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Abstract
Human activities have caused an increase in greenhouse gas emissions, resulting in climate 
change that affects many factors of human life including its effect on water and food quality 
in certain areas with implications for human health. CH4 and N2O are known as potent non-
CO2 GHGs. The livestock industry contributes to direct emissions of CH4 (38.24%) and N2O 
(6.70%) through enteric fermentation and manure treatment, as well as indirect N2O emis-
sions via NH3 volatilization. NH3 is also a secondary precursor of particulate matter. Several 
approaches have been proposed to address this issue, including dietary management, 
manure treatment, and the possibility of inhibitor usage. Inhibitors, including urease and ni-
trification inhibitors, are widely used in agricultural fields. The use of urease and nitrification 
inhibitors is known to be effective in reducing nitrogen loss from agricultural soil in the form 
of NH3 and N2O and can further reduce CH4 as a side effect. However, the effectiveness of 
inhibitors in livestock manure systems has not yet been explored. This review discusses the 
potential of inhibitor usage, specifically of N-(n-butyl) thiophosphoric triamide, dicyandiamide, 
and 3,4-dimethylpyrazole phosphate, to reduce emissions from livestock manure. This review 
focuses on the application of inhibitors to manure, as well as the association of these inhibi-
tors with health, toxicity, and economic benefits.
Keywords: Livestock emissions, Greenhouse gas (GHG) emissions, Urease inhibitor, Nitrifi- 
 cation inhibitor, Particulate matter

INTRODUCTION
Anthropogenic activities have led to the production of large amounts of greenhouse gases (GHGs) 
such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), which has resulted in climate 
change and global warming. Human activities are estimated to have caused global warming of 
approximately 1℃ above pre-industrial levels, ranged between 0.8℃ to 1.2℃ [1]. The total amount 
of GHG emissions in 2018 for developed countries (Annex 1 parties) was 16,794,455.9 kt CO2 
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equivalent (CO2-eq) [2]. CH4 is an extremely potent GHG, responsible for approximately 30% 
of warming since pre-industrial times [3]. A global warming potential of 25 CO2-eq over a 100-
year time horizon for CH4 was used in the report to assess pathway to zero emissions [1]. Human-
caused CH4 emissions are predominantly from three sectors: fossil fuels, waste, and agriculture. On 
the other hand, N2O is another potent GHG because of its 100-year global warming potential of 
298 CO2-eq. 

Global climate change affects human health, livelihoods and ecological and human systems, 
resulting in global monetary damage. The IPCC [1] indicated five reasons for concern that point 
up the risk of global warming at different level, including its impact on human, economies, and 
ecosystem. At present, the risk transitions of global warming range from moderate to high risk, 
between 1℃ and 2℃. The Paris Agreement in 2015 was adopted to set the long-term goals to 
limit the global average temperature increase to 2℃ in this century while also attempting further 
limitation to 1.5℃ above pre-industrial level [4]. To be on track toward the Paris Agreement, global 
GHG emissions should reduce by 7.6% each year between 2020 and 2030 [3].

According to Annex I countries’ CH4 and N2O emissions, livestock sector (manure management 
and enteric fermentation) was responsible for 38.24% and 6.70% of total CH4 and N2O emissions, 
respectively, where CH4 from livestock sector was responsible of approximately 95.4% of the total 
agricultural CH4 emissions [2]. Also NH3 emitted from livestock sector was the source of indirect 
N2O emissions and NH3 is a secondary precursor of particulate matter (PM) and contributes to 
the overall PM burden [5]. The sustainability of livestock production is necessary for continuity of 
human life and by targeting non-CO2 for mitigation, agricultural CH4 and N2O emissions could be 
reduced; therefore, the mitigation of GHG emissions from this sector is crucial and in urgent need 
of being addressed. 

EMISSIONS FROM THE LIVESTOCK SECTOR
Direct emissions
Agriculture is one of the main contributing sectors of CH4 and N2O. Agriculture contributed 
approximately 9.27% of the total global emissions in 2019 (Annex 1 parties) [2]. Among the 
emissions from agriculture, 50.18% came from livestock. Emission from the livestock industry is a 
by-product of the digestive system of ruminants, in the form of CH4 through enteric fermentation 
and as CH4 and N2O through manure handling. Livestock product demand is predicted to grow by 
70% in 2050, resulting in significant increase in GHG emissions from livestock [6]. Therefore, it is 
important to mitigate emissions from the livestock industry.

CH4 production is caused by microbial fermentation that hydrolyze carbohydrates, and is an 
energy loss [7]. Methanogenesis generates CH4 and methanogens, a group of obligate anaerobic 
archaebacteria that are chemoautotrophs [8], are responsible for this process [9]. These methane 
producers are strict anaerobes and pH sensitive, with an optimum pH range of 6.8 to 7.4, and 
function best at 95°F [10].

In 2018, the contribution of GHG emissions from enteric fermentation reached 85% of the total 
livestock’s GHG emissions [11]. CH4 from enteric fermentation is a byproduct of the digestive 
system in ruminants and is released during eructation; approximately 87%–90% is formed in 
the rumen and the remaining 13%–10% in the large intestine [12]. CH4 emissions from cattle is 
seven times higher than that from sheep and nine times higher than that from goats [12]. CH4 
production in the rumen is affected by dietary factor and genetic factor [13].

Nitrification is a process that converts NH4
+ to NO3

− through microbial action [14]. This is a 
two-step chemolithotrophic process whereby NH4

+ is first oxidized to NO2
– by NH3-oxidizing 
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bacteria, followed by oxidation to NO3
− by nitrate-oxidizing bacteria [14]. Denitrification requires 

the conversion of NO3
− to NO2

− in the absence of oxygen by the enzyme nitrate reductase, then 
nitric reductase converts NO2

− to NO. Then, NO is converted to N2O by nitric oxide reductase, 
and finally, N2O is converted to N2 gas by nitrous oxide reductase. Low pH inhibits reductase 
enzyme and compare to the other enzymes, it is even more sensitive to oxygen in the denitrification 
pathway [9].

Manure handling and storage are the source of livestock CH4 and N2O emissions. However, on 
pastures or rangeland, N2O losses is more considerable than CH4 emissions that can be very low 
[15]. However, CH4 emissions may be highly significant in housed indoor house or on feedlots, and 
manure storage may be required. N2O emissions originate largely from denitrification of N soils 
arising from fertilizers and urinary deposits, and to a lesser extent from sources of N resulting from 
leaching, runoff, and volatilization.

Indirect emissions
In addition to direct emissions, livestock also contributes to indirect emissions in the form of 
N2O emissions. Indirect N2O emissions account for one-third of the total global agricultural N2O 
sources. In theory, indirect emissions consist of five different sources, including volatilization and 
subsequent atmospheric deposition of NH3 and NOx [16]. Indirect N2O emissions may arise 
through deposition of NH3 volatilized from manure. The indirect N2O emissions, however, may 
also arise from the NH3 deposited and NO emitted during manure management and application 
[17]. NH3 is generated through urea hydrolysis during manure deposition. Urea is very stable, and 
it degrades so slowly without urease that its degradation is negligible. Urea in synthetic fertilizer 
does not come into contact with urease until it is applied to the field [18]; therefore, the application 
of livestock manure as an organic fertilizer is likely to accelerate NH3 volatilization because of the 
urease present in feces. Urea hydrolysis also occurs in the presence of urease produced by bacteria in 
the soil, which results in the emission of NH3. Urea hydrolysis occurs when urinary urea is catalyzed 
by urease in feces, resulting to the conversion of urea to NH3 and CO2. Urinary urea N is the source 
of NH3-N, and microbial urease in feces hydrolyzes it to NH3 and CO2 [19]. The mixing of feces 
and urine promotes hydrolysis [20] and occurs rapidly within 1 to 2 days of excretion [21]. Urease 
concentration is known to be the highest in chicken manure, compared to that in pig and cattle 
manure, during the initial composting process [22]. The concentration of urea N ranges between 
50% and 90% of the total N [21,23].

Ruminants excrete nitrogen in which can be loss as NH3 for more than 50%. This significant 
amount of NH3 emissions is attributed to the formation of PM with an aerodynamic diameter 
smaller than 2.5 µm (PM2.5) [24]. The contribution of PM2.5 to air pollution occurs through 
complex process. Primary particles interact with gaseous precursors, followed by photochemical 
transformation pathways and lastly, transport and deposited as PM2.5 by meteorological process 
[25]. Organic carbon and sulfate control the formation of PM when NH3 presents in excessive 
amount [26]. Livestock operations contribute to PM2.5 and PM10. PM10 is a term for particles with 
an aerodynamic diameter ≤ 10 mm. Direct PM10 is emitted as dust, and the reaction of NH3 with 
nitrate and sulfuric acids forms indirect PM10 [24]. In the atmosphere, NH3 can bind to other gases, 
such as SO2 and nitrogen oxides (NO and NO2) to form NH4

+ containing fine PM [27]. This fine 
PM affects health when inhaled. PM2.5 formed by NH3 can penetrate deeper into the respiratory 
system of humans and animals where they damage tissues [28]. Although the average effect on lung 
function is modest, peak exposures of NH3 may cause airway symptoms in vulnerable subjects [29].
Studies on the PM2.5 reduction through NH3 control have been performed. Over the eastern USA 
in July and January, a 4% and 9% decrease in PM2.5 was caused by the reduction of NH3 by 50% 
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[30], whereas in Italy, [31] showed that a reduction of 50% in NH3 emissions from agriculture could 
result in a decrease in PM2.5. Pozzer et al. [25] also showed that a 50% decrease in NH3 emissions 
could reduce the annual, geographical average of near-surface PM2.5 concentration by 2% to 11%. 
These studies confirm that the reduction in NH3 emissions is the most effective control strategy for 
mitigating PM2.5.

MITIGATION OF EMISSIONS FROM LIVESTOCK
Dietary management
The single most effective way to mitigate GHG emissions is to increase animal productivity. 
Thus, reducing animal numbers may provide the same edible product output with a reduced 
environmental footprint [32]. Dietary management has been widely used and is the most effective 
method to reduce CH4 from enteric fermentation. Overall dietary manipulation by selection and 
utilization of high quality forages, strategic supplementation of forages, changing concentrate, 
proportion with special emphasis on changing carbohydrate composition should be considered as 
an immediate and sustainable CH4 mitigation approach of enteric CH4 emitted from ruminant 
livestock [33]. Methane emissions decrease in all regions when amended diets are adopted because 
more forage-based diets are less digestible than more concentrate grain-based diets [34].

Haque [33] divides dietary strategies into two categories: 1) improving forage quality and 
changing the diet proportion, and 2) dietary supplementation with feed additives. Although these 
strategies have been demonstrated to be effective, some obstacles are encountered. For instance, 
adding more grain in ruminant ration can be profitable because this strategy increases milk 
production, meat production, and also reduce the environmental footprint of livestock; however, 
the sustainability of this approach in the long term is questionable [32]. In some regions, grazing 
management may not be the best option to improve animal productivity due to poor pasture 
quality, in that case, improvement in productivity must come through feeding preserved forage or 
concentrate [32].

Some feed additives, known as inhibitors, are used to reduce methanogenesis by inhibiting 
methanogen activity. This includes supplementing with anti-methanogenic agents (e.g., antibiotics 
that reduce the methanogen population) or supplementing with electron (H+) acceptors, such 
as nitrate salts [35]. Among additives, the most promising results have been with nitrate and 
3-nitrooxypropanol which has strong mitigation effects on CH4 emissions without adverse effects 
on animal performance; however, more research is needed to fully document the implications for 
environmental and animal health [36, 37]. Although demonstrated to be effective in reducing CH4 
emissions, these strategies may disrupt natural rumen processes, and pose potential health and other 
welfare challenges [35]. Other additive such as ionosphores is unable to be absorbed by animals’ 
digestive tracts, however,  unabsorbed ionophores in manure might have a negative impact on land 
ecosystem when the ionosphores are still active on manure at fertilization [38]. High-concentrate 
supplementation increases milk production and utilization of genetic potential of the animal. 
However, when the price of milk is lower than feed cost, this system may not be economically 
feasible [32]. 

Manure treatment
NH3 and GHG emissions from animal facilities are influenced by several factors, i.e method 
of collecting manure, type of manure storage, type of housing, manure separation, and manure 
processing [15]. Mitigation practice for GHG emissions from stored manure mostly includes 
reducing storage time, air circulation (aeration), and stockpiling. These practices are intended to 
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shorten fermentation process before land application [15]. These practices are found to be effective, 
but the practices is unclearly economically advantageous [15]. 

Inhibitors
In recent years, mitigation technologies, including the use of inhibitors such as urease inhibitors 
and nitrification inhibitors, have been explored to reduce emissions and nitrogen losses from 
agricultural fertilizer usage, and inhibitors have already been approved and are currently in the 
market [39]. Livestock manure is a rich source of organic compounds. Owing to this nutritional 
content, livestock manure is commonly used as fertilizer on agricultural soil or land. However, this 
practice may accelerate NH3 volatilization because of the higher urease content in the manure than 
in the soil, which promotes the formation of indirect N2O. The loss of nitrogen affects the nitrogen 
content of the soil, which may result in low yield production. Due to significant nitrogen losses 
from manure management systems, estimating the remaining amount of nitrogen in the manure 
is important, mainly for soil application or other purposes such as feed, fuel, or construction [40]. 
According to IPCC [40], N2O emissions generated by manure in the pasture system, range, and 
paddock occur directly and indirectly from the soil. 

UREASE AND NITRIFICATION INHIBITORS
Urease inhibitors
The main principle of urease inhibitors is to deactivate urease, which hydrolyses urea into NH4

+, 
so that the hydrolysis of urea is delayed; hence, in the interim, several treatments can be performed 
to reduce the potential of nitrogen loss. There are several types of urease inhibitors. N-(propyl) 
thiophosphoric triamide (NPPT) is known to improve NH3 volatilization; however, the application 
of NPPT is mostly in combination with N-(n-butyl) thiophosphoric triamide (NBPT), and several 
studies have revealed that NPPT is suspected to be a reproductive toxin [39]. N (2-nitrophenyl) 
phosphoric triamide (2-NPT) is a new urease inhibitor that is under development. The application 
of 2-NPT has been shown to lower NH3 volatilization by 89% after 19 days of incubation [41], 
and depending on the soil characteristics, it also has greater longevity than NBPT [42]; therefore, 
the inhibitory effect of 2-NPT may last longer than that of NBPT. However, currently, 2-NPT is 
still on a laboratory-scale production; therefore, it is not easily available in the market and for field 
purposes. 

NBPT is currently the most widely used urease inhibitor. NBPT blocks three active sites of the 
urease enzyme to form a tridentate bond. This bond consists of two nickel centers and one oxygen 
atom from the carbamate bridge linking both metal ions, which reduces the probability of urea 
reaching the active nickel center of the urease enzyme. NBPT must be converted into N-(n-butyl) 
phosphoric triamide (NBPTo), as it is not a direct inhibitor. The factors influencing this conversion 
are not clear, but the reaction is rapid in soils under aerobic conditions (occurring in minutes or 
hours) but can take days under anaerobic conditions. The direct application of NBPTo is inefficient 
because it degrades faster than NBPT. 

NBPT is pH labile, and chemical hydrolysis appears to be an essential function of its breakdown 
under acidic conditions. This study concluded that under acidic conditions, chemical hydrolysis is 
likely the dominant pathway for NBPT and NBPTo breakdown. Under alkaline conditions, the 
biotic breakdown of these compounds via microorganisms became more significant [39]. 

NBPT mitigates NH3 volatilization by controlling the rise in pH that occurs during urea 
hydrolysis, resulting in the production of two units of NH4

+ and CO2 and reducing the soil 
concentration of NH4

+ around the urea granule [39]. These processes affect the equilibrium of NH4
+ 
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(soil), NH3 (soil), and NH3 (gas), which results in slow urea hydrolysis and ultimately allows ample 
time for the fertilizer to be incorporated into the soil via rainfall or irrigation, thereby protecting the 
applied N from volatilization [39]. Inhibition of urease by NBPT usually lasts 3 to 7 days as new 
urease enzyme production overwhelms the inhibitor [39]. 

The NBPT shows a relatively short period of protection. The ideal situation for the performance 
of urease inhibitors is through mechanical incorporation, followed by rain or irrigation occurring 
within 5 to 7 days after fertilization with NBPT-contained urea. In this period, depending on soil 
moisture or temperature, inhibitory potential of NBPT is still high [43]. The results of field studies 
showed reductions of > 85% in NH3 volatilization as a result of NBPT application and rain event 
within 5 days after urea application [43]. 

A study conducted by Engel et al. [44] showed that application of urea of wet or damp soil, 
NH3 loss was significant. This study indicates that NH3 loss was significantly affected by water 
conditions. Application of NBPT delayed the peaks of NH3 loss until 7 to 9 days, whereas without 
NBPT application, the highest loss occurred on day 3. Not only delayed the peak of NH3 loss, 
NBPT also reduced the peaks of NH3 loss [45]. The conversion of urea to NH3 is prevented by 
the addition of NBPT, resulting to urea buildup in the manure. NBPT, on the other hand, has 
limited effect as time passes, therefore, in order to hydrolyze the build-up urea, more NBPT may 
be required [46]. Previous research has shown that high temperature affects the inhibiting ability of 
NBPT; Pereira et al. [47] reported that at a temperature of 20℃, NBPT was inhibited in a short 
time. 

Nitrification inhibitors
Nitrification inhibitors are chemical compounds that delay the bacterial oxidation of NH4

+ to NO2
– 

in the soil, called nitrification. Nitrification inhibitors work by slowing down nitrifying bacteria 
that produce ammonia monooxygenase, hydroxylamine oxidoreductase, and nitric oxide reductase 
[39]. Delays in nitrification result in less NO3

– formation, which is considered to be the source 
of nitrogen losses through leaching and denitrification (N2O); therefore, the use of nitrification 
inhibitors not only reduces environmental problems but also increases the efficiency of nitrogen-
based fertilizer. Several studies also demonstrated that CH4 emissions could be reduced as a side 
effect of nitrification inhibitor application (Table 1).

Some examples of nitrification inhibitors are dicyandiamide (DCD), 3-4, dimethylpyrazole 

Table 1. Application of nitrification and urease inhibitors in previous studies

Inhibitor type Target Fertilizer form
Reduction effect 

(%)
Application rate 

(g/kg N) Application 
frequency References

NH3 CH4 N2O Min Max
Urease inhibitor NBPT Land Urea 50-78 X X 0.54 3.04 Once [44], [45], [86], [87], [88]

Land Cow urine 48 X X 1.00 10.00 Once [47]

Nitrification inhibitor DCD Land Cow urine X X 45–80 3.92 85.71 Once [57], [89], [90]

Land Cow slurry X X 47–88 21.02 99.55 Once [55], [91]

Land Swine slurry X X 70 71.43 76.92 Once [92]

Land Urea X 12 55.8 - 217.39 Monthly [93], [94]

Land Urea X X 35 - 13.95 Monthly [61]

DMPP Land Urea X X 30–49 - 21.74 Once [62]

Land Urea X X 38 - 4.65 3 times/year [61]

Land Ammonium sulfate X X 48.9–74.9 4.29 17.14 Monthly [95]
NBPT, N-(n-butyl) thiophosphoric triamide; DCD, dicyandiamide; DMPP, 3-4 dimethylpyrazole phosphate.
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phosphate (DMPP), nitrapyrin, and thiosulfate. Thiosulfate may delay urea hydrolysis for up to 
4 days and retard the conversion of NO2-N to NO3-N, thus resulting in a substantial amount of 
NO2-N in the soil. However, to achieve a significant reduction in N2O, high concentrations need to 
be applied, making it inefficient in reducing N2O emissions. Nitrapyrin is widely used in the United 
States. It has been shown to reduce GHG emissions by 30%–50% [48]. It can also be retained 
in water for 7 to 10 days, whereas in soil it remains for 3 to 35 days [49], which implies that it 
can inhibit GHG emission production over an extended period. Even so, the use of nitrapyrin 
should be limited because of its low water solubility, and the results of nitrapyrin application differ 
depending on environmental conditions. Nitrapyrin is categorized as a moderate oral toxin and 
moderate dermal irritant [49].

There are conflicting results regarding the influence of nitrification inhibitors on CH4 emissions. 
Bronson and Mosier [50] and Crill et al. [51] reported that nitrification inhibitors may increase 
CH4 emissions, whereas Weiske et al. [52] reported that the addition of DCD either reduced the 
emissions or had no effect on CH4 emissions. Another study by Villarrasa-Nogué [53] showed that 
the application of DMPP tended to reduce CH4 oxidation, resulting in high CH4 emissions.
 
Dicyandiamide
The breakdown of DCD results in NH3, NO3, H2O, and CO2, which may also contribute to 
increased N availability for microbial growth, as indicated by augmented CO2 [54]. The kinetics of 
DCD degradation are highly influenced by temperature [54]. Minet et al. [55] found that DCD 
was still active after 6-month post application. Moreover, DCD did not affect the composition 
of the slurry during the period and cumulative N2O-N emissions from DCD treatment was 88% 
lower than without DCD, which implies that DCD effectively reduced N2O emission.

The stability of the DCD (during the 6-month period) indicates that DCD does not degrade 
when the slurry is stored under anaerobic conditions. Mixing stored slurry with DCD could be a 
means to mitigate N2O emissions at high-risk times such as in autumn, winter, and early spring, 
where N2O emissions could be at their highest. DCD addition to slurry could be highly preferred, 
cost-effective, and efficient for widespread adoption of N2O mitigation using nitrification inhibitors 
by the agricultural sector [55].

DCD was more effective in reducing N2O emissions and NO3
− leaching from urine depositions 

during autumn than during summer or spring [56]. DCD in solid form is suggested to be applied 
at rates of 0.44% to 0.88% of the dry matter of composting piles (swine slurry with sawdust) with 
reapplication within 15 to 23 days to prevent later N2O emissions as DCD concentrations decrease 
during the composting process [54]. The application of DCD with urine in both autumn and winter 
was effective in reducing the peak N2O fluxes and the total amount of N2O from urine application 
[57]. Increased DCD application rates would be required to sustain DCD concentrations in the 
surface soil above the critical level for extended periods in order to achieve a significant reduction 
in N2O emissions from urine patches [57]. Application of DCD through mixing with animal urine 
prolonged the presence of NH4

+ in the soil by approximately 3 to 6 weeks, which led to a reduction 
in the concentration of NO3

–-N by approximately 70%–85% [57].
Theoretically, inhibiting nitrification with DCD might also inhibit CH4 oxidation to CO2; 

however, the result from Minet et al. [55] showed that DCD application to slurry displayed 
lower CH4 cumulative net flux than slurry without DCD application. The application of NBPT, 
phosphoroamide (PPD), and DMPP together with pig manure resulted in significantly reduced 
cumulative CH4 emissions, because the addition of inhibitors further influenced the existing forms 
of nitrogen, which is beneficial to the growth of methanotrophic organisms and results in increased 
CH4 oxidation [58]. Anaerobic conditions may prolong DCD persistence, and although the reasons 
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for this are unclear, DCD degradation is unlikely to occur under anaerobic conditions [55].

3-4 Dimethylpyrazole phosphate
The DMPP with non-split application resulted in a more efficient reduction of N2O losses than 
split application [59]. The DMPP treatment seemed to stimulate CH4 oxidation more than DCD 
treatment because the soil clearly acted as a CH4 sink rather than as a source [52]. Significant 
reduction due to inhibition of nitrification may take more than a week after DMPP addition [60]. 
DMPP could increase soil N retention, improve plant N use efficiency, and potentially stimulate 
the shoot yield of tea trees [60]. Although data related to DMPP are limited, DMPP has potential 
as an alternative nitrification inhibitor.

The application of DMPP was found to be more efficient than that of DCD. Compared to DCD, 
DMPP applied at very low rates (one-third application rate) resulted in comparable or improved 
inhibitory effects on N2O emission [61]. DMPP decreased the amount of N2O released on average 
by 49%, whereas DCD reduced N2O emissions by only 26%, although DMPP was applied at rates 
ca. 10 times lower than that of DCD [52]. At high N doses, mitigation of DMPP was not observed, 
possibly because nitrogen has a priming effect that if microbial activity increases sufficiently, the 
surplus N threshold is reached above which the effectiveness of DMPP application is lost [53].

Toxicity and safety concerns
Toxicity in plants
DMPP is safe and without any phytotoxic damage. A study conducted by Zerulla et al. [62] 
revealed that an overdose of DMPP (8 times higher than the recommended application 
rate) did not cause any symptoms, while pronounced symptoms were found in the plant with 
overdose application of DCD. Tindaon et al. [63] concluded that the use of DCD and DMPP is 
environmentally compatible and safe. In addition, the recommended application rate of DCD is 10 
kg DCD per ha per application and that for DMPP is 1.84 kg active ingredient/mg urea or 0.71 
microgram DMPP/kg soil [63]. Both DCD and DMPP may affect non-target microbial soil only 
at high concentrations. 

Residues in agricultural and animal products
Despite the fact of benefits associated with the use of urease and nitrification inhibitors, safety 
related to their residues in agriculture and animal products is debatable. In 2013, food safety 
concerns were raised regarding the use of DCD, which appeared as a residual contaminant in 
dairy products (Table 2) [39]. The MPI [64] reported that low-level residues of DCD were found 
in milk powder; however, there were no other reports on residues in other animal products. A 
study demonstrated that administration of DCD to dairy cows at 3 or 30 g DCD/cow/day was 
predominantly recovered in urine (61%–82%), feces (10%–19%), and milk (1.2%) [65]. This may be 
because of the residence time of DCD in plants. The residence time of DCD in plants was long in 
tall plants and under low rainfall conditions; therefore, the consideration in plant height and rainfall 
should be taken when selecting DCD application time to maximize the effectiveness of DCD [66]. 
Thus, contamination of animal products with DCD may be avoided when the animal eats the grass 
after DCD is fully degraded. Cai et al. [56] recommends to apply inhibitors before urine excretion. 
This method would be more efficient than other application method, i.e. at other timing.

In contrast, the NBPT is safe and has no influence on animal products (Table 2). A study 
conducted by Van De Ligt et al. [67] showed that there was no residue found in milk and bovine 
tissue from dairy cows fed with 1, 3, and 10 mg/kg body weight NBPT. The dose of NBPT was 
assumed from the maximum tolerable amount of urea (approximately 1 g NBPT/kg body weight) 
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that a cow can consume on a daily basis and the maximum concentration of commercial NBPT for 
urea (0.1 % w/w NBPT in urea) [68].

Hazards to animal and human health
Urease and nitrification inhibitors are not considered harmful, either to animals or humans; 
however, several precautions are needed when handling the substance owing to its possible hazard 
risk (Table 2). A study by Van De Ligt et al. [67] concluded that a high dose of NBPT fed to dairy 
cattle did not result in any harm. The possibility of urea toxicity to occur is rare, despite the fact that 
consuming NBPT in high level causes urea toxicity [36]. 

In 2006, NICNAS [68] reported that two workers became ill after handing NBPT with the 
trade name AGROTAIN® with the following symptoms: nausea and nose bleed. The following 
investigation revealed that there was no mechanical exhaust in the room during installation and 
calibration of AGROTAIN®-urea spray application system. Although the workers were wearing 
respirators with the recommended cartridge, they reported that after several hours of work, they 
could smell the product. The work was continued, and the same cartridges were used for two and 
half days. The ensuing investigation revealed that because of the saturated cartridges, the respirator 
failed to perform. No exposures were reported by the employees, and no symptoms were reported 
by the production workers. Following the event, the company amended the current product label to 
read “Apply product with coarse spray only. Do not atomize.”

The ECHA [69] lists DCD under the name cyanoguanidine. According to ECHA [67], DCD 
is relatively low-hazardous for short-term or long-term exposure. However, caution is needed 
because it is an eye irritant. DMPP is non-hazardous, but it is considered to be low-hazardous if 
swallowed (oral exposure) and an eye irritant. Therefore, increased caution is needed. However, even 
though NBPT is low-hazardous, it is considered safe to use. 

The DCD has a log octanol-water partition coefficient of −1 and is highly water soluble; 
therefore, it is unlikely to be taken up by fish gills or across other biological membranes [69]. 
However, DCD is not regarded as readily biodegradable in water; thus, the accumulation of DCD 
may occur, which may harm aquatic life. Information on bioaccumulation in aquatic environments 
or sediments is unavailable; thus, further research is needed to meet these criteria. NBPT is not 
considered to have a low potential for bioaccumulation [69].

Table 2. Hazards and ecotoxicology of nitrification and urease inhibitors
Type of inhibitor Hazard risk Ecotoxicology Residues in animal products

Urease inhibitor NBPT Causes serious eye damage [97] Low acute in aquatic and 
terrestrial [97]

No residues were found on milk 
and bovine tissue from dairy cow 
[67]Suspected of damaging fertility or the unborn child [97]

Nitrification inhibitor DCD Low hazard potential [69] Low toxicity [69] Minute residues in milk was found 
in 2013 in New Zealand [64]

Administration of DCD to dairy 
cow at 3 or 30 g/cow/day was 
1.2% recovered in milk [65]

DMPP Harmful if swallowed [96] No hazards identified for air 
[96] 
No potential for bioaccumu-
lation for predators [96]

Not available

Causes serious eye irritation [96]

Suspected of damaging fertility or the unborn child [96]

May cause damage to organs through prolonged or 
repeated exposure [96]

NBPT, N-(n-butyl) thiophosphoric triamide; DCD, dicyandiamide; DMPP, 3-4 dimethylpyrazole phosphate.
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Potential use of inhibitors in the livestock sector
The global population is estimated to increase to 9 billion people by 2050, and to ensure global 
food security, global agricultural production is expected to increase by approximately 100% [70,71]. 
Chemical fertilizers and organic manure are often applied in exceeding amount, leading to 
nitrogen loss, accounting for approximately 55% of the total applied N [72]. A significant amount 
of nitrogen loss not only has major consequences on human and environmental health, but also a 
significant economic loss for farmers.

The use of enhanced efficiency fertilizers prepared with coatings of low-permeability materials 
with an inhibitor attached as an additive may be used to reduce nitrogen loss and increase N uptake 
by plant and soil microbial populations [72]. Several studies have shown that with the addition of 
urease or nitrification inhibitors, plant yield is increased more than that without the use of such 
inhibitors. Adding DMPP at a rate of 0.232 g/100 g urea (120 kg N/ha of urea rate) resulted in a 
7% increase in rice yield [73] and a 13% increase in wheat yield [74]. Other studies have shown that 
the addition of NBPT increased rice yield by approximately 1%–3% [75] and increased wheat yield 
by as much as 1% [76]. The addition of DCD also increased yield. Kakabouki et al. [77] concluded 
that cotton yield increased by approximately 364 kg/ha or 8% more than that without DCD. The 
addition of inhibitors is not only a feasible mitigation option, but also economically beneficial if 
applied correctly. Laboski [78] showed that when N is relatively inexpensive, if a 20% nitrogen loss 
occurs, the return would be maximized with additional N application; however, in a situation where 
N is expensive, adding NBPT (AGROTAIN®) is more likely to be profitable.

Modern agricultural practices have been well documented to impart negative impacts on human 
health as well as on farms, and the practice of irrational and excessive use of chemical fertilizers and 
pesticides has inspired the search for alternatives [79]. The use of manure as fertilizer has become 
increasingly common in the past few years, and is known to be environment-friendly because the 
application of manure as fertilizer can improve soil composition. Manure plays an important role 
in regulating plant growth, potential nutrient input, and microbial decomposition activity. This role 
can largely mediate the soil nutrient and soil micro-environment, which have a strong influence 
on crop growth. In addition, manure could also result in increased microbial biomass and changes 
in community structure, which provide an improved environment for crop growth [80]. Hua et 
al. [81] revealed that the application of manure resulted in considerable beneficial income, both in 
terms of yield and N uptake. This is owing to the increase in nutrient and organic matter availability 
in the soil as a result of manure as a nutrient source. Moreover, with long-term applications, the use 
of organic fertilizer can maintain nutrient balance and soil physical properties. In tomato plants, the 
addition of poultry manure significantly influenced tomato stem girth and the mean weight of the 
fruit [82]. Long term application of dairy manure (> 5 years) to soil resulted in significant increases 
in C, N, and microbial biomass, and changes in the microbial community structure. Practices that 
enhance soil carbon and provide slowly mineralizable nutrients may result in a larger and potentially 
more robust microbial community. 

A laboratory study conducted by Varel [83] implied that the addition of urease inhibitor in 
cattle and swine waste was very effective in inhibiting urease activity. The addition of phenyl 
phosphorodiamidate (PPDA) prevented up to 70% urea hydrolysis in cattle waste and up to 92% 
in swine waste [83]. Prolonged inhibition can be obtained by the weekly addition of inhibitors [83]. 
This result was validated in a field study indicating that NBPT can be successfully used to inhibit 
urease activity in cattle feedlot manure [84], especially because the results obtained in the study 
with the open environment of the feedlot surface were encouraging. The open environment is more 
difficult to control due to exposed weather elements than other manure-handling systems, such as 
enclosed environments (pits with slotted floors). For instance, NBPT application to pit slurry is less 
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complicated than application to a feedlot [84]. Application of NBPT causes urea build-up of urea 
in manure [84].

Dairy cows fed with DCD resulted in media concentrations of DCD in urine patches and were 
found to significantly reduce NO3-N leaching and N2O emissions by ±45% [57]. Slurry in mixture 
with DCD in long period of storage weaken the methanogens yet strengthen the methanothrophs 
[55]. Several manure treatment practices tend to produce more N2O while reducing CH4, in 
particular, treatment that includes air infusion, such as aerobic digestion or composting. N2O 
emission mitigation by nitrification inhibitors can only be effective when the nitrification activity 
is essential, and the control of N2O is in favor of emissions [85]. The addition of nitrification 
inhibitors to several manure treatment practices may be useful to reduce N2O emissions and reduce 
CH4 emissions as a manure treatment function.

CONCLUSION
The use of urease and nitrification inhibitors has been recognized as a mitigation tool to reduce 
nitrogen loss in agricultural soils. The application of inhibitors in agricultural soils decreases NH3, 
N2O, and CH4 as a side effect; and yet, increases plant yield and nitrogen use efficiency. Although 
several concerns related to health and toxicity, either to humans, animals, or the environment, have 
been raised, both inhibitors have potential for long-term mitigation. However, further studies 
are required to confirm the safety of these inhibitors. Sufficient number of studies are lacking to 
understand the mechanisms of inhibitor application to livestock manure. In contrast, the use of 
livestock manure as fertilizer has been shown to be as effective as chemical fertilizers; moreover, 
such application is also known to improve soil composition and properties. However, manure 
application may accelerate NH3 volatilization and, as a result, promote N2O emissions. Several 
studies have also shown a positive effect of the application of inhibitors to manure on reducing 
emissions from livestock. Therefore, the use of inhibitors is likely to be effective and is considered 
to be an alternative mitigation method to reduce emissions from the livestock industry, either as an 
additive in organic fertilizer from manure or as an additive to manure treatment.
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