DOI QR코드

DOI QR Code

Steel hexagonal damper-brace system for efficient seismic protection of structures

  • Received : 2021.08.08
  • Accepted : 2022.11.29
  • Published : 2022.12.10

Abstract

Conventional braces are often used to provide stiffness to structures; however due to buckling they cannot be used as seismic energy dissipating elements. In this study, a seismic energy dissipation device is proposed which is comprised of a bracing member and a steel hysteretic damper made of steel hexagonal plates. The hexagonal shaped designated fuse causes formation of plastic hinges under axial deformation of the brace. The main advantages of this damper compared to conventional metallic dampers and buckling-restrained braces are the stable and controlled energy dissipation capability with ease of manufacture. The mechanical behavior of the damper is formulated first and a design procedure is provided. Next, the theoretical formulation and the efficiency of the damper are verified using finite element (FE) analyses. An analytical model of the damper is established and its efficiency is further investigated by applying it to seismic retrofit of a case study structure. The seismic performance of the structure is evaluated before and after retrofit in terms of maximum interstory drift ratio, top story displacement, residual displacement, and energy dissipation of dampers. Overall, the median of maximum interstory drift ratios is reduced from 3.8% to 1.6% and the residual displacement decreased in the x-direction which corresponds to the predominant mode shape of the structure. The analysis results show that the developed damper can provide cost-effective seismic protection of structures.

Keywords

Acknowledgement

This research was supported by a grant (code 21CTAP-C164102-01) from Technology Advancement Research Program (TARP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

References

  1. Amini, F., Bitaraf, M., Nasab, M.S.E. and Javidan, M.M. (2018), "Impacts of soil-structure interaction on the structural control of nonlinear systems using adaptive control approach", Eng. Struct., 157, 1-13. https://doi.org/10.1016/j.engstruct.2017.11.071.
  2. ANSYS (2019), Canonsburg, PA, ANSYS Inc.
  3. ASCE (2006), Seismic Rehabilitation of Existing Buildings. ASCE/SEI 41-06. Reston, VA: ASCE.
  4. ASCE. 2013. Seismic rehabilitation of existing buildings. ASCE/SEI 41-13. Reston, VA: ASCE.
  5. ATC (1996), Seismic Evaluation and Retrofit of Concrete Buildings, Redwood City, CA: Applied Technology Council.
  6. Choi, H. and Kim, J. (2009), "Evaluation of seismic energy demand and its application on design of buckling-restrained braced frames", Struct. Eng. Mech., 31(1), 93-112. https://doi.org/10.12989/sem.2009.31.1.093.
  7. Azandariani, M.G., Gholhaki, M., Kafi, M.A., Zirakian, T., Khan, A., Abdolmaleki, H. and Shojaeifar, H. (2021), "Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)", Steel Compos. Struct., 39(1), 109-123. https://doi.org/10.12989/scs.2021.39.1.109.
  8. Azandariani, M.G., Azandariani, A.G. and Abdolmaleki, H. (2020), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Construct. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145.
  9. Azandariani, M.G., Kafi, M.A. and Gholhaki, M. (2021), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
  10. Azandariani, M.G., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Azandariani, A.G. (2021), "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Structures, 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041.
  11. Javidan, M.M., Nasab, M.S.E. and Kim, J. (2021), "Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers", Steel Compos. Struct., 39(5), 645-664. https://doi.org/10.12989/scs.2021.39.5.645.
  12. Javidan, M.M., Kang, H., Isobe, D. and Kim, J. (2018), "Computationally efficient framework for probabilistic collapse analysis of structures under extreme actions", Eng. Struct., 172, 440-452. https://doi.org/10.1016/J.ENGSTRUCT.2018.06.022.
  13. Javidan, M.M. and Kim, J. (2019), "Seismic retrofit of soft-first-story structures using rotational friction dampers", J. Struct. Eng., 145(12), 04019162. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002433.
  14. Javidan, M.M. and Kim, J. (2019), "Variance-based global sensitivity analysis for fuzzy random structural systems", Comput. Aided Civil Infrastruct. Eng., 34(7), 602-615. https://doi.org/10.1111/mice.12436.
  15. Javidan, M.M. and Kim, J. (2020), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct., 37(3), 259-272. https://doi.org/10.12989/SCS.2020.37.3.259.
  16. Javidan, M.M. and Kim, J. (2020), "Experimental and numerical sensitivity assessment of viscoelasticity for polymer composite materials", Sci. Reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-57552-3.
  17. JCSS (Joint Committee on Structural Safety) (2001), Probabilistic Model Code.
  18. KBC (2016), Korean Building Code. Korean Ministry of Construction.
  19. Kreslin, M. and Fajfar, P. (2010), "Seismic evaluation of an existing complex RC building", Bull. Eng., 8(2), 363-385. https://doi.org/10.1007/s10518-009-9155-0.
  20. Maheri, M.R. and Sahebi, A. (1997), "Use of steel bracing in reinforced concrete frames", Eng. Struct., 19(12), 1018-1024. https://doi.org/10.1016/S0141-0296(97)00041-2.
  21. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), OpenSees Command Language Manual. Pacific Earthquake Engineering Research (PEER) Center, 264(1), 137-158.
  22. Menegotto, M. (1973), "Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending", In Proc. of IABSE symposium on resistance and ultimate deformability of structures acted on by well defined repeated loads, 15-22.
  23. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2019), "Experimental and numerical investigation of an innovative buckling-restrained fuse under cyclic loading", Structures, 22, 186-199. https://doi.org/10.1016/J.ISTRUC.2019.07.014.
  24. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H. (2020), "Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36, 163-177. https://doi.org/10.12989/SCS.2020.36.2.163.
  25. Mohammadi, M., Kafi, M.A., Kheyroddin, A., Ronagh, H.R. and Rashidi, M. (2020), "Experimental and numerical investigation of innovative composite buckling-restrained fuse", ACMSM25, 113-121. https://doi.org/10.1007/978-981-13-7603-0_12.
  26. Naeem, A. and Kim, J. (2018), "Seismic retrofit of a framed structure using damped cable systems", Steel Compos. Struct., 29(3), 287-299. https://doi.org/10.12989/SCS.2018.29.3.287.
  27. Naeem, A. and Kim, J. (2018), "Seismic performance evaluation of a spring viscous damper cable system", Eng. Struct., 176, 455-467. https://doi.org/10.1016/J.ENGSTRUCT.2018.09.055.
  28. Naeem, A. and Kim, J. (2019), "Seismic performance evaluation of a multi-slit damper", Eng. Struct., 189, 332-346. https://doi.org/10.1016/J.ENGSTRUCT.2019.03.107.
  29. Naeem, A. and Kim, J. (2020), "Seismic retrofit of structures using rotational friction dampers with restoring force", Adv. Struct. Eng., 23(16), 3525-3540. https://doi.org/10.1177/1369433220939213.
  30. Oncu-Davas, S. and Alhan, C. (2019), "Reliability of semi-active seismic isolation under near-fault earthquakes", Mech. Syst. Signal Processing, 114, 146-164. https://doi.org/10.1016/j.ymssp.2018.04.045.
  31. Oncu-Davas, S. and Alhan, C. (2019), "Probabilistic behavior of semi-active isolated buildings under pulse-like earthquakes", Smart Struct. Syst., 23(3), 227-242. https://doi.org/10.12989/sss.2019.23.3.227.
  32. Pandikkadavath, M.S. and Sahoo, D.R. (2017), "Mitigation of seismic drift response of braced frames using short yielding-core BRBs", Steel Compos. Struct., 23(3), 285-302. https://doi.org/10.12989/SCS.2017.23.3.285.
  33. Park, J., Lee, J. and Kim, J. (2012), "Cyclic test of buckling restrained braces composed of square steel rods and steel tube", Steel Compos. Struct., 13(5), 423-436. https://doi.org/10.12989/scs.2012.13.5.423.
  34. PEER (2014), PEER NGA Database, PEER Ground Motion Database.
  35. Shayanfar, M.A. and Javidan, M.M. (2017), "Progressive collapse-resisting mechanisms and robustness of RC frame-shear wall structures", J. Perform. Construct. Facilities, 31(5), 04017045. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001012.
  36. Szyniszewski, S. and Krauthammer, T. (2012), "Energy flow in progressive collapse of steel framed buildings", Eng. Struct., 42, 142-153. https://doi.org/10.1016/j.engstruct.2012.04.014.
  37. TahamouliRoudsari, M., Entezari, A., Hadidi, M. and Gandomian, O. (2017), "Experimental assessment of retrofitted RC frames with different steel braces", Structures. 11, 206-217. https://doi.org/10.1016/J.ISTRUC.2017.06.003.
  38. Tsai, C.S., Chen, K.C. and Chen, C.S. (1998), "Seismic resistibility of high-rise buildings with combined velocity-dependent and velocity-independent devices", ASMEPUBLICATIONS-PVP, 366, 103-110.
  39. Usefi, N., Ronagh, H., Kildashti, K. and Samali, B. (2018), "Macro/micro analysis of cold-formed steel members using ABAQUS and OPENSEES", Proceedings of the 13th International Conference on Steel, Space and Composite Structures (SS18). Perth, Australia, The University of Western Australia.
  40. Whittaker, A.S., Bertero, V.V., Thompson, C.L. and Alonso, L.J. (1991), "Seismic testing of steel plate energy dissipation devices", Earthq. Spectra, 7(4), 563-604. https://doi.org/10.1193/1.1585644.
  41. Xu, Z.D. (2009), "Horizontal shaking table tests on structures using innovative earthquake mitigation devices", J. Sound Vib., 325(1-2), 34-48. https://doi.org/10.1016/j.jsv.2009.03.019.
  42. Xu, Z.D., Ge, T. and Liu, J. (2020), "Experimental and theoretical study of high-energy dissipation-viscoelastic dampers based on acrylate-rubber matrix", J. Eng. Mech., 146(6), 04020057. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001802.
  43. Xu, Z.D., Xu, F.H. and Chen, X. (2016), "Vibration suppression on a platform by using vibration isolation and mitigation devices", Nonlinear Dyn., 83(3), 1341-1353. https://doi.org/10.1007/s11071-015-2407-4.
  44. Yousef-beik, S.M.M., Bagheri, H., Veismoradi, S., Zarnani, P., Hashemi, A. and Quenneville, P. (2020), "Seismic performance improvement of conventional timber brace using re-centring friction connection", Structures, 26, 958-968. https://doi.org/10.1016/j.istruc.2020.05.029.
  45. Yousef-beik, S.M.M., Veismoradi, S., Zarnani, P. and Quenneville, P. (2020), "A new self-centering brace with zero secondary stiffness using elastic buckling", J. Construct. Steel Res., 169, 106035. https://doi.org/10.1016/j.jcsr.2020.106035.