DOI QR코드

DOI QR Code

Feasibility Analysis of Exploring Underground Utilities Using Muon

뮤온 입자를 활용한 지하매설물 탐사 가능성 분석

  • Seo, Seunghwan (Korea Institute of Civil Engr. and Building Tech.) ;
  • Chung, Moonkyung (Korea Institute of Civil Engr. and Building Tech.) ;
  • Kwak, Kiseok (Korea Institute of Civil Engr. and Building Tech.) ;
  • Kang, Jae Mo (Korea Institute of Civil Engr. and Building Tech.)
  • 서승환 (한국건설기술연구원 지반연구본부) ;
  • 정문경 (한국건설기술연구원 지반연구본부) ;
  • 곽기석 (한국건설기술연구원 지반연구본부) ;
  • 강재모 (한국건설기술연구원 지반연구본부)
  • Received : 2022.10.31
  • Accepted : 2022.11.03
  • Published : 2022.11.30

Abstract

Various geophysical exploration methods are used to determine the exact location of underground utilities, and many studies have been performed to improve the accuracy. This study analyzed the feasibility of exploring underground utilities through a new exploration method using cosmic ray muon. A prototype of a portable muon detector was manufactured by combining a scintillator and a silicon photomultiplier. Further, a calibration operation was performed on the muon count rate. The ground thickness of the ground model was measured using the muon detector prototype, where the value could be estimated with an error of about 3%, close to the actual. In addition, the theoretical basis for tomography analysis technology was analyzed to utilize the muon detector for exploring underground utilities, and a zenith angle correction method was presented. This study revealed that the technology of exploration using muon can analyze density with high resolution and will be used for exploring underground utilities.

지하시설물의 정확한 매설위치를 파악하기 위해 다양한 지구물리탐사방법이 사용되고 있고, 정확도를 개선하기 위해 다수의 연구가 진행되고 있다. 본 연구에서는 우주선 뮤온이라는 입자를 활용하여 새로운 개념의 탐사 방법을 통해 지하매설물 탐사 가능성을 분석하였다. 신틸레이터(scintillator)와 광증배관(silicon photomultiplier)을 조합하여 소형 뮤온 검출기 시작품을 제작하고, 뮤온 입자 계수에 대한 보정 작업을 수행하였다. 시작품을 활용하여 모형 토조의 지반두께를 측정하였으며, 실측값과 약 3%의 오차로 실측값에 가까운 값을 추정할 수 있었다. 또한 뮤온 검출기를 지하매설물 탐사용으로 활용하기 위해 토모그래피 해석기술에 대한 이론적 기반을 분석하고, 천정각(zenith angle) 보정 방법을 제시하였다. 연구 결과 뮤온 입자에 의한 탐사는 밀도 그 자체를 고해상도로 해석하는 것이 가능한 기술로써 지하매설물 탐사를 위해 활용 가능할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 주요사업으로 수행되었습니다(과제번호 20220078-001, 지하 공간 정보 정확도 개선 및 매설관 안전관리 기술개발).

References

  1. Ryu, H.H., Kim, K.Y., Lee, K.R., Lee, D.S., and Cho, G.C. (2015), Exploration of Underground Utilities Using Method Pedicting and Anomaly, J. of Korean Tunn. Undergr. Sp. Assoc., Vol.17, No.3, pp.205-124.
  2. Choi, C., Kim, J.Y., Baek, S.H., and Kang, J.M. (2021), A Study on the Optimization Algorithm for Correlation Analysis of the Underground Utility Structure Density in Urban Areas and Recorded Ground Subsidence, J. of the Korean Geotechnical Society, Vol.10, No.10, pp.77-87.
  3. Hyun, S.Y. (2017), A Study on Characteristics of Ground-penetrating Radar Signals for Detection of Buried Pipes, J. of the Korean Institute of Electromagnetic Engineering and Science, Vol.28, No.1, pp.42-48. https://doi.org/10.5515/KJKIEES.2017.28.1.42
  4. Lee, W.J., Lim, S.M., Choi, Y.S., and Min, K.S. (2015), A Study on Applicability of Water Pipe Detecting Using GPR, J. of cadastre & land informatix, Vol.45, No.2, pp.131-147. https://doi.org/10.22640/LXSIRI.2015.45.2.131
  5. Kim, J.M., Lee, B.Y., Choi, Y.S., and Yoon, H.S. (2010), Improving the Detection of the Water Mains Underground Facilities, J. of Korean Society for Geospatial Information Science, Vol.18, No.4, pp.23-32.
  6. Hong, W.T., Kang, S., and Lee, J.S. (2015), Application of Ground Penetrating Radar for Estimation of Loose Layer, J. of the Korean Geotechnical Society, Vol.31, No.11, pp.41-48.
  7. Oh, H.C., Jo, Y.S., Hyun, S.Y., and Kim, S.Y. (2003), A Feasibility Study on the Detection of Water Leakage Using a Ground-penetrating Radar, J. of the Korean Institute of Electromagnetic Engineering and Science, Vol.14, No.6, pp.616-624.
  8. Hyun, S.Y. (2016), Laboratory Experiments of a Ground-penetrating Radar for Detecting Sussurface Cavities in the Vicinity of a Buried Pipe, J. of the Korean Institute of Electromagnetic Engineering and Science, Vol.27, No.2, pp.131-137. https://doi.org/10.5515/KJKIEES.2016.27.2.131
  9. Park, C.H., Won, K.S., Byun, J.H., Min, D.H., and Yoon, H.K. (2013), The Investigation of Alluvium by Using Electical Resistivity, Seismic Survey and GPR, J. of the Korean Geotechnical Society, Vol.29, No.9, pp.17-29. https://doi.org/10.7843/KGS.2013.29.9.17
  10. Lorenzo, B., Raffaello, D., and Andrea, G. (2020), Atmospheric Muons as an Image Tool, Reviews in Physics, Vol.5, 100038, pp. 1-28.
  11. Neddermeyer, S.H. and Anderson, C.D. (1937), Note on the Nature of Cosmic Ray Particles, Phys. Rev., 51:884.
  12. Bugaev, E.V., Misaki, A., Naumov, V.A., Sinegofskaya, T.S., Sinegovsky, S.I., and Takahashi, N., 1998, Atmospheric Muon Flux at Sea Level, Underground and Underwater, Phys. Rev. D58, 05401.
  13. Alvarez, L.W. et al. (1970), Search for Hidden Chambers in the Pyramids, Sci New Ser 167, pp.832-839.
  14. Seo, S., Lim, H., Ko. Y., Kwak, K., and Chung M. (2021), Study on the Applicability of Muography Exploration Technology in Underground Space Development, Explosive & Blasting, Vol.39, No.4, pp.22-33.
  15. Bogdanova, L.N., Gavrilov, M.G., Kornoukhov, V.N., and Starostin, A.S. (2006), Cosmic Muon Flux at Shallow Depths Underground, Physics of Atomic Nucl., 69, pp.1293-1298. https://doi.org/10.1134/S1063778806080047
  16. Park, H.W. and Kim, M.J. (2017), Advances in Dosimetry Using Scintillation Dosimeters in the Field of Radiation Therapy Medical Devices, Bulletin of the Korean institute of electrical and electronic material engineers, Vol.30, No.5, pp.19-27.
  17. George, EP. (1955), Cosmic Rays Measure Overburden of Tunnel, Com- monwealth Eng. 43, pp.455-457.
  18. Minato, S. (1986), Bulk Density Estimates of Buildings Using Cosmic Rays, Appl. Radiat. Isot. 37, pp.941-946. https://doi.org/10.1016/0883-2889(86)90243-1
  19. Miyake, S., Narasimham, V. S., and Ramana Murthy, P. V. (1964), Cosmic-ray Intensity Measurements Deep Undergound at Depths of (800-8400) m w.e., Nuovo Cim. 32, pp.1505-1523. https://doi.org/10.1007/BF02732788
  20. Lee, H., Youn, H., Seo, J., Kweon, M.J., and Yoon, J.H. (2021), Measurement of the Incident Angle Dependence of Muon Flux and Calculation Using Simulation, New Physics: Sae Mulli, Vol.71, No.3, pp.255-262.  https://doi.org/10.3938/NPSM.71.255