DOI QR코드

DOI QR Code

Performance Evaluation of Cement Composite Using Multi-Component Binder for Artificial Reef Produced by 3D Printer

인공어초 3D 프린팅 제작을 위한 다성분계 결합재 기반 시멘트 복합체의 성능 평가

  • 서지석 ((재)한국건설생활환경시험연구원) ;
  • 김효정 (충남대학교, 토목공학과) ;
  • 김윤용 (충남대학교, 토목공학과)
  • Received : 2022.10.17
  • Accepted : 2022.11.10
  • Published : 2022.12.31

Abstract

In this study, we designed a high-strength, low-alkali type cement composite for artificial reef by mixing various binders and evaluated whether it is possible to manufacture it with an ME method 3D printer. As a result of the tests, it is found that it is important to control the water-binder ratio, the silica sand-binder ratio, and the type of silica sand in order to control the fluidity of the cement composites to enable 3D printing. The surface quality of 3D printer output can be achieved by adjusting the amount of viscosity agent added while obtaining printable fluidity. In the cement composites mixing proportion using the alpha-type hemihydrate gypsum, a setting control agent needs to be used to control the quick setting effect. It is also necessary to derive the time to maintain the fluidity, and to apply it when printing. To obtain the required strength, the mix proportion needs to be modified while satisfying the fluidity level of 3D-printable cement composites. In the present study, 3D-printable mix proportions were designed by the use of multi-component binders including alpha-type hemihydrate gypsum a for low-alkali type artificial reefs, and the printability was confirmed. A further study needs to be performed to quantitatively evaluate the alkali reduction effect.

이 연구에서는 다양한 결합재를 혼합하여 고강도 저알칼리형 인공어초용 시멘트 복합체를 설계하고 ME 방식 3D 프린터 출력 가능성을 평가했다. 그 결과, 3D 프린팅이 가능하도록 시멘트 복합체의 유동성을 조절하기 위해서는 물-결합재비, 규사-결합재비, 규사의 종류 등을 제어하는 것이 중요한 것으로 판단된다. 출력이 가능한 정도의 흐름값을 달성한 뒤 3D 프린터 출력물의 표면품질을 양호하게 유지하기 위해서는 증점제 첨가량을 조절하는 것이 필요하다. 또한, 알파형 반수석고를 사용한 배합에서는 급결효과를 제어하기 위해 응결조절제를 사용해야하며 이 배합의 흐름값을 유지하는 시간을 도출하여 출력시 적용하는 것이 필요하다. 재료의 요구 강도를 얻기 위해서는 우선 출력이 가능한 수준의 유동성을 만족시킨 후, 배합을 조정하면 가능하다. 알파형 반수석고를 포함한 다성분계 결합재의 사용으로 저알칼리형 인공어초용 3D 프린팅 배합을 설계하고 출력성을 확인하였으나, 알칼리 저감 효과를 정량적으로 평가하기 위해서는 추후 연구가 필요하다.

Keywords

Acknowledgement

이 논문은 2022년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20210077, 해양복원을 위한 탄소저감형 고강도 저알칼리 3D 프린팅 인공어초 개발 및 사업화).

References

  1. Korea Fisheries Resources Agency. (2021), Artificial reef information book 2021(FIRA-IR-21-002). Korea Fisheries Resources Agency (In Korean).
  2. Ko, H. B., and Kim, H. D. (2018), Development of hybrid artificial reef and basic structural performance tests. Journal of the Korea Academia-Industrial cooperation Society, 19(9), 341-347. (In Korean). https://doi.org/10.5762/KAIS.2018.19.9.341
  3. Hamm, M., and Drossel, B. (2017), Habitat heterogeneity hypothesis and edge effects in model metacommunities. Journal of Theoretical Biology, 426, 40-48. https://doi.org/10.1016/j.jtbi.2017.05.022
  4. Kim, D., Jung, S., Kim, J., & Na, W. B. (2019), Efficiency and unit propagation indices to characterize wake volumes of marine forest artificial reefs established by flatly distributed placement models, Ocean Engineering, 175, 138-148. (In Korean). https://doi.org/10.1016/j.oceaneng.2019.02.020
  5. Na, W. B. (2021), Structural Complexity of Artificial Reefs. Computational Structural Engineering, 34(3), 19-26. (In Korean)
  6. Mohammed, J. S. (2016), Applications of 3D printing technologies in oceanography. Methods in Oceanography, 17, 97-117. https://doi.org/10.1016/j.mio.2016.08.001
  7. Ly, O., Yoris-Nobile, A. I., Sebaibi, N., Blanco-Fernandez, E., Boutouil, M., Castro-Fresno, E. Hall, A., Herbert, R. J.H., Deboucha, W., Reis, B., Franco, J. N., Borges, M. T., Sousa-Pinto, I., van der Linden, P. and Stafford, R. (2021), Optimisation of 3D printed concrete for artificial reefs: Biofouling and mechanical analysis. Construction and Building Materials, 272, 121649. https://doi.org/10.1016/j.conbuildmat.2020.121649
  8. Boukhelf, F., Sebaibi, N., Boutouil, M., Yoris-Nobile, A. I., Blanco-Fernandez, E., Castro-Fresno, D., Real-Gutierrez, C., Reis, B., Franco, JN., Borges, MT., Sousa-Pinto, I., van der Linden, P., Gomez, OB., Meyer, HS., Almada, E., Stafford, R., Danet, V., Lobo-Arteaga, J., Tuaty-Guerra, M., and E. Hall, A. (2022), On the Properties Evolution of Eco-Material Dedicated to Manufacturing Artificial Reef via 3D Printing: Long-Term Interactions of Cementitious Materials in the Marine Environment. Sustainability, 14(15), 9353. https://doi.org/10.3390/su14159353
  9. Lee, B. J., Kim, B. K., and Kim, Y. Y. (2022), Strength and Durability Characteristics of Low-alkali Mortar for Artificial Reefs Produced by 3D Printers, Journal of the Korea Institute for Structural Maintenance and Inspection, 26(1), 67-72. https://doi.org/10.11112/JKSMI.2022.26.1.67
  10. Seo, J. S., Lee, B. C., and Kim, Y. Y. (2019), The Effects of Void Ratio on Extrudability and Buildability of Cement-based Composites Produced by 3D Printers. Journal of the Korea Institute for Structural Maintenance and Inspection, 23(7), 104-112. (In Korean). https://doi.org/10.11112/JKSMI.2019.23.7.104
  11. Seo, J. S., Lee, B. C., and Kim, Y. Y. (2020),Uniformity and Accuracy of Mortar Layer Thickness for the Quality Evaluation of 3D Printer Output, Journal of the Korea Concrete Institute, 32(4), 371-377. https://doi.org/10.4334/jkci.2020.32.4.371
  12. Seo, J. S. and Kim, Y. Y. (2022), Experimental Evaluation of the Effect of the Mixing Design Factors of the Cementitious Composite for 3D Printer on the Printing Quality. Journal of the Korea Institute for Structural Maintenance and Inspection, 26(1), 89-96. (In Korean). https://doi.org/10.11112/JKSMI.2022.26.1.89
  13. Panda, B., Ruan, S., Unluer, C., and Tan, M. J. (2019), Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay, Composites Part B: Engineering, 165, 75-83. https://doi.org/10.1016/j.compositesb.2018.11.109
  14. Ma, G., Li, Z., Wang, L., Wang, F., and Sanjayan, J. (2019), Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing, Construction and Building Materials, 202, 770-783. https://doi.org/10.1016/j.conbuildmat.2019.01.008
  15. Rehman, A. U., and Kim, J. H. (2021), 3D concrete printing: A systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics, Materials, 14(14), 3800. https://doi.org/10.3390/ma14143800
  16. Wang, K. (2020), Feasibility Study of 3D Printing of Concrete for Transportation Infrastructure.