DOI QR코드

DOI QR Code

Identification and characterization of Dunaliella salina OH214 strain newly isolated from a saltpan in Korea

  • Minjae, Kim (Department of Life Science, Research Institute for Natural Sciences, Hanyang University) ;
  • Hyeon Jun, Oh (Department of Life Science, Research Institute for Natural Sciences, Hanyang University) ;
  • Khanh, Nguyen (Department of Life Science, Research Institute for Natural Sciences, Hanyang University) ;
  • EonSeon, Jin (Department of Life Science, Research Institute for Natural Sciences, Hanyang University)
  • Received : 2022.08.04
  • Accepted : 2022.09.13
  • Published : 2022.12.15

Abstract

Carotenoids are effective antioxidants that are found in various photosynthetic organisms. Marine microalgae are an advantageous bioresource for carotenoid production because they do not compete with other crops for freshwater and arable land. This study reports a newly isolated Dunaliella strain from the Geumhong Saltpan on Yeongjong Island, West Sea, Korea. The new strain was isolated and classified as Dunaliella salina through phylogenetic analysis and was named the OH214 strain (Deposit ID: KCTC14434BP). The newly isolated strain can survive in a wide range of NaCl concentrations (0.3-5.0 M NaCl), but grows well in 0.6 to 1.5 M NaCl culture medium. Under high-light conditions (500 ± 10 μmol photons m-2 s-1), the cells accumulated three times more β-carotene than under low-light conditions (50 ± 5 μmol photons m-2 s-1). The cells accumulated 2.5-fold more β-carotene under nitrogen-deficient (1 mM KNO3) conditions (3.24 ± 0.36 ㎍ 106 cells-1) than in nitrogen-sufficient conditions (>5 mM KNO3). The lutein content under nitrogen-deficient conditions (1.73 ± 0.09 ㎍ 106 cells-1) was more than 24% higher than that under nitrogen-sufficient conditions. Under the optimized culture condition for carotenoid induction using natural seawater, D. salina OH214 strain produced 7.97 ± 0.09 mg g DCW-1 of β-carotene and 4.65 ± 0.18 mg g DCW-1 of lutein, respectively. We propose that this new microalga is a promising strain for the simultaneous production of β-carotene and lutein.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program (NRF2020R1A2C2011998) of the National Research Foundation (NRF) of Korea, funded by the Korean government. And this research was supported by Korea Environmental Industry & Technology Institute (KEITI) through "The project to develop eco-friendly new materials and processing technology derived from wildlife", funded by Korea Ministry of Environment (MOE) (2021003270007).

References

  1. Becerra, M. O., Contreras, L. M., Lo, M. H., Diaz, J. M. & Herrera, G. C. 2020. Lutein as a functional food ingredient: stability and bioavailability. J. Funct. Foods 66:103771.
  2. Ben-Amotz, A. 1987. Effect of irradiance and nutrient deficiency on the chemical composition of Dunaliella bardawil Ben-Amotz and Avron (Volvocales, Chlorophyta). J. Plant Physiol. 131:479-487. https://doi.org/10.1016/s0176-1617(87)80290-0
  3. Ben-Amotz, A., Shaish, A. & Avron, M. 1991. The biotechnology of cultivating Dunaliella for production of β-carotene rich algae. Bioresour. Technol. 38:233-235. https://doi.org/10.1016/0960-8524(91)90160-L
  4. Bernstein, P. S., Li, B., Vachali, P. P., Gorusupudi, A., Shyam, R., Henriksen, B. S. & Nolan, J. M. 2016. Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog. Retin. Eye Res. 50:34-66. https://doi.org/10.1016/j.preteyeres.2015.10.003
  5. Bogacz-Radomska, L., Harasym, J. & Piwowar, A. 2020. Commercialization aspects of carotenoids. In Galanakis, C. M. (Ed.) Carotenoids: Properties, Processing and Applications. Elsevier, Waltham, MA, pp. 327-357.
  6. Borowitzka, L. J. 1991. Development of western biotechnology's algal β-carotene plant. Bioresour. Technol. 38:251-252. https://doi.org/10.1016/0960-8524(91)90164-F
  7. Borowitzka, M. A. 1995. Microalgae as sources of pharmaceuticals and other biologically active compounds. J. Appl. Phycol. 7:3-15. https://doi.org/10.1007/BF00003544
  8. Borowitzka, M. A., Borowitzka, L. J. & Kessly, D. 1990. Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J. Appl. Phycol. 2:111-119. https://doi.org/10.1007/BF00023372
  9. Borowitzka, M. A. & Siva, C. J. 2007. The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J. Appl. Phycol. 19:567-590. https://doi.org/10.1007/s10811-007-9171-x
  10. Carpentier, S., Knaus, M. & Suh, M. 2009. Associations between lutein, zeaxanthin, and age-related macular degeneration: an overview. Crit. Rev. Food Sci. Nutr. 49:313-326. https://doi.org/10.1080/10408390802066979
  11. Chen, H. & Jiang, J. -G. 2009. Osmotic responses of Dunaliella to the changes of salinity. J. Cell. Physiol. 219:251-258. https://doi.org/10.1002/jcp.21715
  12. Delgado-Vargas, F. & Paredes-Lopez, O. 1996. Correlation of HPLC and AOAC methods to assess the all-trans-lutein content in Marigold flowers. J. Sci. Food Agric. 72:283-290. https://doi.org/10.1002/(SICI)1097-0010(199611)72:3<283::AID-JSFA652>3.0.CO;2-V
  13. de Sa, M. C. & Rodriguez-Amaya, D. B. 2003. Carotenoid composition of cooked green vegetables from restaurants. Food Chem. 83:595-600. https://doi.org/10.1016/S0308-8146(03)00227-9
  14. Edge, R., McGarvey, D. & Truscott, T. G. 1997. The carotenoids as anti-oxidants: a review. J. Photochem. Photobiol. B Biol. 41:189-200. https://doi.org/10.1016/S1011-1344(97)00092-4
  15. Emami, K., Hack, E., Nelson, A., Brain, C. M., Lyne, F. M., Mesbahi, E., Day, J. G. & Caldwell, G. S. 2015. Proteomicbased biotyping reveals hidden diversity within a microalgae culture collection: an example using Dunaliella. Sci. Rep. 5:10036.
  16. Fawley, M. W. & Fawley, K. P. 2004. A simple and rapid technique for the isolation of DNA from microalgae. J. Phycol. 40:223-225. https://doi.org/10.1111/j.0022-3646.2004.03-081.x
  17. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  18. Fernandez-Sevilla, J. M., Fernandez, F. G. A. & Grima, E. M. 2010. Biotechnological production of lutein and its applications. Appl. Microbiol. Biotechnol. 86:27-40. https://doi.org/10.1007/s00253-009-2420-y
  19. Frank, H. A. & Cogdell, R. J. 1996. Carotenoids in photosynthesis. Photochem. Photobiol. 63:257-264. https://doi.org/10.1111/j.1751-1097.1996.tb03022.x
  20. Gonzalez, M. A., Gomez, P. I. & Montoya, R. 1998. Comparison of PCR-RFLP analysis of the ITS region with morphological criteria of various strains of Dunaliella. J. Appl. Phycol. 10:573-580. https://doi.org/10.1023/A:1008035422784
  21. Ho, S. -H., Chan, M. -C., Liu, C. -C., Chen, C. -Y., Lee, W .-L., Lee, D. -J. & Chang, J. -S. 2014. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresour. Technol. 152:275-282. https://doi.org/10.1016/j.biortech.2013.11.031
  22. Huang, W., Lin, Y., He, M., Gong, Y. & Huang, J. 2018. Induced high-yield production of zeaxanthin, lutein, and β-carotene by a mutant of Chlorella zofingiensis. J. Agric. Food Chem. 66:891-897. https://doi.org/10.1021/acs.jafc.7b05400
  23. Jin, E., Feth, B. & Melis, A. 2003. A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. Biotechnol. Bioeng. 81:115-124. https://doi.org/10.1002/bit.10459
  24. Jin, E. & Polle, J. E. W. 2019. Carotenoid biosynthesis in Dunaliella (Chlorophyta). In Ben-Amotz, A. (Ed.) The Alga Dunaliella. CRC Press, Boca Raton, FL, pp. 147-172.
  25. Jo, S. -W., Hong, J. W., Do, J. -M., Na, H., Kim, J. -J., Park, S. -I., Kim, Y. -S., Kim, I. -S. & Yoon, H. -S. 2020. Nitrogen deficiency-dependent abiotic stress enhances carotenoid production in indigenous green microalga Scenedesmus rubescens KNUA042, for use as a potential resource of high value products. Sustainability 12:5445.
  26. Kim, M., Ahn, J., Jeon, H. & Jin, E. 2017. Development of a Dunaliella tertiolecta strain with increased zeaxanthin content using random mutagenesis. Mar. Drugs 15:189.
  27. Lamers, P. P., Janssen, M., De Vos, R. C. H., Bino, R. J. & Wijffels, R. H. 2012. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J. Biotechnol. 162:21-27. https://doi.org/10.1016/j.jbiotec.2012.04.018
  28. Lamers, P. P., van de Laak, C. C. W., Kaasenbrood, P. S., Lorier, J., Janssen, M., De Vos, R. C. H., Bino, R. J. & Wijffels, R. H. 2010. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol. Bioeng. 106:638-648. https://doi.org/10.1002/bit.22725
  29. Levasseur, M., Thompson, P. A. & Harrison, P. J. 1993. Physiological acclimation of marine phytoplankton to different nitrogen sources. J. Phycol. 29:587-595. https://doi.org/10.1111/j.0022-3646.1993.00587.x
  30. Li, Y., Gu, W., Huang, A., Xie, X., Wu, S. & Wang, G. 2019. Transcriptome analysis reveals regulation of gene expression during photoacclimation to high irradiance levels in Dunaliella salina (Chlorophyceae). Phycol. Res. 67:291-302. https://doi.org/10.1111/pre.12379
  31. Lin, J. -H., Lee, D. -J. & Chang, J. -S. 2015. Lutein production from biomass: marigold flowers versus microalgae. Bioresour. Technol. 184:421-428. https://doi.org/10.1016/j.biortech.2014.09.099
  32. Little, S. M., Senhorinho, G. N. A., Saleh, M., Basiliko, N. & Scott, J. A. 2021. Antibacterial compounds in green microalgae from extreme environments: a review. Algae 36:61-72. https://doi.org/10.4490/algae.2021.36.3.6
  33. Lv, H., Kim, M., Park, S., Baek, K., Oh, H., Polle, J. E. W. & Jin, E. 2021. Comparative transcriptome analysis of shortterm responses to salt and glycerol hyperosmotic stress in the green alga Dunaliella salina. Algal Res. 53:102147.
  34. Mil'ko, E. S. 1963. Effect of various environmental factors on pigment production in the alga Dunaliella salina. Microbiologiya 32:299-307.
  35. Minyuk, G., Sidorov, R. & Solovchenko, A. 2020. Effect of nitrogen source on the growth, lipid, and valuable carotenoid production in the green microalga Chromochloris zofingiensis. J. Appl. Phycol. 32:923-935. https://doi.org/10.1007/s10811-020-02060-0
  36. Park, S., Kim, M., Lee, S. -G., Lee, Y., Choi, H. -K. & Jin, E. 2015. Contrasting photoadaptive strategies of two morphologically distinct Dunaliella species under various salinities. J. Appl. Phycol. 27:1053-1062. https://doi.org/10.1007/s10811-014-0394-3
  37. Polle, J. E., Niyogi, K. K. & Melis, A. 2001. Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green alga Chlamydomonas reinhardtii. Plant Cell Physiol. 42:482-491. https://doi.org/10.1093/pcp/pce058
  38. Ribeiro, B. D., Barreto, D. W. & Coelho, M. A. Z. 2011. Technological aspects of β-carotene production. Food Bioprocess Technol. 4:693-701. https://doi.org/10.1007/s11947-011-0545-3
  39. Saha, S. K., Kazipet, N. & Murray, P. 2018. The carotenogenic Dunaliella salina CCAP 19/20 produces enhanced levels of carotenoid under specific nutrients limitation. Bio. Med. Res. Int. 2018:7532897.
  40. Saitou, N. & Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  41. Shaish, A., Avron, M., Pick, U. & Ben-Amotz, A. 1993. Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Planta 190:363-368. https://doi.org/10.1007/BF00196965
  42. Shi, X. -M., Jiang, Y. & Chen, F. 2002. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol. Prog. 18:723-727. https://doi.org/10.1021/bp0101987
  43. Soares, A. T., da Costa, D. C., Vieira, A. A. H. & Antoniosi Filho, N. R. 2019. Analysis of major carotenoids and fatty acid composition of freshwater microalgae. Heliyon 5:e01529.
  44. Sommerburg, O., Keunen, J., Bird, A. & Van Kuijk, F. J. G. M. 1998. Fruits and vegetables that are sources for lutein  and zeaxanthin: the macular pigment in human eyes. Br. J. Ophthalmol. 82:907-910. https://doi.org/10.1136/bjo.82.8.907
  45. Stahl, W. & Sies, H. 2003. Antioxidant activity of carotenoids. Mol. Aspects Med. 24:345-351. https://doi.org/10.1016/S0098-2997(03)00030-X
  46. Sun, Z., Li, T., Zhou, Z.-G. & Jiang, Y. 2015. Microalgae as a source of lutein: chemistry, biosynthesis, and carotenogenesis. Adv. Biochem. Eng. Biotechnol. 153:37-58.
  47. Uriarte, I., Farias, A., Hawkins, A. J. S. & Bayne, B. L. 1993. Cell characteristics and biochemical composition of Dunaliella primolecta Butcher conditioned at different concentrations of dissolved nitrogen. J. Appl. Phycol. 5:447-453. https://doi.org/10.1007/BF02182737
  48. Williams, P. J. B. & Laurens, L. M. L. 2010. Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics and economics. Energy Environ. Sci. 3:554-590.
  49. Xie, Y., Lu, K., Zhao, X., Ma, R., Chen, J. & Ho, S.-H. 2019. Manipulating nutritional conditions and salinity-gradient stress for enhanced lutein production in marine microalga Chlamydomonas sp. Biotechnol. J. 14:e1800380.
  50. Xu, Y., Ibrahim, I. M., Wosu, C. I., Ben-Amotz, A. & Harvey, P. J. 2018. Potential of new isolates of Dunaliella salina for natural β-carotene production. Biology 7:14.
  51. Yaakob, M. A., Mohamed, R. M. S. R., Al-Gheethi, A., Aswathnarayana Gokare, R. G. A. & Ambati, R. R. 2021. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells 10:393.