DOI QR코드

DOI QR Code

페이저도에 의한 임피던스 정합회로 설계 해석

Design Analysis of Impedance Matching Circuit by Phasor Plot

  • 투고 : 2022.09.13
  • 심사 : 2022.10.06
  • 발행 : 2022.11.30

초록

본 논문에서 소개하는 페이저도에 의한 임피던스 정합회로 설계는 회로이론의 임피던스 삼각도에 기초한다. 정합회로 설계에 주어진 값들을 이용하여 페이저 도형의 작도를 통하여 설계하는 기법이다. 설계 패턴은 L형, 역L형, T형, 𝜋형을 기본으로, 미지의 리액턴스 소자를 페이저 도형을 통하여 결정한다. 본 논문에서는 입력과 출력포트가 순저항인 경우와 리액턴스를 갖는 경우의 몇 가지 사례에 대하여 설계하고 이를 직병렬 등가변환에 의하여 설계값을 검증하여 정합이 이루어짐을 확인하였다. 본 설계 기법은 입출력 위상이나 크기를 바로 파악할 수 있어 설계의 변경과 적용이 신속하여 주로 낮은 주파수 대역에서 적용이 기대된다.

The impedance matching circuit design technique based on the phasor plot introduced in this paper is based on the impedance triangle of electric circuit. It is a technique that designs through the construction of a phasor figure using the values given to the matching circuit design. The design pattern is based on L-type, inverted L-type, T-type, and 𝜋-type, and unknown reactance elements are determined through phasor shapes. In this paper, using a design by phasor plot, we design several cases, such as the case where the input and output ports are pure resistance and have reactance. It was confirmed that the design value was verified by serial-parallel equivalent conversion to achieve matching. This design technique can immediately grasp the phase or size of input/output power, so it is expected to be applied mainly in a low frequency band due to rapid design change and application.

키워드

참고문헌

  1. C. Bowick, RF Circuit Design, USA, Newnes, 2008.
  2. Y. Zhang, Y. Feng, S. Liu, J. Wu, and X. He, "Impedance Matching Method for 6.78 MHz Class-E2-Based WPT System," Energies, vol. 14, no. 14, pp. 4289, Jul. 2021. https://doi.org/10.3390/en14144289
  3. Z. Hameed and K. Moez, "Design of impedance matching circuits for RF energy harvesting systems," Microelectronics Journal, vol. 62, pp. 49-56, Apr. 2017. https://doi.org/10.1016/j.mejo.2017.02.004
  4. M. Z. Xie, L. F. Wang, B. B. Zhou, and Q. A. Huang, "An Impedance Matching Method for LC Passive Wireless Sensors," IEEE Sensors Journal, vol. 20, no. 22, pp. 13833-13841, Jun. 2020. https://doi.org/10.1109/jsen.2020.3004146
  5. M. Alibakhshikenari, B. S. Virdee, P. Shukla, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "Improved adaptive impedance matching for Rf front-end systems of wireless transceivers," Scientific Reports, vol. 10, no. 14065, Aug. 2020.
  6. Y. Yao, B. Tan, Z. He, and X. Liu, "A Filter Structure Based Broadband Electrical Impedance Matching Method for Piezoelectric Transducer of Acoustic Well-Logging," IEEE Access, vol. 10, pp. 63567-63578, Jun. 2022. https://doi.org/10.1109/ACCESS.2022.3181725
  7. L. J. Awalin, H. Mokhlis, M. K. Rahmat, S. Shilpa, F. Albatsh, and B. Ismail, "Fault Distance Identification Using Impedance and Matching Approaches on Distribution Network," Indonesian Journal of Electrical Engineering and Computer Science, vol. 8, no. 3, pp. 770-778, Dec. 2017. https://doi.org/10.11591/ijeecs.v8.i3.pp770-778
  8. YO3DAC Iulian Rosu [Internet]. Available: https://www.qsl.net/va3iul/.