DOI QR코드

DOI QR Code

Reviews on an Improvement and Measurement of the Hydrophobicity for Carbon Materials

탄소재료의 소수성 향상 방법 및 측정 방법에 대한 고찰

  • Kang, Yu-Jin (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Yu-Jin (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jang, Min-Hyeok (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jo, Hyung-Kun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Yoon, Seong-Jin (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Han, Gyoung-Jae (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Cho, Hye-Ryeong (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Seo, Dong-Jin (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Park, Joo-Il (Department of Chemical and Biological Engineering, Hanbat National University)
  • 강유진 (한밭대학교 화학생명공학과) ;
  • 김유진 (한밭대학교 화학생명공학과) ;
  • 장민혁 (한밭대학교 화학생명공학과) ;
  • 조형근 (한밭대학교 화학생명공학과) ;
  • 윤성진 (한밭대학교 화학생명공학과) ;
  • 한경재 (한밭대학교 화학생명공학과) ;
  • 조혜령 (한밭대학교 화학생명공학과) ;
  • 서동진 (한밭대학교 화학생명공학과) ;
  • 박주일 (한밭대학교 화학생명공학과)
  • Received : 2022.10.19
  • Accepted : 2022.11.02
  • Published : 2022.12.30

Abstract

Recently, research on carbon adsorbents has been active as an interest in improving the environment such as indoor and outdoor air quality. Considering that causative substances deteriorate the air quality are basically volatile organic compounds, it is important to improve the hydrophobicity of the carbon materials for better removal efficiency. This study presents a method for improving hydrophobicity of carbon and a measurement of the hydrophobicity. Generally, methods of improving the hydrophobicity of carbon materials are heat treatment, acid/alkali treatment, coating and immersion with hydrophobic materials. However, it collapses the pore structure and reduces the adsorption capacity. Therefore, this study briefly introduce not only the general method for improving carbon materials' hydrophobicity but also the method for converting the precursor of the material is briefly introduced. Futhermore, this study introduces a analytical technique used to determine hydrophobic modification or not, and aims to enhance the understanding of carbon materials.

최근 실 내·외 공기 질 등 환경 개선에 대한 관심으로 탄소흡착제의 연구가 활발하다. 기본적으로 공기질을 악화시키는 원인 물질이 대부분 휘발성유기화합물인 것을 감안한다면, 탄소재료의 소수성을 개선하여 더 우수한 제거 효율을 확보하는 것이 중요하다. 본 논고는 탄소의 소수성 향상 방법과 소수성 측정 방법을 고찰하고자 한다. 일반적으로, 탄소재료의 소수성을 향상시키는 방법으로 열처리, 산 및 알카리 처리, 소수성 물질들을 이용한 코팅 및 침지 등이 알려져있다. 이러한 방법들을 통해 탄소재료의 소수성 향상은 가능하나, 탄소재료(특히 활성탄)의 기공 구조를 붕괴시키거나 흡착능력을 감소시키는 등의 한계점이 있다. 따라서, 본 논고에서는 일반적으로 사용되는 탄소재료의 소수성 향상방법에 더하여 재료의 전구체 변환 방법에 대해서도 간단히 소개하고자 한다. 더불어, 소수성개질의 여부를 판단하기위해 사용하고 있는 분석 기법들을 본 논고에 소개하며, 탄소재료에 대한 이해를 높이고자 한다.

Keywords

Acknowledgement

이 연구는 2022년도 한국환경산업기술원(KEITI)의 녹색혁신기업 성장지원 프로그램 연구비 지원을 받아 수행하였습니다(과제번호 2020003160004).

References

  1. Oh, J. Y., You, Y. W., Park, J., Hong, J. S., Heo, I., Lee, C. H. and Suh, J. K., "Adsorption characteristics of benzene on resin-based activated carbon under humid conditions", Journal of Industrial and Engineering Chemistry, 71, pp. 242~249. (2019). https://doi.org/10.1016/j.jiec.2018.11.032
  2. Rodenas, M. L., Amoros, D. C. and Solano, A. L., "Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations", Carbon, 43(8), pp. 1758~1767. (2005). https://doi.org/10.1016/j.carbon.2005.02.023
  3. Mohammed, D. and Ahmad, T., "A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application", Renewable and Sustainable Energy Reviews, 87, pp. 1~21. (2018). https://doi.org/10.1016/j.rser.2018.02.003
  4. Alswat, A. A., Ahmad, M. B. and Saleh, T. A., "Zeolite modified with copper oxide and iron oxide for lead and arsenic adsorption from aqueous solutions", Journal of Water Supply : Research and Technology-Aqua, 65(6), pp. 465~479. (2016). https://doi.org/10.2166/aqua.2016.014
  5. Sani, H. A., Amnad, M. B. and Saleh, T. A., "Synthesis of zinc oxide/talc nanocomposite for enhanced lead adsorption from aqueous solutions", RSC Advances, 6(110), pp. 108819~108827. (2016). https://doi.org/10.1039/c6ra24615j
  6. Xiuquan, L., Zhang, L., Yang, Z., He, Z., Wang, P., Yan, Y. and Ran, J., "Hydrophobic modified activated carbon using PDMS for the adsorption of VOCs in humid condition", Separation and Purification Technology, 239, p. 116517. (2020). https://doi.org/10.1016/j.seppur.2020.116517
  7. Li, Y., Zhang, W., Zhao, J., Li, W., Wang, B., Yang, Y., Sun, J., Fang, X., Xia, R., Liu, Y. and Guo, H., "A route of alkylated carbon black with hydrophobicity, high dispersibility and efficient thermal conductivity", Applied Surface Science, 538, p. 147858. (2021). https://doi.org/10.1016/j.apsusc.2020.147858
  8. Wang, M., Wang, X. L. and Gao, G. Q., "Research on the Regeneration of Modified Activated Carbon Containing 2, 4, 6-TCD by Microwave Irradiation", Advanced Materials Reserach, 1033, pp. 1358~1361. (2014). https://doi.org/10.4028/www.scientific.net/AMR.1033-1034.1358
  9. Tazibet, S., Boucheffa, Y. and Lodewyckx, P., "Heat treatment effect on the textural, hydrophobic and adsorptive properties of activated carbons obtained from olive waste", Microporous and Mesoporous Materials, 170, pp. 293~298. (2013). https://doi.org/10.1016/j.micromeso.2012.12.008
  10. Concalves, M., Sabio, M. M. and Reinos, F. R., "Modification of activated carbon hydrophobicity by pyrolysis of propene", Journal of Analytical and Applied Pyrolysis, 89(1), pp. 17~21. (2010). https://doi.org/10.1016/j.jaap.2010.04.009
  11. Zhou, Y., Wang, B., Song, X., Li, E., Li, G., Zhao, S. and Yan, H., "Control over the wettability of amorphous carbon films in a large ragne from hydrophilicity to super-hydrophobicity", Applied Surface Science, 253(5), pp. 2690~2694. (2006). https://doi.org/10.1016/j.apsusc.2006.05.118
  12. Cassell, A. M., Raymarkers, J. A., Kong, J. and Dail, H., "Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes", The Journal of Physical Chemistry B, 103(31), pp. 6484~6492. (1999). https://doi.org/10.1021/jp990957s
  13. Dumee, L., Campbell, J. L., Sears, K., Schutz, J., Finn, N., Duke, M. and Gray, S., "The impact of hydrophobic coating on the performance of carbon nanotube bucky-paper membranes in membrane distillation", Desalination, 283, pp. 64~67. (2011). https://doi.org/10.1016/j.desal.2011.02.046
  14. Lintymer, J., Martin, N., Chapper, J. M., Delobelle, P. and Takadou, J., "Influence of zigzag microstructure on mechanicla and electrical properties of chromium multilayered thin films", Surface and Coating Technology, 180, pp. 26~32. (2004). https://doi.org/10.1016/j.surfcoat.2003.10.027
  15. Moghadam, R. Z., Ehsani, M. H., Dizaji, H. R., Kameli, P. and Jannesari, M., "Modification of hydrophobicity properties of diamond like carbon films using glancing angle deposition method", Materials Letters, 220, pp. 301~304. (2018). https://doi.org/10.1016/j.matlet.2018.03.060
  16. Li, L., Liu, S. and Liu, J., "Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal", Journal of Hazardous Materials, 192(2), pp. 683~690. (2011). https://doi.org/10.1016/j.jhazmat.2011.05.069
  17. Park, S. H., Jeon, M. J. and Jeon, Y. W., "Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal", International Biodeterioration & Biodegradation, 113, pp. 195~200. (2016). https://doi.org/10.1016/j.ibiod.2016.04.019
  18. Kim, K. J. and Bae, C. S., "Adsorption-desorption characteristics of VOCs over impregnated acitvated carbons", Catalysis Today, 111(3-4), pp. 223~228. (2005). https://doi.org/10.1016/j.cattod.2005.10.030
  19. Yao, Z. Q., Yang, P., Huang, N., Sun, H. and Wang, J., "Structural, mechanical and hydrophobic properties of fluorine-doped diamond-like carbon films synthesized by plasma immersion ion implantation and deposition (PIII-D)", Applied Surface Science, 230(1-4), pp. 172~178. (2004). https://doi.org/10.1016/j.apsusc.2004.02.044
  20. Asl, A. M., Kameli, P., Ranjbar, M., Salamati, H. and Jannesari, M., "Correlations between microstructure and hydrophobicity properties of pulsed laser deposited diamond-like carbon films", Superlattices and Microstructures, 81, pp. 64~79. (2015). https://doi.org/10.1016/j.spmi.2014.11.041
  21. Banerjee, D., Mukherjee, S. and Chattopadhyay, K. K., "Controlling the surface topology and hence the hydrophobicity of amorphous carbon thin films", Carbon, 48(4), pp. 1025~1031. (2010). https://doi.org/10.1016/j.carbon.2009.11.021
  22. Lau, K. K. S., Bico, J., Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., McKinley, G. H. and Gleason, K. K., "Superhydrophobic Carbon Nanotube Forests", Nano Letters, 3(1), pp. 1701~1705. (2003). https://doi.org/10.1021/nl034704t
  23. Fahmi, M. Z., Wibowo, D. L. N., Sakti, S. C. W. and Lee, H. V., "Human serum albumin capsulated hydrophobic carbon nanodots as staining agent on HeLa tumor cell", Materials Chemistry and Physics, 239, p. 122266. (2020). https://doi.org/10.1016/j.matchemphys.2019.122266
  24. Sinclair, L., Brown, J., Salim, M. G., May, D., Guilvaiee, B., Hawkins, A. and Cathles, L., "Optimization of fluorescene and surface adsorption of citric acid/ethanolamine carbon nanoparticles for subsurface tracers", Carbon, 169, pp. 395~402. (2020). https://doi.org/10.1016/j.carbon.2020.07.024
  25. Mohammed, J., Nasri, N. S., Zaini, M. A. A., Hamza, U. D. and Ani, F. N., "Adsorption of benzene and toluene onto KOH activated coconut shell based carbon treated with NH3", International Biodeterioration & Biodegradation, 102, pp. 245~255. (2015). https://doi.org/10.1016/j.ibiod.2015.02.012
  26. Ye, Y., Liu, Z., Liu, W., Zhang, D., Zhao, H., Wang, L. and Li, X., "Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel", Chemical Engineering Journal, 348, pp. 940~951. (2018). https://doi.org/10.1016/j.cej.2018.02.053
  27. Yang, J., Cao, L., Guo, R. and Jia, J., "Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water", Journal of Hazardous Materials, 184(1-3), pp. 782~787. (2010). https://doi.org/10.1016/j.jhazmat.2010.08.109
  28. Harb, S. V., Pulcinelli, S. H., Santilli, C. V., Knowles, K. M. and Hammer, P., "A Comparative Study on Graphene Oxide and Carbon Nanotube Reinforcement of PMMA-Siloxane-Silica Anticorrosive Coatings", ACS Applied Materials & Interfaces, 8(25), pp. 16339~16350. (2016). https://doi.org/10.1021/acsami.6b04780
  29. Wang, Z., Yuan, L., Liang, G. and Gu, A., "Mechanically durable and self-healing super-hydrophobic coating with hierarchically structured KH570 modified SiO2-decorated aligned carbon nanotube bundels", Chemical Engineering Journal, 408, p. 127263. (2021). https://doi.org/10.1016/j.cej.2020.127263
  30. Bhandavat, R. and Singh, G., "Synthesis, Characterization, and High Temperature Stability of Si(B)CN-Coated Carbon Nanotubes Using a Boron-Modified Poly (ureamethylvinyl) Silazane Chemistry", The American Ceramic Society, 95(5), pp. 1536~1543. (2012). https://doi.org/10.1111/j.1551-2916.2012.05079.x
  31. Han, J. T., Kim, B. K., Woo, J. S., Jang, J. I., Cho, J. Y., Jeong, H. J., Jeong, S. Y., Seo, H. S. and Lee, G. W., "Bioinspired Multifunctional Superhydrophobic Surfaces with Carbon-Nanotube-Based Conducting Pastes by Facile and Scalable Printing", ACS Applied Materials & Interfaces, 9, pp. 7780~7786. (2017). https://doi.org/10.1021/acsami.6b15292
  32. Shi, S., Zhao, Y., Zhang, Z. and Yu, L., "Corrosion protection of a novel SiO2@PANI coating for Q235 carbon steel", Progress in Organic Coatings, 132, pp. 227~234. (2019). https://doi.org/10.1016/j.porgcoat.2019.03.040
  33. Dimov, N., Fukuda, K., Umeno, T., Kugino, S. and Yoshio, M., "Characterization of carbon-coated silicon Structural evolution and possible limitations", Journal of Power Sources, 114(1), pp. 88~95. (2003). https://doi.org/10.1016/S0378-7753(02)00533-5
  34. Kern, F. and Gadow, R., "Deposition of ceramic layers on carbon fibers by continuous liquid phase coating", Surface and Coatings Technology, 180, pp. 533~537. (2004). https://doi.org/10.1016/j.surfcoat.2003.10.114
  35. You, Y. W., Moon, E. H., Heo, I., Park, H., Hong, J. S. and Shu, J. K., "Preparation and characterization of porous carbons from ion-exchange resins with different degree of cross-linking for hydrogen storage", Journal of Industrial and Engineering Chemistry, 45, pp. 164~170. (2017). https://doi.org/10.1016/j.jiec.2016.09.019
  36. Taylor, M., Urquhart, A. J., Zelzer, M., Davies, M. C. and Alexander, M. R., "Picoliter Water Contact Angle Measurement on Polymers", Langmuir, 23(13), pp. 6875~6878. (2007). https://doi.org/10.1021/la070100j
  37. Suzer, S., Argun, A., Vatansever, O. and Aral, O., "XPS and water contact angle measurements on anged and corona-treated PP", Applied Polymer, 74(7), pp. 1846~1850. (1999). https://doi.org/10.1002/(SICI)1097-4628(19991114)74:7<1846::AID-APP29>3.0.CO;2-B
  38. Ethington, E. F., "Interfacial contact angle measurements of water, mercury, and 20 organic liquids on quartz, calcite, biotite, and Ca-montmorillonite substrates", Open-File Report, pp. 90~409. (1990).
  39. Karnati, S. R., Hogsaa, B., Zhang, L. and Fini, E. H., "Developing carbon nanoparticles with tunable morphology and surface chemistry for use in construction", Construction and Building Materials, 262, p. 120780. (2020). https://doi.org/10.1016/j.conbuildmat.2020.120780
  40. Bai, Y., Huang, Z. H. and Kang, F., "Electrospun preparation of microporous carbon ultrafine fibers with tuned diameter, pore structure and hydrophobicity from phenolic resin", Carobn, 66, pp. 705~712. (2014). https://doi.org/10.1016/j.carbon.2013.09.074
  41. Kim, Y. I. and Bae, B. U., "Effect on Particle Size of Activated Carbons for Coagulation and Adsorption", Journal of the Korea Society of Water and Wastewater, 20(5), pp. 719~726. (2006).
  42. Baig, N., Alghunaimi, F. I. and Saleh, T. A., "Hydrophobic and oleophilic carbon nanofiber impregnated styrofoam for oil and water separation : A green technology", Chemical Engineering Journal, 360(15), pp. 1613~1622. (2019). https://doi.org/10.1016/j.cej.2018.10.042
  43. Wang, Z., Yuan, L., Liang, G. and Gu, A., "Mechanically durable and self-healing super-hydrophobic coating with hierarchically structured KH570 modified SiO2-decorated aligned carbon nanotube bundles", Chemical Engineering Journal, 408, p. 127263. (2020).
  44. Cheng, Y., He, Ge., Barras, A., Coffinier, Y., Lu, S., Xu, W., Szunerits, S. and Boukherroub, R., "One-step immersion for fabrication of superhydrophobic/superoleophilic carbon felts with fire resistance: Fast separation and removal of oil from water", Chemical Engineering Journal, 331, pp. 372~382. (2018). https://doi.org/10.1016/j.cej.2017.08.088