DOI QR코드

DOI QR Code

종설: 동적 부하가 배터리에 미치는 영향

REVIEW: Dynamic force effects on batteries

  • Sunghyun, Jie (School of Mechanical Engineering, Pusan National University) ;
  • Taeksoo, Jung (School of Mechanical Engineering, Pusan National University) ;
  • Seunghoon, Baek (School of Mechanical Engineering, Pusan National University) ;
  • Byeongyong, Lee (School of Mechanical Engineering, Pusan National University)
  • 투고 : 2022.09.22
  • 심사 : 2022.10.25
  • 발행 : 2022.11.30

초록

리튬이온 배터리는 다양한 전자장치에 사용되어왔다. 리튬이온 배터리의 사용이 대중화됨에 따라, 온도, 진동, 쇼크 및 충전 환경과 같은 다양한 요인들이 배터리의 전기화학적 거동 변화에 미치는 영향을 밝히기 위한 연구가 활발히 진행되고 있다. 한편, 지구온난화가 심화되면서 자동차 회사들은 내연기관을 대체하는 파워시스템으로 리튬 이온 배터리를 사용하기 시작했다. 하지만, 배터리는 정적인 시스템을 기반으로 발전되어왔다. 이러한 관점에서, 구조 진동체의 변수와 배터리의 관계를 밝히기 위한 많은 노력이 이루어지고 있다. 본 종설 다이나믹 시스템과 배터리의 관계에 대한 그간의 연구를 요약하고 이를 바탕으로 앞으로의 연구에 대해 전망하고자 한다. 먼저, 전기차의 진동프로파일을 모델링하는 방법에 논하고, 이들이 배터리에 적용되었을 때의 전기화학적 거동에 대하여 다루었다. 이어서 물리적 충격 및 관통, 초음파 등이 배터리에 대해 미치는 영향을 기술하였다. 마지막 단락에서는 전기차와 배터리의 공존 관점에서, 다이내믹 구조물에 특화된 배터리의 디자인, 배터리에 초점을 맞춘 다이내믹 구조물의 관점에서 전기차 샤시 및 배터리에 대한 견해를 기술하였다.

Lithium-ion battery has been used for lots of electronic devices. With the popularization of batteries, researchers have focused on batteries' electrochemical performances by environmental conditions, such as temperature, vibration, shock and charging state. Meanwhile, due to very serious global warming, car companies have started using lithium-ion batteries even in cars, replacing internal combustion engines. However, batteries have been developed based on non-moving systems which is totally different from vehicles. In the line of the differences, researchers have tried to reveal relationship between variables from dynamic systems and batteries. In this review, we discuss the comprehensive effect of vibration and shock on batteries. We firstly summarize vibration profiles and effect of normal vibration on batteries. We also sum up effect of shock and penetration on batteries and introduce how ultrasound influences on batteries. Lastly, outlook for the battery design as well as dynamic design of EVs are discussed.

키워드

과제정보

This work was partly supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (2021 4000000140, Graduate School of Convergence for Clean Energy Integrated Power Generation) and supported by a 2-Year Research Grant of Pusan National University.

참고문헌

  1. D. Choi, Z. Gao, and W. Jiang, "Attention to global warming," RFS. 33, 1112-1145
  2. L. Al-Ghussain, "Global warming: Review on driving forces and mitigation," EP & SE. 38, 13-21 (2018).
  3. B. Scrosati, J. Hassoun, and Y.-K. Sun, "Lithium-ion batteries. A look into the future," Energy Environ. Sci. 4, 3287-3295 (2011). https://doi.org/10.1039/c1ee01388b
  4. H. Horie, T. Abe, T. Kinoshita, and Y. Shimoida, "A study on an advanced lithium-ion battery system for EVs," WEVJ, 2, 113-119 (2008). https://doi.org/10.3390/wevj2020113
  5. X. Chen, J. Wang, K. Zhao, and L. Yang, "Electric vehicles body frame structure design method: An approach to design electric vehicle body structure based on battery arrangement," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 236, 2025-2042 (2022). https://doi.org/10.1177/09544070211052957
  6. X. Han, M. Ouyang, L. Lu, J. Li, Y. Zheng, and Z. Li, "A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification," J. Power Sources, 251, 38-54 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.029
  7. Q. Zhang and R. E. White, "Capacity fade analysis of a lithium ion cell," J. Power Sources, 179, 793-798 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.028
  8. A. Mukhopadhyay and B. W. Sheldon, "Deformation and stress in electrode materials for Li-ion batteries," Progress in Materials Science, 63, 58-116 (2014). https://doi.org/10.1016/j.pmatsci.2014.02.001
  9. R. Jurgen, "SAE J2464 "EV & HEV Rechargeable Energy Storage System (RESS) safety and abuse testing procedure", SAE Technical Paper, Tech. Rep., 2010.
  10. D. H. Doughty and E. P. Roth, "A general discussion of Li ion battery safety," ECS Interface, 21, 37 (2012).
  11. J. M. Hooper and J. Marco, "Experimental modal analysis of lithium-ion pouch cells," J. Power Sources, 285, 247-259 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.098
  12. J. Galos, K. Pattarakunnan, A. S. Best, I. L. Kyratzis, C. H. Wang, and A. P. Mouritz, "Energy storage structural composites with integrated lithium-ion batteries: a review," Adv. Mater. Technol. 6, 2001059 (2021).
  13. L. Zhang, Z. Mu, and X. Gao, "Coupling analysis and performance study of commercial 18650 lithium-ion batteries under conditions of temperature and vibration," Energies, 11, 2856 (2018).
  14. X. Hua and A. Thomas, "Effect of dynamic loads and vibrations on lithium-ion batteries," J. Low Freq. Noise Vib. Act. Control. 40, 1927-1934 (2021). https://doi.org/10.1177/14613484211008112
  15. M. J. Brand, S. F. Schuster, T. Bach, E. Fleder, M. Stelz, S. Glaser, J. Muller, G. Sextl, and A. Jossen, "Effects of vibrations and shocks on lithium-ion cells," J. Power Sources, 288, 62-69 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.107
  16. A. B. K. Parasumanna, U. S. Karle, and M. R. Saraf, "Material characterization and analysis on the effect of vibration and nail penetration on lithium ion battery," World Electr. Veh. J. 10, 69 (2019).
  17. M. Spielbauer, P. Berg, J. Soellner, J. Peters, F. Schaeufl, C. Rosenmuller, O. Bohlen, and A. Jossen, "Experimental investigation of the failure mechanism of 18650 lithium-ion batteries due to shock and drop," J. Energy Storage, 43, 103213 (2021).
  18. J. Hooper and J. Marco, "Defining a representative vibration durability test for electric vehicle (EV) rechargeable energy storage systems (RESS)," World Electr. Veh. J. 8, 327-338 (2016).
  19. X. Hua, A. Thomas, and K. Shultis, "Recent progress in battery electric vehicle noise, vibration, and harshness," Science Progress, 104, 00368504211005224 (2021).
  20. J. Hooper and J. Marco, "Understanding vibration frequencies experienced by electric vehicle batteries," Proc. IET HEVC, 1-6 (2013).
  21. H. Su, "Vibration test specification for automotive products based on measured vehicle load data," SAE Transactions, 571-581 (2006).
  22. Y. Gao, F. Qiao, J. You, C. Shen, H. Zhao, J. Gu, Z. Ren, K. Xie, and B. Wei, "Regulating electrodeposition behavior through enhanced mass transfer for stable lithium metal anodes," JCC, 55, 580-587 (2021).
  23. J. Zhang, Z. Zhou, Y. Wang, Q. Chen, G. Hou, and Y. Tang, "Ultrasonic-assisted enhancement of lithiumoxygen battery," Nano Energy, 102, 107655 (2022).
  24. R. Hilton, D. Dornbusch, K. Branson, A. Tekeei, and G. Suppes, "Ultrasonic enhancement of battery diffusion," Ultrasonics sonochemistry, 21, 901-907 (2014). https://doi.org/10.1016/j.ultsonch.2013.10.012
  25. H. Yamaura, M. Ishihama, and K. Togai, "Design and evaluation of output profile shaping of an internal combustion engine for noise & vibration improvement," SAE Int. J. Engines, 7, 1514-1522 (2014). https://doi.org/10.4271/2014-01-1683
  26. L. Wang, Y.-L. Lee, R. Burger, and K. Li, "Multiple sinusoidal vibration test development for engine mounted components," JFAP, 13, 227-240 (2013). https://doi.org/10.1007/s11668-013-9661-x
  27. K. Ohta, K. Amano, A. Hayashida, G. Zheng, and I. Honda, "Analysis of piston slap induced noise and vibration of internal combustion engine (effect of piston profile and pin offset)," J. Environ. Eng. 6, 712-722 (2011). https://doi.org/10.1299/jee.6.712
  28. C. Braccesi, F. Cianetti, L. Goracci, and M. Palmieri, "Sine-Sweep qualification test for engine components: The choice of simulation technique," Proc. AIAS International Conference on Stress Analysis, 360-369 (2019).
  29. A. Yoshino, "The birth of the lithium-ion battery," Angewandte Chemie International Edition, 51, 5798-5800 (2012). https://doi.org/10.1002/anie.201105006
  30. J. F. Lang and G. Kjell, "Comparing vibration measurements in an electric vehicle with standard vibration requirements for Li-ion batteries using power spectral density analysis," IJEHV, 7, 272-286 (2015). https://doi.org/10.1504/IJEHV.2015.071640
  31. J. M. Hooper and J. Marco, "Characterising the invehicle vibration inputs to the high voltage battery of an electric vehicle," J. Power Sources, 245, 510-519 (2014). https://doi.org/10.1016/j.jpowsour.2013.06.150
  32. G. Hunt, "Electric vehicle battery test procedures manual (Rev. 2)", US Department of Energy, Tech. Rep., 1996.
  33. UN-ECE Regulation No. 100, Uniform Provisions concerning the Approval of Vehicles with regard to Specific Requirements for the Electric Power Train, 1995.
  34. P. Berg, M. Spielbauer, M. Tillinger, M. Merkel, M. Schoenfuss, O. Bohlen, and A. Jossen, "Durability of lithium-ion 18650 cells under random vibration load with respect to the inner cell design," Journal of Energy Storage, 31, 101499
  35. L. Somerville, J. M. Hooper, J. Marco, A. McGordon, C. Lyness, M. Walker, and P. Jennings, "Impact of vibration on the surface film of lithium-ion cells," Energies, 10, 741 (2017).
  36. J. M. Hooper, J. Marco, G. H. Chouchelamane, and C. Lyness, "Vibration durability testing of nickel manganese cobalt oxide (NMC) lithium-ion 18650 battery cells," Energies, 9, 52 (2016).
  37. O. A. Bangal, V. Chaturvedi, P. A. Babu, and M. V. Shelke, "Impedance analysis and equivalent circuit modelling of cells subjected to sinusoidal vibration test using electrochemical impedance spectroscopy," Proc. IEEE ITEC, 1-6, (2019).
  38. D. Aurbach, "Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries," J. Power Sources, 89, 206-218 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6
  39. Y. Xia, T. Wierzbicki, E. Sahraei, and X. Zhang, "Damage of cells and battery packs due to ground impact," J. Power Sources, 267, 78-97 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.078
  40. T. Kisters, E. Sahraei, and T. Wierzbicki, "Dynamic impact tests on lithium-ion cells," Int. J. Impact Eng. 108, 205-216 (2017). https://doi.org/10.1016/j.ijimpeng.2017.04.025
  41. G. Kermani and E. Sahraei, "Dynamic impact response of lithium-ion batteries, constitutive properties and failure model," RSC Adv, 9, 2464-2473 (2019). https://doi.org/10.1039/C8RA08898E
  42. A. D. Muresanu and M. C. Dudescu, "Numerical and experimental evaluation of a battery cell under impact load," Batteries, 8, 48 (2022).
  43. S. Tobishima, J. Yamaki, and T. Hirai, "Safety and capacity retention of lithium ion cells after long periods of storage," J. Appl. Electrochem. 30, 405-410 (2000). https://doi.org/10.1023/A:1003992027121
  44. S. Kim, Y. S. Lee, H. S. Lee, and H. L. Jin, "A study on the behavior of a cylindrical type Li-Ion secondary battery under abnormal conditions," Materialwissenschaft und Werkstofftechnik, 41, 378-385 (2010). https://doi.org/10.1002/mawe.201000612
  45. I. V. Avdeev and M. Gilaki, "Explicit dynamic simulation of impact in cylindrical lithium-ion batteries," ASME IMECE, 461-467 (2012).
  46. I. Avdeev and M. Gilaki, "Structural analysis and experimental characterization of cylindrical lithiumion battery cells subject to lateral impact," J. Power Sources, 271, 382-391 (2014).
  47. M. Gilaki and I. Avdeev, "Impact modeling of cylindrical lithium-ion battery cells: a heterogeneous approach," J. Power Sources, 328, 443-451 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.034
  48. J. Xu, B. Liu, X. Wang, and D. Hu, "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, 172, 180-189 (2016). https://doi.org/10.1016/j.apenergy.2016.03.108
  49. T. M. Bandhauer, S. Garimella, and T. F. Fuller, "A critical review of thermal issues in lithium-ion batteries," J. Electrochem. Soc. 158, R1-R25 (2011). https://doi.org/10.1149/1.3515880
  50. E. Sahraei, J. Meier, and T. Wierzbicki, "Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells," J. Power Sources, 247, 503-516 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.056
  51. S.-i. Tobishima and J.-i. Yamaki, "A consideration of lithium cell safety," J. Power Sources, 81, 882-886 (1999). https://doi.org/10.1016/S0378-7753(98)00240-7
  52. K. Ozawa, "Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system," SSI. 69, 212-221 (1994).
  53. H. Maleki and J. N. Howard, "Internal short circuit in Li-ion cells," J. Power Sources, 191, 568-574 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.070
  54. C.-S. Kim, J.-S. Yoo, K.-M. Jeong, K. Kim, and C.-W. Yi, "Investigation on internal short circuits of lithium polymer batteries with a ceramic-coated separator during nail penetration," J. Power Sources, 289, 41-49 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.010
  55. D. P. Finegan, B. Tjaden, T. M. M. Heenan, R. Jervis, M. D. Michiel, A. Rack, G. Hinds, D. J. L. Brett, and P. R. Shearing, "Tracking internal temperature and structural dynamics during nail penetration of lithiumion cells," JES. 164, A3285-A3291 (2017).
  56. A. B. K. Parasumanna, U. S. Karle, and M. R. Saraf, "Material characterization and analysis on the effect of vibration and nail penetration on lithium ion battery," WEVJ. 10, 69 (2019).
  57. Z. Huang, H. Li, W. Mei, C. Zhao, J. Sun, and Q. Wang, "Thermal runaway behavior of lithium iron phosphate battery during penetration," Fire Technology, 56, 2405-2426
  58. A. Perea, A. Paolella, J. Dube, D. Champagne, A. Mauger, and K. Zaghib, "State of charge influence on thermal reactions and abuse tests in commercial lithium-ion cells," J. Power Sources, 399, 392-397 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.112
  59. B. Liu, Y. Jia, C. Yuan, L. Wang, X. Gao, S. Yin, and J. Xu, "Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review," Energy Storage Materials, 24, 85-112 https://doi.org/10.1016/j.ensm.2019.06.036
  60. W. Zhao, G. Luo, and C.-Y. Wang, "Modeling nail penetration process in large-format li-ion cells," JES. 162, A207-A217 (2014).
  61. Y. Chen, S. Santhanagopalan, V. Babu, and Y. Ding, "Dynamic mechanical behavior of lithium-ion pouch cells subjected to high-velocity impact," Composite Structures, 218, 50-59 (2019).
  62. T. G. Zavalis, M. Behm, and G. Lindbergh, "Investigation of short-circuit scenarios in a lithium-ion battery cell," J. Electrochem. Soc. 159, A848-A859 (2012). https://doi.org/10.1149/2.096206jes
  63. K.-C. Chiu, C.-H. Lin, S.-F. Yeh, Y.-H. Lin, and K.-C. Chen, "An electrochemical modeling of lithium-ion battery nail penetration," J. Power Sources, 251, 254-263 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.069
  64. P. Vyroubal and T. Kazda, "Finite element model of nail penetration into lithium ion battery," J. Energy Storage. 20, 451-458 (2018).
  65. T. Yamanaka, Y. Takagishi, Y. Tozuka, and T. Yamaue, "Modeling lithium ion battery nail penetration tests and quantitative evaluation of the degree of combustion risk,"J. Power Sources, 416, 132-140 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.055
  66. J. Wang, W. Mei, Z. Cui, W. Shen, Q. Duan, Y. Jin, J. Nie, Y. Tian, Q. Wang, and J. Sun, "Experimental and numerical study on penetration-induced internal shortcircuit of lithium-ion cell," Appl. Therm. Eng. 171, 115082
  67. M. Akino, T. Mihara, and K. Yamanaka, "Fatigue crack closure analysis using nonlinear ultrasound," AIP Conf. Proc. 700, 1256-1263 (2004).
  68. S. K. Ramamoorthy, Y. Kane, and J. A. Turner, "Ultrasound diffusion for crack depth determination in concrete," J. Acoust. Soc. Am. 115, 523-529 (2004). https://doi.org/10.1121/1.1642625
  69. X. Guo and V. Vavilov, "Crack detection in aluminum parts by using ultrasound-excited infrared thermography," Infrared Physics & Technology, 61, 149-156 (2013). https://doi.org/10.1016/j.infrared.2013.08.003
  70. A. Farmer, A. Collings, and G. Jameson, "Effect of ultrasound on surface cleaning of silica particles," Int. J. Miner. Process. 60, 101-113 (2000). https://doi.org/10.1016/S0301-7516(00)00009-0
  71. G. J. Kavarnos, R. S. Janus, and H. C. Robinson, Application of Sonochemistry, NUWC-NPT Tech. Rep., 1994.
  72. S. Wang, J. Kang, X. Zhang, and Z. Guo, "Dendrites fragmentation induced by oscillating cavitation bubbles in ultrasound field," Ultrasonics, 83, 26-32 (2018). https://doi.org/10.1016/j.ultras.2017.08.004
  73. K. Chatakondu, M. L. Green, M. E. Thompson, and K. S. Suslick, "The enhancement of intercalation reactions by ultrasound," J. Chem. Soc., Chem. Commun. 12, 900-901 (1987).
  74. M. E. Hyde and R. G. Compton, "How ultrasound influences the electrodeposition of metals," J. Electroanal. Chem. 531, 19-24 (2002). https://doi.org/10.1016/S0022-0728(02)01016-1
  75. S. Wang, Z. Guo, X. Zhang, A. Zhang, and J. Kang, "On the mechanism of dendritic fragmentation by ultrasound induced cavitation," Ultrason Sonochem. 51, 160-165 (2019). https://doi.org/10.1016/j.ultsonch.2018.10.031
  76. X. Zhou, R. Fu, D. Fu, and Y. Wang, "Ultrasound frequency-dependent microstructures of electrodeposited Ni nanocrystals for modifying mechanical properties," J. Mater. Sci. 55, 14980-15004
  77. Z.-L. Cheng, Y.-C. Kong, L. Fan, and Z. Liu, Ultrasound-assisted Li+/Na+ co-intercalated exfoliation of graphite into few-layer graphene," Ultrason Sonochem. 66, 105108
  78. Y. Domi, H. Usui, K. Sugimoto, and H. Sakaguchi, "Effect of silicon crystallite size on its electrochemical performance for lithium-ion batteries," Energy Technol. 7, 1800946 (2019).
  79. L. Yuwen, H. Yu, X. Yang, J. Zhou, Q. Zhang, Y. Zhang, Z. Luo, S. Su, and L. Wang, "Rapid preparation of single-layer transition metal dichalcogenide nanosheets via ultrasonication enhanced lithium intercalation," Chem. Commun. 52, 529-532 (2016). https://doi.org/10.1039/c5cc07301d
  80. F. Ding, C. Zhang, and X. Hu, "Effects of ultrasound on lithium metal rechargeable battery characteristics at high charging rate," Electrochem. commun. 7, 552-556 (2005). https://doi.org/10.1016/j.elecom.2005.03.012
  81. A. Huang, H. Liu, O. Manor, P. Liu, and J. Friend, "Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow," Adv. Mater. Lett. 32, 1907516 (2020).