Acknowledgement
This work was conducted under framework of Research and Development Program of the Korea Institute of Energy Research (KIER)(C2-2435).
References
- M. J. Lippits, A. C. Gluhoi, and B. E. Nieuwenhuys, A comparative study of the selective oxidation of NH3 to N2 over gold, silver and copper catalysts and the effect of addition of Li2O and CeOx, Catal. Today, 137, 446-452 (2008). https://doi.org/10.1016/j.cattod.2007.11.021
- S. A. C. Carabineiro, A. V. Matveev, V. V. Gorodetskii, and B. E. Nieuwenhuys, Selective oxidation of ammonia over Ru(0001), Surf. Sci., 555, 83-93 (2004). https://doi.org/10.1016/j.susc.2004.02.022
- C. Chen, Y. Cao, S. Liu, and W. Jia, The effect of SO2 on NH3-SCO and SCR properties over Cu/SCR catalyst, Appl. Surf. Sci., 507, 145153-145160 (2020). https://doi.org/10.1016/j.apsusc.2019.145153
- F. Gao, Y. Liu, Z. Sani, X. Tang, H. Yi, S. Zhao, Q. Yu, and Y. Zhou, Advances in selective catalytic oxidation of ammonia (NH3-SCO) to dinitrogen in excess oxygen: A review on typical catalysts, catalytic performances and reaction mechanisms, J. Environ. Chem. Eng., 9, 104575-104594 (2021). https://doi.org/10.1016/j.jece.2020.104575
- M. Jablonska and A. M. Robles, A comparative mini-review on transition metal oxides applied for the selective catalytic ammonia oxidation (NH3-SCO), Meterials, 15, 4770-4793 (2022). https://doi.org/10.3390/ma15144770
- M. Jablonska, TPR study and catalytic performance of noble metals modified Al2O3, TiO2 and ZrO2 for low-temperature NH3-SCO, Catal. Commun., 70, 66-71 (2015). https://doi.org/10.1016/j.catcom.2015.07.012
- T. Lan, Y. Zhao, J. Deng, J. Zhang, L. Shi, and D. Zhang, Selective catalytic oxidation of NH3 over noble metal-based catalyst: State of the art and future prospects, Catal. Sci. Technol., 10, 5792-5810 (2020). https://doi.org/10.1039/d0cy01137a
- R. Q. Long and R. T. Yang, Noble metal (Pt, Rh, Pd) promoted Fe-ZSM5 for selective catalytic oxidation of ammonia to N2 at low temperature, Catal. Lett., 78, 353-357 (2002). https://doi.org/10.1023/A:1014929222854
- G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, and R. J. Willey, Adsorption, activation, and oxidation of ammonia over SCR catalysts, J. Catal., 157, 523-535 (1995). https://doi.org/10.1006/jcat.1995.1316
- E. Moran, C. Cattaneo, H. Mishima, B. A. Lopez de Mishima, S. P. Silvetti, J. L. Rodriguez, and E. Pastor, Ammonia oxidation on electrodeposited Pt-Ir alloys, J. Solid State Electrochem., 12, 583-589 (2007). https://doi.org/10.1007/s10008-007-0407-0
- G. S. Wong, and J. M. Vohs, An XPS study of the growth and electronic structure of vanadia films supported on CeO2(111), Surf. Sci., 498, 266-274 (2002). https://doi.org/10.1016/S0039-6028(01)01761-7
- N. Y. Topsoe, J. A. Dumesic, and H. Topsoe, Vanadia-Titania catalysts for selective catalysts reduction of nitric oxide by ammonia, J. Catal., 151, 241-252 (1995). https://doi.org/10.1006/jcat.1995.1025
- J. Haber, M. Witcko, and R. Tokarz, Vanadium Pentoxide. Structures and Properties, Appl. Catal. A, 157, 3-22 (1997). https://doi.org/10.1016/S0926-860X(97)00017-3
- J. Haber and M. Witcko, Oxidation catalysis-electronic theory revisited, J. Catal., 216, 416-424 (2003). https://doi.org/10.1016/S0021-9517(02)00037-4
- Z. Wu, R. Jin, Y. Liu, and H. Wang, Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature, Catal. Commun., 9, 2217-2220 (2008). https://doi.org/10.1016/j.catcom.2008.05.001
- S. M. Lee, H. H. Lee, and S. C. Hong, Influence of calcination temperature on Ce/TiO2 catalyst of selective catalytic oxidation of NH3 to N2, Appl. Catal. A:Gen., 470, 189-198 (2014). https://doi.org/10.1016/j.apcata.2013.10.057