ optimization problem under 
model uncertainty using dynamic programming. We can 
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obtain the following Hamilton-Jacobi-Bellman (HJB) 
equation:

rJ W A t

U C J rW r
g mX C J

C g

t S

S W

( , , ) max inf

( ) ( ( )
)

,
�

� � � �
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�
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A AA S A WA
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g J W A t

� �

� �

�

( )

( , , ) .� (23)

And the J(W, A, t) takes the form defined in (15).

Proposition 1. Consumption and portfolio rules:

	
C W A t r W V A t b, , , ,� � � � � � �� � � (24)
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The certainty-equivalent valuation of the LPs’ partnership 
interest V(A, t), given in (24), solves the partial differential 
equation (PDE):

rV A t V mX A V r AV

r
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A
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And the PDE equation is subject to two boundary 
conditions. First, at maturity T, the value of the LPs claim 
equals the LPs payoff: V(AT, T ) = LP(AT, T ); Second, when 
the value of the underlying PE asset converges to zero, 
the value of the LP s partnership interest converges to the 
(negative) PV of the remaining management fees:

V t e mX ds mX
r

e
t

T
r T s r T t0 10

0, .� � � � � � �� �� � �� � � �� � � (27)

In the second situation, the LP would receive nothing 
from the PE fund at maturity and there is no possibility that 
the value of the PE assets will increase.

5.  Quantitative Results and Discussion

5.1.  Parameter Choices and Calibration

First, under complete markets, the idiosyncratic risks of 
PE can be hedged perfectly, in this circumstance, the risk 
attitude of LPs has no influence on the model. However, 
in the case of incomplete markets, the LPs’ valuation now 
depends on the LPs endogenous absolute risk-aversion, γ. As 
shown in SWY, let γR denote the LPs’ relative risk aversion. 
In terms of the value function J(W, A, t), the relative risk 
aversion is defined as: γR = –[JWW(W, A, t)/JW (W, A, t)]W. 
Using the FOC with respect to consumption, we can write γR 
as: � � �R t trU Ct U Ct W rW� � � �¢ ¢( ) / ( ) . We choose γ = 0.5  
(γR = 2.5 and the LPs risk aversion attitude is at a high-
efficiency level according to SWY).

Then following Metrick and Yasuda (2011), annual 
volatility for PE investments, σA = 25% for PE assets. We use 
the annual volatility of σS = 25% with an expected return of 
μS = 11% for the public market. In addition, considering the 
initial investment leverage, Axelson et al. (2013) show that 
the mean range of debt divided by enterprise value in LBO 
over the period 1980–2008 is between 0.65 and 0.89. So they 
report that equity accounted for 25% of the purchase price. 
In this case, we choose l = 3 as our benchmark leverage ratio.

Besides these parameters, the next is the unlevered asset 
beta. In the literature of empirical study, Ewens et al. (2013) 
examined US data from 1980 to 2007 then find that the betas 
of VC are 1.24 while the BO’s are 0.72. We calibrate the 
unlevered asset beta as 0.5. For this beta, the correlation 
between PE asset and the public market is ρ = 0.4 and the 
unspanned volatility is 23%.

In the field of empirical study, Robinson and Sensoy 
(2012) evaluated  837 funds and found that 37% of them 
had an initial management charge of 2% and a mean carried 
interest of 20.13 percent. Therefore we choose m = 2% and 
k = 20% as the basic compensation terms. In addition, we 
choose T = 10 and n = 100%. Metrick and Yasuda (2011) 
analyzed PE funds in the 1993–2006 period and fiound that 
92.4% of BO (44.7% of VC) funds employ a hurdle return 
mechanism for the LP, and most funds use 8% as their hurdle 
rate. Most funds The investment cost I equal to 100 and we 
use r = 5%.

5.2.  Valuation and Analysis

Figure 1 shows the portfolio distribution of liquid wealth 
and the certainty-equivalent valuation of the partnership 
stake. The LPs’ Certainty-equivalent value can be greatly 
reduced when model uncertainty is incorporated into SWY, 
as seen in Panel A of Figure 1. When LPs don’t trust the 
existing model and prefer other models, they need to 
defend themselves from information asymmetry and model 
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misspecification, which is easy to understand. Thus they 
will become more conservative, and choose the more risk-
aversion investment strategy, and the results show that the 
LPs’ Certainty-equivalent valuation is remarkably smaller 
than the model of SWY.

Panel B of Figure 1 indicates that model uncertainty 
will also affect the choice of portfolio allocation during 
the investment period. First, when the PE asset value 
is at a low level, the LP will choose to hold less public 
equity in liquid wealth rather than risk-free assets when 
considering model uncertainty. However, with the PE asset 
value increases, the impact of model uncertainty in LPs’ 
liquid wealth will change to another situation. Without 
incorporating model uncertainty the LPs will choose the 
lower allocation of public equity with the growth of PE 
asset value, the LPs will allocate a lower rate to public 
equity compared to the model of SWY. However, when 
considering model uncertainty, the LPs will choose to 
allocate more public equity first and then decrease the 
amount of public equity with the PE asset value increased 
to a higher level. It is intuitive that when the PE asset value 
is low, the LPs’ certainty-equivalent valuation is also at 
an extremely low rate, so the LPs will choose less public 
equity rather than the risk-free asset because they are 
relative extremely risk-aversion at this period. However, 
with the PE asset value and Certainty-equivalent valuation 
grow, the LPs will become less conservative and choose 
to allocate more public equity. In another circumstance, 
the PE asset value is at a high level, the LPs will certainty 
behave more confident about the return of the PE asset. 
They will choose a lower allocation of public equity to 
prevent the loss of liquid wealth due to the systematic risk 
of public equity.

In addition, we also compared the case of the full-
spanning and Black-Scholes risk-neutral model. Our results 
show that under the full-spanning case, the LPs Certainty-
equivalent valuation is highest compared to the other cases, 
and when considering model uncertainty, the LPs Certainty-
equivalent valuation is not only smaller than the SWY model 
but also lower than the Black-Scholes risk-neutral model. 
That indicates that model uncertainty will extremely lower 
the LPs Certainty-equivalent valuation due to the more 
conservative strategy and more risk-aversion.

5.2.1.  Break-even Alpha and Performance Measures

Due to management fees, carried interest, and 
idiosyncratic risks, LPs will only work with experienced 
managers in real-world investing situations. SWY defines 
break-even alpha as the LPs’ incremental cost of capital 
of the PE investments; a higher break-even alpha indicates 
a higher cost of capital. Thus the break-even alpha equals 
the minimal level that GPs must generate to make the LPs 
participate I0 = V(A0, 0).

However, in reality, the break-even alpha is difficult 
to estimate directly. Following Kaplan and Schoar(2005), 
Driessen et al. (2011), and Robinson and Sensoy (2011), we 
use the internal rate of return (IRR), the total-value-to-paid-
in-capital multiple (TVPI), and the public market equivalent 
(PME) these three common empirical performance measures 
to measure the GPs performance. 

Following SWY, Let ϕ denote the internal rate of return 
(IRR), the solution of ϕ is:

	 
I mX e dt e LP A T

T
t T
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Figure 1: LPs Certainty-Equivalent Valuation and Portfolio Allocation Under L = 0
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And the ex-ante expected TVPI and PME are defined as:
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As noted by Kaplan and Schoar (2004), empirical 
studies typically interpret PME > 1 as that GPs performance 
outperforming the market.

Table 1 reports break-even alphas under various levels 
of effective risk aversion of the different performance 
measures. Break-even alphas for LPs = 0 without model 
uncertainty are shown in the first row of Panel A. The LPs 
are effectively risking neutral in this situation, thus there is 
no additional cost of illiquidity or non-spanned risks, and 
the break-even alphas are 2.61 percent without leverage. 
For LPs to break even, GPs must provide an excess return 
of 2.61 percent. Risk-averse LPs expect a higher premium 
for taking idiosyncratic risks, which means the break-even 
alpha threshold will rise as the risk aversion level rises. The 
IRR, TVPI, and PME performance levels will all increase 
as the break-even alpha level rises. Thus that means the LPs 
break-even alpha values depend on the LPs risk-aversion 
magnitudes.

Break-even alphas for different levels of effective risk 
aversion under model uncertainty are shown in Panel B.  

For  LPs = 0, the first row demonstrates that the LPs 
are effective risk-neutral, and we won’t include model 
uncertainty, in this case, thus the performance measures 
results won’t change. Under model uncertainty, however, 
risk-averse LPs will seek larger break-even alpha to absorb 
the higher cost of capital. As the risk-aversion parameter  
|γ = 2, the break-even alpha increases from 3.08% to 3.68, IRR 
increases from 8.41% to 9.36%, and TVPI increases from 
2.16 to 2.37. Moreover, the PME will also increase from 0.78 
to 0.84. The break-even alpha and performance measures 
findings will likewise increase to greater magnitudes under 
the case with y = 5. It is self-evident in economics that when 
model uncertainty is taken into account, the LPs would act 
more cautiously to protect themselves from the loss of model 
misspecification and uncertainty.

To recapitulate, effective risk-averse LPs will invest in 
PE when the investment excess return alpha surpasses the 
break-even alpha, and the performance measures IRR, TVPI, 
and PME are all dependent on the break-even alpha with the 
given investment beta. However, the most essential argument 
in our paper is that, when model uncertainty is taken into 
account, the LPs’ estimate of future return probability is 
unclear; as a result, LPs will become more cautious and 
choose for the riskier approach. Our results indicate that 
model uncertainty will extremely lower the LPs Certainty-
equivalent valuation due to the more conservative strategy. 
In contrast, the LPs will choose higher break-even alpha to 
participate in the PE investment, higher break-even means 
the PE investment performance measures will increase to a 
higher level.

5.3.  Leverage

According to the basic Modigliani-Miller hypothesis, 
increasing leverage allows investors to earn a larger expected 
return while taking on more risk. The benefit of leverage in 

Table 1: Break-Even Values of Empirical Performance Measures for Various Levels of Effective Risk Aversion Without 
Leverage

Panel A

Risk Aversion Alpha (α) IRR (ϕ) E[TVPI] PME Adj. PME

γI0 = 0 2.61% 7.90% 2.07 0.75 1.00
γI1 = 2 3.08% 8.41% 2.16 0.78 1.04
γI2 = 5 3.74% 9.02% 2.30 0.83 1.11

Panel B

γI0 = 0 2.61% 7.90% 2.07 0.75 1.00
γI0 = 2 3.68% 9.36% 2.37 0.84 1.13
γI0 = 5 4.03% 9.71% 2.44 0.88 1.17
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the PE market is that GPs can have a larger asset base, but 
LPs pay a greater price for idiosyncratic and systematic risks. 
When evaluating model uncertainty, it’s crucial to examine 
how leverage may affect valuation, break-even alpha, and 
other PE investment performance metrics.

Figure 2 depicts the LPs’ Certainty-equivalent valuation 
of the partnership interest and the portfolio of liquid wealth 
for the PE asset investment leverage L = 3 in addition to 
the unique case with leverage L = 0. We can draw similar 
conclusions from this graph as we did with the previous 
scenario L = 0. However, in this circumstance, the certainty-
equivalent valuation is significantly lower than in the 
absence of leverage. It makes sense because the debt carrier 
will receive a big portion of the PE asset value. Furthermore, 
while comparing Figures 1 and 2, we can see that the curve 
of panel A in Figure 1 is more concave than the curve of 
panel A in Figure 2.

This is an intriguing and logical result, indicating that 
when leverage is taken into account, the marginal utility 
of LP value increases, whereas when leverage is not taken 
into account, it decreases. This is also in line with behavior 
literature studies. Furthermore, regardless of whether we 
incorporate model uncertainty, the valuation of LPs in 
the Full spanning situation is substantially higher than in 
the general case with non-spanned risk. Furthermore, in the 
Full-spanning case, the LPs will allocate less public equity 
in liquid wealth, corresponding to a greater valuation of 
the LPs’ Certainty-equivalent valuation. This is simple to 
comprehend since, in the full-spanning situation, the PE 
asset’s risk can be completely hedged by LPs dynamically 
trading public equity and the risk-free asset. That means 
there are no illiquidity or risk costs. As a result, the LPs’ 
certainty-equivalent valuation will rise significantly, and 
they will opt for less public stock to avoid systematic risk.

5.3.1. � Effect of Leverage on Break-even Alpha  
and Performance Measures

Table 2 reports break-even alphas under various levels of 
effective risk aversion of the different performance measures 
with leverage. Table 2 shows in the previous paragraph, the 
first row of Panel A shows break-even alphas for LPs γ = 0 
without model uncertainty but with leverage L = 3. In this 
circumstance, the LPs are effective risk-neutral, thus there 
is no additional cost of illiquidity and non-spanned risks, 
and the break-even alphas of 1.01% with leverage L = 3. 
Compared with the break-even alpha 2.61 without leverage, 
the effect of leverage on the break-even alpha is substantial. 
With the LPs’ risk aversion level increasing to γ = 2 or  
γ = 5, the break-even alpha also significantly decreases 
with leverage. It is intuitive that with greater leverage, the 
total investment assets are larger thus the alpha required 
to generate to compensate LPs is lower. In addition, when 
considering leverage, the IRR, TVPI, and PME increase with 
leverage. With leverage L = 3 and γ = 2, IRR increases from 
8.41% to 13.81%, and TVPI increases from 2.16 to 3.61. 
Moreover, the PME increases from 0.78 to 1.30.

Panel B shows break-even alphas for different levels of 
effective risk aversion under model uncertainty. γ = 0, With 
effective risk-neutral LPs γ = 0, we will not consider model 
uncertainty in this circumstance. Similar to the analysis 
in the last paragraph, under model uncertainty, the risk-
averse LPs will demand higher break-even alpha tolerate 
the higher cost of capital. As the risk-aversion parameter 
γ = 2, the break-even alpha increases from 2.06% without 
model uncertainty to 3.10%, IRR increases from 13.80% to 
16.22%, and TVPI increases from 3.61 to 4.45. Furthermore, 
the PME will rise from 1.30 to 1.64. The break-even alpha 
and performance measures findings will likewise increase 

Figure 2: LPs Certainty-Equivalent Valuation and Portfolio Allocation Under L = 3
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to greater magnitudes with a value of = 5. Furthermore, 
when model uncertainty is taken into account, the effect 
of leverage produces the same results as in the absence of 
model uncertainty. Break-even alpha and these performance 
measurements will benefit from leverage. As a result, 
leverage will lower the break-even alpha while raising these 
various performance metrics. We now focus on the change 
in credit spread for debt, as opposed to the case without 
leverage. Our model’s results show that model uncertainty 
causes the break-even alpha to rise, and a higher alpha raises 
the debt value, predicting a reduced spread.

In conclusion, when model uncertainty is combined with 
leverage, the effect of leverage reduces the LP’s break-even 
alpha and increases the GP’s performance since leverage 
allows the GPs to invest more assets. In addition, the impact 
of model uncertainty will cause LPs to become more risk-
averse and opt for a more cautious strategy. And, as a result 
of this behavior and mindset, the break-even alpha and 
performance measurements will skyrocket.

6.  Conclusion 

PE valuation has become a very interesting and 
challenging topic as the academic literature has grown. We 
add model uncertainty into the asset allocation and valuation 
dilemma with investors that participate in both illiquid 
private equity and traditional liquid assets in our study. 
Model uncertainty will have negative consequences on the 
LPs’ Certainty-equivalent valuation independent of leverage, 
but has equivocal effects on the portfolio allocation decision 
of liquid wealth, according to our model. We also compare 
our model’s outcomes to those of the Full-spanning example. 
And the results show that the Full-spanning case’s valuation 
is substantially higher than our model’s. That is, the greatest 
strategy to preserve LPs’ investments is to lower the cost of 
illiquidity and risk in PE assets, and the logical objective for 

GPs is to discover better ways to hedge PE assets’ risk with 
public stock and risk-free assets.

Furthermore, the GP must create sufficient excess return 
for the LPs to break even and participate. We compare the 
break-even alpha values in our model to model uncertainty, 
and we find that the break-even alpha implied in our model 
is significantly larger than the model in SWY. We also 
take model uncertainty into account when investing with 
leverage, and we get identical outcomes without it. This 
suggests that, regardless of leverage, model uncertainty will 
cause LPs to be more cautious and opt for alternate ways to 
shield themselves from potential losses. Theoretically, model 
uncertainty raises the break-even alpha, and performance 
metrics rise in the mean-time, according to our findings.  
As a result, the private equity market must pay attention to 
the issue of model uncertainty during the investment phase.
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