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Abstract
Penalized least squares methods are important tools to simultaneously select variables and estimate param-

eters in linear regression. The penalized maximum likelihood can also be used for the same purpose assuming
that the error distribution falls in a certain parametric family of distributions. However, the use of a certain para-
metric family can suffer a misspecification problem which undermines the estimation accuracy. To give sufficient
flexibility to the error distribution, we propose to use the symmetric log-concave error distribution with LASSO
penalty. A feasible algorithm to estimate both nonparametric and parametric components in the proposed model
is provided. Some numerical studies are also presented showing that the proposed method produces more efficient
estimators than some existing methods with similar variable selection performance.
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1. Introduction

Linear regression is a simple and insightful tool to investigate the relationship between variables. In
the presence of a large number of predictors, however, the model may produce inefficient parameter
estimators and suffer multicollinearity problems. In this case, it is desirable to select a smaller subset
most related to the response, for a concise and interpretable model. Penalized linear regression meth-
ods have gained popularity over the last two decades for this purpose, which adopt a certain penalty
function to the objective function of the problem.

Suppose that we have a random sample {(xi, yi), i = 1, . . . , n}where xi is a p-dimensional covariate
and yi is univariate continuous response variable. A general objective function for the penalized linear
regression can be expressed as

n∑
i=1

g
(
yi − x>i β

)
+ n

p∑
j=1

pλ
(
β j

)
,

where β is a p-dimensional vector of unknown regression coefficients, g(·) is a loss function, and
pλ(·) is a penalty function with tuning parameter λ. The penalized regression estimator is then de-
fined as the minimizer of this objective function. A different choice of g and pλ leads to a different
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penalized method. The least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996)
estimator can be obtained with pλ(a) = λ|a|. Additional for LASSO, the smoothly clipped absolute
deviation (SCAD) (Fan and Li, 2001), adaptive LASSO (Zou, 2006), and minimax concave penalty
(MCP) (Zhang, 2010) have been proposed for pλ and known to enjoy the oracle property under certain
conditions.

For the choice of the loss function, when L2 loss function is used for g(·), a penalized least squares
estimator (PLSE) can be obtained. If the loss function is the Huber’s ψ function (Fan and Li, 2001),
we can have a penalized robust estimator. The penalized maximum likelihood estimator (PMLE) can
be obtained if g(·) is the minus log-density of the error distribution. These methods enable us to jointly
estimate regression coefficients and select variables at the same time with the penalty function such
as LASSO, SCAD, and MCP. By this means, sacrificing a little bias, we can gain the efficiency of the
estimator and improve the overall prediction accuracy.

It is well known that the PLSE and PMLE are identical under the normality of the error. How-
ever, the normality of the error is often too strong in practice. For example, it is common that the
error distribution has a heavier tail than that of the normal distribution. In this case, the PLSE or
the PMLE under the normality can produce biased and inefficient estimators. For the PMLE, it is
essential that the error distribution is correctly specified. If not, the PMLE is generally less efficient
than PLSE and it could result in a serious bias. To this end, some robust and flexible parametric
distributions such as student-t or Laplace distributions are proposed for the error distribution (Lange
et al., 1989; Rousseeuw and Leroy, 1987). However, it is still restrictive because those families of
distributions cannot cover a wide variety of distributions and this could result in inaccurate parameter
estimation. In this paper, to relax such misspecification problems, we propose to use the log-concave
error distribution which is a nonparametric family of distributions with a specific shape constraint.

The rest of this paper is organized as follows. In Section 2, we define the notation and introduce
the penalized linear regression models with symmetric log-concave errors. In Section 3, we propose
using a smoothed log-concave maximum likelihood estimator (Chen and Samworth, 2013; Kim and
Seo, 2018) with a Gaussian kernel for the estimation of the initial regression coefficient. Numerical
simulations and real data studies are also conducted to compare the performance of the proposed
method with other existing methods in Section 4. We end this paper with some concluding remarks
in Section 5.

2. Penalized maximum likelihood method with symmetric log-concave error
densities

2.1. Log-concave error distribution in linear regression

The family of log-concave densities is

LC :=
{

f (t) = eϕ(t) | ϕ (·) ∈ C,
∫

eϕ(t)dt = 1
}
,

where C := {ϕ : R −→ (−∞,∞) |ϕ is a concave and closed function on R}. It is convenient to think of
log-concave densities as unimodal densities with fairly light tail which is exponentially decaying. The
family of log-concave densities includes most of the commonly-used parametric distributions but not
limited to uniform, normal, Gamma(r, λ) for r ≥ 1, Beta(α, β) for α, β ≥ 1, logistic, and Laplace (see.
e.g., (Bagnoli and Bergstrom, 2005)).

Many favorable properties of log-concave densities have been studied by (Dümbgen and Rufibach,
2009), (Balabdaoui et al., 2009), and (Dharmadhikari and Joag-Dev, 1988). For example, it is well-
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known that convolution, linear transformation, and product measure of log-concave distributions pre-
serve log-concavity. (Dümbgen and Rufibach, 2009) showed that the nonparametric maximum likeli-
hood estimator (NPMLE) of ϕ uniquely exists and is a piecewise linear concave function whose knots
are constrained to the subset of the input data points. In addition, t(1) and t(n) are always treated as
knots, and the NPMLE ϕ̂ takes the value −∞ on the outside of the effective domains [t(1), t(n)] where
t(1) ≤ · · · ≤ t(n) are the order statistics of the sample.

There are several studies that used this log-concave distribution as an error distribution in regres-
sion settings. (Dümbgen et al., 2011) showed that the linear regression estimator with the log-concave
error distribution is consistent. (Hu et al., 2017) applied the finite mixture of regressions with each
component having a log-concave error density and gained robustness by adopting the idea of least
trimmed squares. (Kim and Seo, 2018) compared the performance of estimators when the error dis-
tribution is assumed as Gaussian scale mixture and log-concave densities based on numerical studies.
(Kim and Seo, 2021) proposed a modal linear regression assuming that the error distribution is log-
concave.

2.2. Penalized likelihood under symmetric log-concave errors

When we consider the mean regression, our main interest is to represent the expected response as
a linear function of covariates. In this case, it is reasonable to assume that the error distribution is
symmetric. Because LC contains both symmetric and asymmetric densities, to properly use the log-
concave distribution for the error distribution in the mean regression, we further restrict LC to the
symmetric subfamily. Let us define

SC := {ϕ (−t) = ϕ (t) for all t ∈ R | ϕ (·) ∈ C} .

Then, the family of symmetric log-concave distributions can be expressed as

SLC :=
{

f (t) = eϕ(t) | ϕ (·) ∈ SC,
∫

eϕ(t)dt = 1
}
.

Now, in the linear regression model,

yi = x>i β + εi, i = 1, . . . , n,

we assume that the probability density function (pdf) of ε is a member of SLC which contains all
log-concave densities symmetric at zero. Then, the log-likelihood function is

`n (β, ϕ) =
1
n

n∑
i=1

ϕ
(
yi − x>i β

)
, (2.1)

where ϕ ∈ SC and
∫

eϕ(t)dt = 1.
An equivalent expression of (2.1) without constraint

∫
eϕ(t)dt = 1 is

`n (β, ϕ) =
1
n

n∑
i=1

ϕ
(
yi − x>i β

)
−

∫
eϕ(t)dt, (2.2)

where ϕ ∈ SC and
∫

eϕ(t)dt is from the normalization constant involved in the density estimation
(Silverman, 1982; Dümbgen and Rufibach, 2009). Note that the estimated symmetric log-concave
density f̂ is just eϕ̂ where ϕ̂ is the maximizer of (2.2).
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Before we incorporate LASSO penalty into the log-likelihood function (2.2), without loss of gen-
erality, we assume that the responses are centered, so the intercept term is not included in the regres-
sion function. Additionally, we also standardize the predictors so that each covariate is centered and
has unit variance. Then, the PMLE with the LASSO penalty can be defined as the maximizer of the
penalized log-likelihood function

`∗n (β, ϕ) = `n (β, ϕ) − λ ‖β‖1, (2.3)

where || · ||p is Lp-norm and λ ≥ 0. Tuning parameter λ controls the complexity of the model. As the
tuning parameter increases, it continuously shrinks the coefficients toward 0, and some coefficients
shrink to exact 0 with sufficiently large enough λ.

2.3. Estimation

The estimation problem under (2.3) involves the estimation of both β ∈ Rp and ϕ ∈ SC. Since there
is no explicit way to maximize both parametric and nonparametric components simultaneously, we
propose an iterative procedure that alternatively updates β and ϕ in (2.3). The PMLE of β and NPMLE
of ϕ can be obtained by iterating the following two procedures until they converge.

First, for fixed β, NPMLE of ϕ in (2.3) is equivalent to the NPMLE of ϕ without the penalty term
as in (2.2). Hence, the NPMLE of ϕ is

ϕ̂ = argmax
ϕ ∈ SC

1
n

n∑
i=1

ϕ
(
yi − x>i β

)
−

∫
eϕ(t)dt

 . (2.4)

Maximization problem (2.4) can be equivalently converted to

ϕ̂ = argmax
ϕ̃ ∈ C

 1
2n

n∑
i=1

ϕ̃
(
yi − x>i β

)
−

∫
eϕ̃(t)dt

 , (2.5)

where ϕ̃(t) = ϕ(t)+ϕ(−t). (Dümbgen et al., 2007) introduced an efficient algorithm based on an active
set method, and this algorithm is available within R package logcondens (Dümbgen and Rufibach,
2011). Although this algorithm is designed to find the NPMLE of ϕ without symmetric constraint,
same algorithm can be used by turning (2.4) into (2.5).

Recently, (Liu and Wang, 2018) proposed a much faster algorithm known as the constrained new-
ton method (CNM) for the log-concave density estimation without the symmetric constraint. From
the piecewise linearity of the NPMLE ϕ̂, they reparametrized ϕ in (2.4) where ϕ ∈ C as

ϕ̂ = argmax
α,π,δ

1
n

n∑
i=1

αεi −

m∑
j=1

π j

(
εi − δ j

)
+

 − ∫
eϕ(t)dt

 , (2.6)

where α ∈ R, π = (π1, . . . , πm)>, δ = (δ1, . . . , δm)>, and εi = yi − x>i β. Notation a+ means a if
a ≥ 0 and zero otherwise. δ j’s are knots, and α −

∑ j
k=1 πk with a positive πk is the slope between

two knots δ j and δ j+1 for j = 1, . . . ,m − 1. In CNM, the directional derivative of (2.6) is used to
find new knots that increase the likelihood. Changes in the slope at each knot are computed by the
quadratically convergent method and the knots with zero changes are removed. To ensure a monotone
yet sufficiently large increase of the log-likelihood, line search by Armijo’s rule is added for each
iteration of the algorithm.
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Second, for fixed ϕ, we maximize (2.3) with respect to β with fixed tuning parameter λ. Since
the NPMLE ϕ̂ is a piecewise linear function whose number of knots is smaller than the number of
observations, the sum of piecewise linear concave functions of β can be expressed as the minimum of
multiple affine functions (Kim and Seo, 2021). We let

ϕ̂ (t) = min
k=1,...,q−1

(akt + bk) ,

where ak is the slope and bk is the intercept between kth and (k + 1)th knots whose total number
is q. L1 norm of p-dimensional vector β is also a piecewise linear function as λ||β||1 = λ

∑p
j=1 |β j| =

λ
∑p

j=1 max(β j,−β j) and putting the negative sign turns the maximization problem to the minimization
problem. Then the PMLE of β with fixed ϕ̂ can be calculated as follows:

β̂ = argmax
β

 min
k(i)=1,...,q−1

(i=1,...,n)

n∑
i=1

(
−ãk(i) x>i β + ãk(i) yi + b̃k(i)

)
+ λ

p∑
j=1

min
(
β j,−β j

) , (2.7)

where ãk = ak/n and b̃k = bk/n.
We use the linear programming (LP) to solve the maximization problem. The equivalent LP

problem for (2.7) is

argmax
β

1>n u + 1>p v

subject to


ãk(yi − x>i β) + b̃k ≥ ui, i = 1, . . . , n and k = 1, . . . , q − 1;

λβ j ≥ v j, j = 1, . . . , p;

−λβ j ≥ v j, j = 1, . . . , p,

(2.8)

where u = (u1, . . . , un)>, v = (v1, . . . , vp)>, and 1m ∈ Rm is a vector whose elements are all 1.
Suppose 0p×q is a p × q matrix and 0p is a p-dimensional vector whose elements are all 0. Let a =

(ã1, . . . , ãq−1)> and b = (b̃1, . . . , b̃q−1)> be the normalized slope vector and the normalized intercept
vector, respectively. Then, we can reexpress (2.8) as

maximize cθ subject to Qθ ≤ w, (2.9)

where θ = (β>,u>, v>)>, c = (0>p , 1>n+p),

Q =

 X ⊗ a In×n ⊗ 1q−1 0n(q−1)×p

−λIp×p 0p×n Ip×p

λIp×p 0p×n Ip×p

 , and w =

 y ⊗ a + 1n ⊗ b
0p

0p

 .
In matrix Q of (2.9), ⊗ stands for the Kronecker product, Ip×p is the p × p identity matrix, X =

(x1, . . . , xn)>, and y = (y1, . . . , yn)>. By this means, we can turn the estimation problem for β into the
LP problem as in (2.9). To solve this LP problem, we can use the R package lpSolveAPI (Konis and
Konis, 2020).

3. Choice of initial values

The estimation procedure introduced in Section 2.3 could find a local maximizer as the likelihood has
multiple local modes. Hence, we need a careful initial estimator, especially for β. (Kim and Seo,
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2021) used a differential evolution algorithm to obtain an initial estimator near the global maximum
of (2.2) but this algorithm is time-consuming and does not guarantee the global convergence.

As an alternative to find a suitable initial value, we propose using a smoothed log-concave maxi-
mum likelihood estimator (MLE). The smoothed version of the log-concave MLE can be constructed
using the convolution of the estimated log-concave distribution and a Gaussian distribution, which
preserves the log-concavity shape constraint (Prékopa and András, 1971). (Chen and Samworth,
2013) introduced the smoothed log-concave MLE as

f̃ϕ̂ (t) =

∫
eϕ̂(τ)Kh (t − τ) dτ,

where Kh(·) is the Gaussian kernel and h > 0 is a smoothing parameter called bandwidth. The log-
likelihood function with the smoothed log-concave estimator is then defined as

˜̀n (β, ϕ̂) =

n∑
i=1

log f̃ϕ̂
(
yi − x>i β

)
. (3.1)

Now, because ˜̀n(β, ϕ̂) is a smoother function of β than `n(β, ϕ̂), we can stably estimate β.
For fixed β, we can find NPMLE of ϕ using CNM algorithm as in Section 2.3. With a given

NPMLE ϕ̂ which is a piecewise linear function, smoothed version of estimated log-concave distribu-
tion can be written as follows:

f̃ϕ̂(t) =

∫
eϕ̂(τ) 1

√
2πh2

e−
1

2h2 (t−τ)2
dτ,

=

q−1∑
k=1

∫ δk+1

δk

exp (bk + akτ)
1

√
2πh2

e−
1

2h2 (t−τ)2
dτ,

=

q−1∑
k=1

exp
(
akt +

h2

2
a2

k + bk

) (
Φ

(
δk+1 − t − h2ak

h

)
− Φ

(
δk − t − h2ak

h

))
,

where δk’s are knots, and Φ is the CDF of the standard normal density (Kim and Seo, 2018).
For fixed ϕ and given h, we can update β through a quadratically convergent method (Liu and

Wang, 2018). As smoothed log-concave estimator f̃ϕ̂(·) is twice-differential anywhere, we can com-
pute

∂ ˜̀n (β, ϕ̂)
∂β

= −

n∑
i=1

xi

f̃ ′ϕ̂
(
yi − x>i β

)
f̃ϕ̂

(
yi − x>i β

) = S and

∂2 ˜̀n (β, ϕ̂)
∂β∂β>

=

n∑
i=1

xix>i
f̃ ′′ϕ̂

(
yi − x>i β

)
f̃ϕ̂

(
yi − x>i β

)
− f̃ ′ϕ̂

(
yi − x>i β

)2

f̃ϕ̂
(
yi − x>i β

)2 = H,

where f̃ ′ϕ̂(t) = d/dt f̃ϕ̂(t) and f̃ ′′ϕ̂ (t) = d2/dt2 f̃ϕ̂(t). If we let β∗ be an update of the vector β and the
maximization problem of ˜̀n(β, ϕ̂) in (3.1) can be replaced approximately as

min
β∗

∥∥∥Rβ∗ − Rβ − R−T S
∥∥∥2
,
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Figure 1: Estimated error densities based on one simulated sample of size n = 500 for (I)−(IV).

where || · || denotes the L2-norm and R−T = (R>)−1. R is calculated from the spectral decomposition of
H as H = −PΛP> = −R>R. Hence, R = Λ1/2P> and the Moore-Penrose generalized inverse PΛ−1/2

is used in place of R−1. This problem can be solved by the function lsi in R package lsei (Wang et
al., 2020).

To choose the bandwidth h which determines the degree of smoothing, (Chen and Samworth,
2013) proposed ĥ2 = Σ̂ − Σ̃ where Σ̂ = (n − 1)−1 ∑n

i=1(ti − t̄)2 and Σ̃ =
∫

(t − t̄)2eϕ̂(t)dt. This choice
makes the sample variance and estimated variance from f̃ϕ̂ identical. For our purpose, however, this
choice produces too small h2 to produce a sufficiently smooth likelihood. Empirically, we find that
the result is not that sensitive to initial estimators by multiplying constant 3 to ĥ2.

4. Numerical examples

4.1. Simulation studies

We conduct simulation studies to evaluate the finite-sample performance of the proposed estimator
(SLC) comparing with other existing methods such as penalized least squares (NORM) (Tibshirani,
1996) and penalized least absolute deviation (LAD) (Wang et al., 2007) regression with LASSO as
the penalty function. NORM can be obtained through R package glmnet (Friedman et al., 2010), and
LAD can be implemented through R package rqPen (Sherwood and Maidman, 2020).

Selection of the tuning parameter λ is of paramount importance in penalized estimation. When λ
is too small, there will be too many variables included in the final model and the variance of estimators
would increase. Conversely, the selected model is too simple and has a large model bias in case of
selecting too large λ. So it is crucial to keep the balance in selecting the value of λ. Cross-validation is
a very common method, but it is time-consuming. We apply the Bayesian information criterion (BIC)
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(Schwarz, 1978) to choose the tuning parameter in this article. The formula of BIC is

BIC = −2 `n (β, ϕ) + dλ
log (n)

n
,

where dλ is the number of nonzero regression coefficients. We also apply BIC to select the tuning
parameter λ for NORM and LAD.

For comparison, we consider the following four different symmetric error distributions: (I) N(0, 2),
(II) t4, (III) Laplace(0,1), and (IV)

√
40{Beta(2, 2) − 0.5}. Figure 1 shows the estimated error distri-

butions along with the probability histogram of one simulated set of errors for normal, t, Laplace, and
Beta distributions. In this figure, the black solid line represents the true error pdf. The black dotted line
shows the estimated error density function based on NORM, red dashed for SLC, and blue dot-dashed
for LAD. Estimated distributions from both NORM and SLC are close to the true density when the
error is normal. SLC and LAD are close to the true density for the case of Laplace distribution. For
the Beta distribution which has bounded support, SLC provides a better distribution estimator than
those of the other methods. It seems that the proposed method provides quite reasonable estimated
error distributions for all four cases.

For simulation, we generate samples from the model yi = x>i β + εi for i = 1, . . . , n where β =

(3, 1.5, 0, 0, 2, 0, 0, 0)>. We generate covariates xi from a multivariate normal distribution N(0,Ω)
where ( j, k)th element of Ω is Ω jk = 0.5| j−k| for 1 ≤ j, k ≤ p. We repeat the simulation 200 times. We
calculate the initial parameter for β from the linear regression with the smoothed version of estimated
log-concave density as described in Section 3. For each error distribution, Table 1 shows the median
of model errors over 200 simulated datasets with n = 100, 250, and 500. The model error is defined by
(β̂−β)>E(X>X)(β̂−β) (Tibshirani, 1996). The median absolute deviation (MAD) (Fan and Li, 2001)
of the model errors over 200 simulated datasets is also summarized in Table 1. The average number of
0 coefficients is also reported restricted only to the true zero coefficients. We omit the average number
of zero coefficients erroneously set to 0 as there was none. The tuning parameter λ is selected for each
simulated sample.

From Table 1, with the increase of the sample size, the median and MAD of the model error
decrease in all four settings. It is natural to expect that NORM is the best for Case (I) and LAD is the
best for Case (III). For Case (I), SLC has a comparable performance with NORM when the sample
size is large enough. For Case (III), when the sample size is large, SLC has a smaller model error
than LAD. It is because estimated ϕ is a piecewise function that SLC could estimate Laplace well for
a large sample size. Even with t4 (Case (II)), SLC provides the best performance in the view of the
median of the model error even though the t-distribution does not belong to the family of log-concave
distributions. NORM generally works well with finding exact zero coefficients. SLC takes second
place in variable selection performance except for Case (III) with n = 250 and 500 with a slight
difference. SLC works well in Case (II) and (IV) relative to other cases.

4.2. Real data

In this subsection, we apply the proposed method to two real datasets: Ozone data and Plasma Beta-
Carotene Level data. For these datasets, we consider the linear regression model and apply NORM,
SLC, LAD, and OLS to analyze the datasets. To estimate the standard errors of estimated regression
coefficients from NORM, SLC, and LAD, we use the bootstrap method based on 1,000 bootstrap
samples.

Example 1. The Ozone data, originally used in (Breiman and Friedman, 1985), consists of the
daily maximum one-hour-average ozone reading and eight meteorological variables in Los Angeles
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Table 1: Result with ME × 100 for n = 100, 250, and 500

n Error Method Number of Model error
true zeros Median MAD

100

(I)
NORM 3.915 11.635 4.876

SLC 3.755 13.305 5.945
LAD 2.980 16.435 6.749

(II)
NORM 4.105 12.511 6.019

SLC 3.855 10.370 4.521
LAD 3.065 11.205 4.694

(III)
NORM 4.030 10.056 4.599

SLC 3.930 6.239 3.521
LAD 3.200 6.959 3.545

(IV)
NORM 4.025 9.898 4.489

SLC 3.615 10.412 5.278
LAD 2.935 21.914 10.578

250

(I)
NORM 4.115 4.741 2.347

SLC 4.025 5.063 2.099
LAD 3.745 6.105 2.927

(II)
NORM 4.270 4.664 2.468

SLC 4.125 3.597 1.622
LAD 3.985 3.655 1.756

(III)
NORM 4.045 4.749 2.068

SLC 4.000 2.860 1.316
LAD 4.025 2.762 1.514

(IV)
NORM 4.215 4.637 1.980

SLC 3.955 3.363 1.701
LAD 3.685 8.453 3.846

500

(I)
NORM 4.250 2.209 1.097

SLC 4.145 2.468 1.272
LAD 3.940 3.322 1.664

(II)
NORM 4.190 2.543 1.196

SLC 4.180 1.916 0.974
LAD 4.070 1.993 0.913

(III)
NORM 4.260 2.514 1.178

SLC 4.140 1.245 0.609
LAD 4.150 1.265 0.645

(IV)
NORM 4.150 2.602 1.135

SLC 3.855 1.727 0.859
LAD 3.755 4.458 2.084

for 330 days in 1976. This data has been used in various studies. The goal is to model the relationship
between the daily maximum one-hour-average ozone reading (ozone) and the other eight variables:
temperature (temp), inverse base height (invHt), pressure gradient (press), visibility (vis), 500 millibar
pressure height (milPress), humidity (hum), inversion base temperature (invTemp), and wind speed
(wind). This data is publicly available in R package cosso (Zhang and Lin, 2013). We plot a his-
togram of ozone in Figure 2 which indicates that the distribution of ozone is seriously skewed. We
use the log-transformed ozone to release its skewness.

Table 2 compares the estimated results of the regression coefficients from NORM, SLC, and LAD
besides the OLS method. The standard errors are given in their corresponding parentheses. All four
methods provide quite similar results based on the selected variables and signs of the significant
variables. SLC provides the most sparse model as they select temp, invHT, vis, and hum as the
significant variables in the model. NORM and LAD select five variables: temp, invHT, press, vis,
and hum. Figure 3 shows the correlation between the standardized covariates. MillPress and invTemp
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Figure 2: The histograms of ozone and log-transformed ozone.

Table 2: Estimated parameters and standard errors from the Ozone Data

Variable Method
NORM SLC LAD OLS

temp 0.551 (0.068) 0.534 (0.067) 0.556 (0.087) 0.574 (0.089)
invHt −0.268 (0.047) −0.232 (0.051) −0.240 (0.061) −0.285 (0.063)
press 0.044 (0.041) 0 (-) 0.023 (0.054) 0.052 (0.050)
vis −0.056 (0.035) −0.040 (0.031) −0.028 (0.050) −0.072 (0.037)

milPress 0 (-) 0 (-) 0 (-) −0.024 (0.070)
hum 0.110 (0.047) 0.126 (0.054) 0.218 (0.051) 0.103 (0.046)

invTemp 0 (-) 0 (-) 0 (-) 0.002 (0.129)
wind 0 (-) 0 (-) 0 (-) 0.017 (0.034)

Figure 3: The correlation plot between standardized covariates for Ozone and Plasma Beta-Carotene Level data.

have serious correlations with other variables, and it seems that they are removed after the variable
selection as other variables could explain these two variables.

Example 2. The Plasma Beta-Carotene Level dataset collected by a cross-sectional study (Nieren-
berg et al., 1989) is available on http://lib.stat.cmu.edu/datasets/Plasma_Retinol. This
dataset consists of 315 samples and in this study, we only use 273 female patients. Our interest is in the
relationship between the plasma beta-carotene level (betaplasma) and the following 8 covariates: age,
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Figure 4: The histograms of betaplasma and log-transformed betaplasma.

Table 3: Estimated parameters and standard errors from the Plasma Beta-Carotene Level data

Variable Method
NORM SLC LAD OLS

age 0.114 (0.056) 0.168 (0.055) 0.161 (0.060) 0.135 (0.059)
bmi −0.236 (0.057) −0.265 (0.053) −0.245 (0.072) −0.265 (0.057)

calories 0 (-) −0.106 (0.078) −0.060 (0.069) −0.085 (0.174)
fat −0.069 (0.052) 0 (-) 0 (-) −0.049 (0.148)

fiber 0.176 (0.074) 0.203 (0.067) 0.139 (0.071) 0.246 (0.086)
alcohol 0 (-) 0 (-) 0 (-) 0.030 (0.059)

cholesterol 0 (-) 0 (-) 0 (-) −0.013 (0.082)
betadiet 0.100 (0.062) 0.177 (0.065) 0.248 (0.075) 0.128 (0.063)

quetelet index (bmi), number of calories (calories), grams of fat (fat), grams of fiber (fiber), number of
alcoholic drinks per week (alcohol), cholesterol and dietary beta-carotene (betadiet). Figure 4 displays
a histogram of betaplasma whose distribution is quite skewed with the unusual points. To release its
skewness, we use the log-transformation on betaplasma. Before taking the log scale, we remove the
217th observation with the zero value which would lead to negative-infimum in log-transformation.

Signs of the significant variables are all matched among the comparison models, but selected
variables and corresponding coefficients are slightly different. Table 3 reveals that SLC and LAD
discard fat, alcohol, and cholesterol but NORM discards calories instead of fat in the model. Figure 3
shows that there is a serious correlation between calories, fat, and cholesterol. After variable selection,
variables among these three have been discarded.

5. Conclusion

Although assuming normality in the mean linear regression is common and mostly used, the esti-
mation may not be reliable when the true error distribution has a heavy tail or unique shape form.
To relax such misspecification problem, in this article, we studied the estimation of the regression
coefficients and error distributions using log-concave densities with L1 penalty on the regression coef-
ficients. We used the CNM algorithm to nonparametrically estimate the log-concave error distribution,
and the estimation of regression coefficients was derived by turning the maximization problem into
the LP problem with constraints. To obtain a suitable initial value, we also developed a method using
a smoothed log-concave estimator to stably estimate regression parameters from a smooth likelihood.
Although this method is helpful in greatly reducing the computing time and stably searching the global
maximizer of the likelihood, there is no guarantee that the estimator is the global maximizer. Further
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study is required to improve the computational accuracy and efficiency.

From our simulation studies, the proposed method showed comparable performance with existing
methods that used correctly specified error distributions. When the true error distribution is different
from the specified error distribution, the proposed method showed much better performance than
existing methods. Even when the true distribution was not log-concave, the proposed method also
showed better performance than existing methods. This is because many distributions which are not
log-concave can be closely approximated by the log-concave distributions.

Although we only considered the LASSO penalty to the likelihood, the proposed method can
be used with other penalties such as SCAD and MCP. In this case, however, a suitable estimating
algorithm should be developed. A further extension to make our model more robust can also be
studied. For example, Hu et al. (2017) proposed to use a least trimmed squares method to make their
model robust to outliers and our proposed method can also be extended in a similar direction. We
leave these extensions to future research.
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Prékopa and András (1971). Logarithmic concave measures with application to stochastic program-
ming, Acta Scientiarum Mathematicarum, 32, 301–316.

Rousseeuw PJ and Leroy AM (1987). Robust Regression and Outlier Detection, Wiley, New York.
Schwarz G (1978). Estimating the dimension of a model, The Annals of Statistics, 6, 461–464.
Sherwood B and Maidman A (2020). rqPen: Penalized Quantile Regression, R package version 2.2.2.
Silverman BW (1982). On the estimation of a probability density function by the maximum penalized

likelihood method, The Annals of Statistics, 10, 795–810.
Tibshirani R (1996). Regression shrinkage and selection via the Lasso, Journal of the Royal Statistical

Society, Series B, 58, 267–288.
Wang H, Li G, and Jiang G (2007). Robust regression shrinkage and consistent variable selection

through the LAD-Lasso, Journal of Business & Economic Statistics, 25, 347–355.
Wang Y, Lawson CL, and Hanson RJ (2020). lsei: Solving Least Squares or Quadratic Programming

Problems under Equality/Inequality Constraints, R package version 1.3-0.
Zhang CH (2010). Nearly unbiased variable selection under minimax concave penalty, The Annals of

Statistics, 38, 894–942.
Zhang HH and Lin CY (2013). Cosso: Fit Regularized Nonparametric Regression Models Using

COSSO Penalty, R package version 2.1-1.
Zou H (2006). The adaptive lasso and its oracle properties, Journal of the American Statistical Asso-

ciation, 101, 1418–1429.

Received March 22, 2022; Revised May 04, 2022; Accepted May 16, 2022




