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DYNAMICS OF GUN VIOLENCE BY LEGAL AND ILLEGAL

FIREARMS: A FRACTIONAL DERIVATIVE APPROACH

Chandrali Baishya∗ and P. Veeresha

Abstract. Crime committed by civilians and criminals using legal and
illegal firearms and conversion of legal firearms into illegal ones has be-

come a common practice around the world. As a result, policies to control

civilian gun ownership have been debated in several countries. The issue
arose because the linkages between firearm-related mortality, weapon ac-

cessibility, and violent crime data can imply diverse options for addressing

criminality. In this paper, we have projected a mathematical model in
terms of the Caputo fractional derivative to address the issues viz. input

of legal guns, crime committed by legal and illegal guns, and strict gov-

ernment policies to monitor the license of legal guns, strict action against
violent crime. The boundedness, existence and uniqueness of solutions

and the stability of points of equilibrium are examined. It is observed

that violent crime increases with the increase of crime committed by ille-
gal guns, crime committed by legal guns and, decreases with the increase

of legal guns, the deterrent effect of civilian gun ownership, and action of
law against crime. Further, legal guns increase with the increase of the

limitation of trade of illegal guns and decrease with the increase of con-

version of legal guns into illegal guns and increase of the growth rate of
illegal guns. Again, as crime is committed by legal guns also, the policy of

illegal gun control does not assure a crime-free society. Weak gun control

can lead to a society with less crime. Theoretical aspects are numerically
verified in the present work.

1. Introduction

Crime is a serious sociological epidemic that has spread over our society
at a rapid speed over the past few decades. Easy access to firearms by civil-
ians legally or illegally and criminal illegally is one of the primary reasons for
this. Family members, friends, and acquaintances are responsible for 80 percent
of firearm killings. Greed, envy, relationship termination, revenge, divergent
ideas, bigotry, and drug-related fights are all common motives. [44]. Unin-
tentional firearm deaths, public mass shootings, and firearm suicides are the
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Table 1. Countries with the highest rates of Homicides per
100k residents in 2019 [20]

Country No. of death
El Salvador 36.78
Venezuela 33.27
Guatemala 29.06
Colombia 26.36
Brazil 21.93
Bahamas 21.52
Honduras 20.15
U.S. Virgin Islands 19.40
Puerto Rico 18.14
Mexico 16.41

firearm-related deaths directly proportional to the presence of legal weapons in
the home [19, 23, 30, 44]. In the United States, stricter gun-control laws were
linked to lower rates of firearm homicide. [24]. In various countries, including
Brazil [30,39] and the United States [30,38], firearm-related deaths are serious
public safety and public health issue. As a result, the link between gun laws
and gunshot injury mortality has been hotly debated and explored. The follow-
ing are some of the arguments in favor of civil society where restrictions on the
use and possession of registered firearms are discussed:(i) homicide rates can be
reduced by imposing restrictions on access to firearms [19]; (ii) widespread own-
ership of legally obtained firearms would discourage criminal actions, known
as the deterrent effect of defensive gun use [22]; (iii) criminals typically carry
illegally obtained firearms and are unconcerned about gun-control laws [18];
(iv) firearm suicides outnumber firearm homicides in many countries [30]; (v)
easy access to firearms can contribute to events of public mass shooting [23]. In
2020, Gun Violence Archive registered 24,090 gun suicides. According to the
latest data, the United States government’s state and federal prisons currently
house 2.24 million Americans and it costs 80 billion dollars per year [27]. Table
1 and 2 present data of the countries with the highest rate of homicides and
suicides in 2019.

Over the years, mathematical studies are carried out on criminality dynam-
ics in the forms of a variety of mathematical modeling in terms of ordinary and
partial differential equations [8,10,17,26,28,35,37,40,42]. There are population
dynamics models that describe the role of correctional centers in crime reduc-
tion and infectious disease model that assesses crime as a social epidemic [15].
In [32], authors have discussed the effects of gun-control policies on crime rates
via game-theoretic models. Prior discovery of illicit behavior and study of the
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Table 2. Countries with the highest rates of firearm-related
suicide (per 100k) in 2019 [20]

Country No. of death
Greenland 16.36
United States 7.12
Uruguay 4.74
San Marino 4.08
Montenegro 3.40

spatial version of the inspection game [33] and the role of informants in pro-
moting the development of a crime-free society [43] are also investigated. The
spread of residential burglary has been analyzed in [16].

Although gun regulation is a hot topic in America, there has been little
research to investigate the causes of gun violence. Until President Obama
declared gun violence a public health issue, there was no research to find out
preventive measures for gun violence. He also called for more comprehensive re-
search regarding this issue. As a response to this, the first mathematical model
to measure how legal gun availability impacts firearm-related homicide rates
was proposed by Dominik Wodarz and Natalia Komarova from the University
of California [46]. They developed equations to determine if policies ranging
from a total firearm prohibition to ”arm everyone” increase or decrease killings,
based on data dating back to World War I. Wordarz and Komarova show that
their model predicts that stronger gun laws are the best method to prevent
gun deaths by using their best guess about values predicted or suggested from
the existing research literature. In Australia, the National Firearms Agreement
(NFA) of 1996 was enacted as strong gun control legislation and facilitated the
purchase of over 650,000 firearms. While various studies have looked into how
the NFA affects firearm deaths, none have looked into how it affects crime. In
2015, Taylor and Li came up with a difference-in-difference identification ap-
proach to answer the question ”Do fewer guns lead to less crime”. They found
that armed robbery and attempted murder decreased significantly one and two
years after the NFA was adopted. To answer the question ”do more legal guns
mean less crime committed by illegal guns?”, in [29], the author has proposed
a model in terms of differential equations. He has looked into the effects of
various gun-control policies on the rate of gun-related crimes. However, the
author has not considered the crime committed by the legal weapons in this
model.

Fractional derivative is proved to be an effective tool to study the effect of
memory on the physical system [9, 34, 47]. As crime is highly related to one’s
past experiences in family, society, and neighborhood, it is very relevant to
analyze the crime model incorporating fractional derivatives. The notion of
fractional differentiation has received a lot of attention and consideration in
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the last 55 years, specifically in 1967 when it was first modified as part of the
Caputo investigation [11]. In recent years, we can notice rigorous applications
of fractional calculus in various fields such as signal and image processing, me-
chanics, chemistry, biology, economics, electricity, and control theory to model
numerous real-world phenomena by using fractional derivatives (FDs), includ-
ing, Riemann-Liouville, Caputo, Weyl, Riesz, Grünwald–Letnikov, Marchaud
and Hifler, Caputo-Fabrizio, and Atangana-Baleanu operators. The significant
literature can be found in [1,4,5,21,36,41]. Due to the singularity of the power-
law-based FDs, the commonly used fractional differential operators have some
limitations for simulating real-world problems. To deal with this, Caputo and
Fabrizio have nurtured a new operator with fractional order. They stressed
that many physical occurrences are non-singular and that using singular oper-
ators to simulate non-singular events could lead to erroneous results. To tackle
the problem, they devised the Caputo-Fabrizio FD, a fractional differential op-
erator using the exponential function as the kernel [12]. In 2016, Atangana and
Baleanu proposed the generalized Mittag–Leffler function as a new kernel to
incorporate time non-locality into the mathematical formulation of a fractional
differential operator with non-singular kernel [3].

In many physical events, the current state of the system is influenced by
both current and prior conditions, meaning that past events have an impact
on current dynamics. The FDs are significant since the past is seen to be the
source of the present. In [9, 47], a system of fractional differential equations is
used to examine the effect of memory on epidemic evolution. Since past events
have huge impacts on happening of any sort of crime, in this paper, we aim to
examine a mathematical model involving violent crimes, legal weapons owned
by civilians, and illegal weapons in the frame of the Caputo fractional deriva-
tive. The analysis of nonlinear models requires the most efficient technique to
study the related behaviors [6, 7]. We have evaluated the influence of various
parameters theoretically as well as numerically. The numerical results are com-
puted by using the generalized fractional Adams-Bashforth-Moultan technique
compatible with fractional AB derivative [13,14].

2. Preliminaries

In the present work, we have used the Caputo fractional derivatives (denoted
by CD) because it supports the integer order initial condition. In this section,
we have presented certain theorems that have been applied to determine the
theoretical results corresponding to the solution of the projected model.

Definition 2.1. [36] (Caputo Fractional Derivative) Suppose g(t) is k
times continuously differentiable function and g(k)(t) is integrable in [t0, T ].
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The fractional derivative of the order α established by Caputo sense for g(t),is

C
t0D

α
t g(t) =

1

Γ(k − α)

∫ t

t0

g(k)(τ)

(t− τ)α+1−k
dτ

where Γ (·) refers to Gamma function, t > a and k is a positive integer with
the property that k − 1 < α < k.

Lemma 2.2. [45] Consider the system

(1) C
t0D

α
t v(t) = g(t, v), t > t0,

choosing the initial condition as v(t0), where 0 < α ≤ 1 and g : [t0,∞)× Ω →
Rn,Ω ∈ Rn. When g(t, v) holds the locally Lipchitz conditions concerning to
v, Eq.1 has a unique solution on [t0,∞)× Ω.

Lemma 2.3. [25] We assume that g(t) is a continuous function on [t0,+∞)
satisfying

C
t0D

α
t g(t) ≤ −ϵg(t) + ξ, g(t0) = g0,

where t0 ≥ 0 is the initial time, 0 < α ≤ 1, ϵ ̸= 0, (ϵ, ξ) ∈ R2. Then,

g(t) ≤ (g(t0)−
ξ

ϵ
)Eα[−ϵ(t− t0)

α] +
ξ

ϵ

3. Model formulation

Monterio [29], came up with a mathematical model presenting the evolution
of violent crimes such as robbery and assault assuming that crimes are com-
mitted only by illegal firearms. He has represented the concept that lawfully
armed individuals intimidate criminals who are illegally armed. However, this
firearm’s defensive value relating to gun ownership is debatable, as studies re-
veal that gun owners are more likely to be homicide victims. In the past few
decades, we have observed an increasing number of violent crimes committed
by legal weapons too. It includes mass shootings, suicides, drug-related crimes,
a crime for personal revenge, and others. If we consider Vc as the prevalence of
violent crimes per capita, Gl the number of legal firearms owned by civilians
per capita, and Gi the number of illegal firearms per capita, then Monterio’s
model may be modified as a model where the term γ1Gl representing the crime
committed by legal firearms. Moreover, committing a crime has a long-term
relationship with memory. Whenever crimes happen behind that there always
be the impact of some past incidents. Therefore, we aim at evaluating the influ-
ence of the Caputo fractional derivative on the dynamics of crimes and firearms
evolution. With the above modification, the proposed model representing the
crimes, legal firearms, and illegal firearms dynamics is presented in the form of
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Table 3. Brief description of the model parameters.

Parameter Assumption/fact
δ deterrent effect of civilian gun ownership
γ1 Violent crimes committed by legal guns
µ Action of law against violent crime
γ2 Violent crimes committed by illegal guns
σ Constant supply of legal guns
β Stimulated acquisition of legal guns
θ Government policy in monitoring and limiting the license of legal guns
ρ Conversion of legal guns into illegal guns
ϵ Growth rate of illegal guns
ν Limiting factor in the trade of illegal guns

the following system of fractional differential equations:

CDαVc = γ1Gl + γ2Gi − δGlGi − µVc,

CDαGl = σ + βVc − ρGlGi − θGl,

CDαGi = ρGlGi + ϵGi − νG2
i .(2)

The meaning of the symbols used in the model formation is described in the
Table 3.

4. Boundedness

In this section we establish that the solutions of the system (2) are bounded.

Theorem 4.1. The solutions of the system (2) are uniformly bounded.

Proof. Let us define a function, A(t) = Vc(t) + Gl(t) + Gi(t). Taking the
Caputo fractional derivative, we get

CDαA(t) + ξA(t) =C Dα[Vc(t) +Gl(t) +Gi(t)] + ξ (Vc(t) +Gl(t) +Gi(t))

= γ1Gl + γ2Gi − δGlGi − µVc + σ

+ βVc − ρGlGi − θGl + ρGlGi + ϵGi − νG2
i

+ ξVc + ξGl(t) + ξGi(t)

≤ −(µ− β − ξ)Vc − (θ − γ1 − ξ)Gl + (γ2 + ϵ+ ξ − νGi)Gi + σ.
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Here, ξ is a positive real number. If ξ = min{µ− β, θ − γ1}, then
C
t0D

α
t A(t) + ξA(t) ≤ (γ2 + ϵ+ ξ − νGi)Gi + σ

= −ν

(
Gi −

γ2 + ϵ+ ξ

2ν

)2

+
(γ2 + ϵ+ ξ)2

4ν
+ σ

≤ (γ2 + ϵ+ ξ)2

4ν
+ σ.

By the Lemma 2.3, we get

A(t) ≤ 1

ξ

(
(γ2 + ϵ+ ξ)2

4ν
+ σ

)
+

(
A(t0)−

1

ξ

(
(γ2 + ϵ+ ξ)2

4ν
+ σ

))
Eα[−ξ(t−t0)

α].

Clearly, Eα[−ξ(t−t0)
α] → 0 as t → ∞. Therefore, all the solution of the system

(2) that initiates in R3
+ remained bounded in

Θ =

{
(Vc, Gl, Gi) ∈ R3

+ : Vc(t)+Gl(t)+Gi(t) ≤
1

ξ

(
(γ2 + ϵ+ ξ)2

4ν
+ σ

)
+ϵ, ϵ > 0

}
.

5. Existence and Uniqueness

The existence of the solutions of the proposed model, (2) is demonstrated
using the fixed-point Theorem in this Section. Since model (2) is complex and
non-local, there are no specific algorithms or approaches for evaluating its exact
solutions. However, the existence is guaranteed if certain conditions are met.
The system (2) can be rewritten as:

CDαVc = A1(t, Vc(t)),

CDαGl = A2(t, Gl(t)),

CDαGi = A3(t, Gi(t)),(3)

where

A1(t, Vc(t)) = γ1Gl + γ2Gi − δGlGi − µVc,

A2(t, Gl(t)) = σ + βVc − ρGlGi − θGl,

A3(t, Gi(t)) = ρGlGi + ϵGi − νG2
i .

and

Vc(t)− Vc(0) =
1

Γ(α)

∫ t

0

A1(τ, Vc(τ))(t− τ)α−1dτ,

Gl(t)−Gl(0) =
1

Γ(α)

∫ t

0

A2(τ, Vc(τ))(t− τ)α−1dτ,

Gi(t)−Gi(0) =
1

Γ(α)

∫ t

0

A3(τ, Vc(τ))(t− τ)α−1dτ.(4)
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We shall show that the kernels A1, A2, A3 satisfy Lipschitz condition and con-
traction.

Theorem 5.1. In the region Ω× [0, T ], where

Ω = {(Vc, Gl, Gi) ∈ R3 : max{|Vc|, |Gl|, |Gi|} ≤ m},

and T < +∞, the kernel A1, A2, A3 satisfies Lipschitz condition if the following
inequalities hold respectively:

0 < 2m < 1, 0 < (ρm+ θ) < 1, 0 < ρm+ ϵ+ 2νm < 1.

Proof. For Vc and V̄c

||A1(t, Vc)−A1(t, V̄c)|| = || − µVc + µV̄c||
≤ µ(Vc + V̄c)||Vc − V̄c||
≤ µ||Vc − V̄c||.(5)

Similarly, ||A2(t, Gl) − A2(t, Ḡl)|| ≤ (mρ + 2θ)||Gl − Ḡl|| and ||A3(t, Gi) −
A3(t, Ḡi)|| ≤ (ρm + ϵ + 2νm)||Gi − Ḡi|| Lipschitz conditions are met for
A1, A2, A3 and these follow contraction if

0 < µ < 1, 0 < (ρm+ θ) < 1, 0 < ρm+ ϵ+ 2νm < 1,

respectively.

Theorem 5.2. The solution of the fractional model (2) exists and will be
unique, if we acquire some tα such that

1

Γ(α)
ξitα < 1,

for i = 1, 2, 3, where ξ1 = µ, ξ2 = (ρm+ θ), ξ3 = ρm+ ϵ+ 2νm.

Proof. The proof of this theorem is categorized in three parts:

1. Using system 4 we can write the recursive form as:

K1,n = Vcn(t)− Vcn−1
(t) =

1

Γ(α)

∫ t

0

(
A1(τ, Vcn−1

(τ))−A1(τ, Vcn−2
(τ))

)
(t− τ)α−1dτ,

K2,n = Gln(t)−Gln−1(t) =
1

Γ(α)

∫ t

0

(
A2(τ,Gln−1(τ))−A2(τ,Gln−2(τ))

)
(t− τ)α−1dτ,

K3,n = Gin(t)−Gin−1
(t) =

1

Γ(α)

∫ t

0

(
A3(τ,Gin−1

(τ))−A2(τ,Gin−2
(τ))

)
(t− τ)α−1dτ.

(6)

Here,

Vc0 = Vc(0), Gl0 = Gl(0), Gi0 = Gi(0).
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Applying norm on each equation of system (6) and using Lipschitz con-
dition, we obtain respectively

||K1,n|| ≤ ||Vcn(t)− Vcn−1
(t)|| = 1

Γ(α)

∫ t

0

||
(
A1(τ, Vcn−1

(τ))−A1(τ, Vcn−2
(τ))

)
(t− τ)α−1||dτ

(7)

≤ 1

Γ(α)
ξ1

∫ t

0

||K1,n−1(τ)||dτ,

||K2,n|| = ||Gln(t)−Gln−1
(t)|| ≤ 1

Γ(α)
ξ2

∫ t

0

||K2,n−1(τ)||dτ,

||K3,n|| = ||Gin(t)−Gin−1(t)|| ≤
1

Γ(α)
ξ3

∫ t

0

||K3,n−1(τ)||dτ.

As a result, we can write

(8) Vcn(t) =

n∑
i=1

K1,i, Gln(t) =

n∑
i=1

K2,i, Gin(t) =

n∑
i=1

K3,i.

Applying Eq. (7) recursively, we have

||K1,i(t)|| ≤ ||Vcn(0)||
[

1

Γ(α)
ξ1t

]n
,

||K2,i(t)|| ≤ ||Gln(0)||
[

1

Γ(α)
ξ2t

]n
,

||K3,i(t)|| ≤ ||Gin(0)||
[

1

Γ(α)
ξ3t

]n
.

(9)

As a result, the existence and continuity are established.
2. To illustrate that the relation (9) formulate the solution for Eq. (1), we

assume the following:

Vcn(t)− x(0) = Vcn(t)−W1n(t),

Gln(t)− y(0) = Gln(t)−W2n(t),

Gin(t)− z(0) = Gin(t)−W3n(t).

(10)

In order to achieve the desired outcomes, we set

||W1n(t)|| = || 1

Γ(α)

∫ t

0

(A1(τ, x)−A1(τ, xn−1))dτ ||,

||W2n(t)|| = || 1

Γ(α)

∫ t

0

(A2(τ, x)−A2(τ, xn−1))dτ ||,

||W3n(t)|| = || 1

Γ(α)

∫ t

0

(A3(τ, x)−A3(τ, xn−1))dτ ||.
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This yields

||W1n(t)|| ≤
1

Γ(α)
ξ1||Vc − Vc,n−1||t,

||W2n(t)|| ≤
1

Γ(α)
ξ2||Gl −Gl,n−1||t,

||W3n(t)|| ≤
1

Γ(α)
ξ3||Gi −Gi,n−1||t.

Continuing the same procedure recursively, we get

||Wjn(t)|| ≤
(

1

Γ(α)
ξjt

)n+1

m, j = 1, 2, 3.

At tα, we have

(11) ||Wjn(t)|| ≤
(

1

Γ(α)
ξjtα

)n+1

m, j = 1, 2, 3.

From Eq. (11), it results that as n tends to ∞, ||Wjn(t)|| tends to 0
provided 1

Γ(α)ξjtα < 1, j = 1, 2, 3.

3. We will now demonstrate the uniqueness for the solution of the system
(2). Suppose that there is a different set of solution of the system (2),

namely V̂c, Ĝl, Ĝi. Then, from the first equation of Eq. (4) we write

Vc(t)− V̂c(t) =
1

Γ(α)

∫ t

0

(A1(τ, Vc)−A1(τ, V̂c))dτ.

Using the norm, the equation above becomes

(12) ||Vc(t)− V̂c(t)|| =
1

Γ(α)

∫ t

0

||(A1(τ, Vc)−A1(τ, V̂c))dτ ||.

By applying the Lipschitz condition, we get

||Vc(t)− V̂c(t)|| ≤
1

Γ(α)
ξ1t||Vc − V̂c||.

At some tα this results yields

||Vc(t)− V̂c(t)||
(
1− 1

Γ(α)
ξ1tα

)
≤ 0.

Since

(
1− 1

Γ(α)ξ1tα

)
> 0, we must have ||Vc(t)−V̂c(t)|| = 0. This implies

Vc(t) = V̂c(t).
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6. Stability Analysis

The Jacobian matrix of the system (2) is

J =

 −2V µ γ1 −Gδ γ2 − Uδ
β1 −2Uθ −Gρ −Uρ
β2 Gρ ϵ− 2Gν + Uρ

 .

If all the eigenvalues λi, i = 1, 2, ..., β, of the Jacobian matrix J(E), E being
the point of equilibrium, satisfy the condition

(13) |arg(eig(J(E)))| = |arg(λi)| >
απ

2
, i = 1, 2, 3, 0 < α < 1.

Then the E is a stable point of equilibrium. By solving the characteristic
equation |J(E)− λiI| = 0, we evaluate these eigenvalues.

Lemma 6.1. [2] Define the following characteristic equation

(14) P (λ) = λβ +A1λ
β−1 +A2λ

β−2 + ...+Aβ = 0.

The following conditions make all the roots of the characteristic equation (14)
satisfy the Eq. (13):

1. For β = 1, the condition for Eq. (13) is A1 > 0.
2. For β = 2, the conditions for Eq. (13) are either Routh-Hurwitz condi-

tions or A1 > 0, 4A2 > A2
1, |tan−1

√
4A2−A2

1

A1
| > απ

2 .

3. For β = 3, if the discriminant of the polynomial P (Θ) is positive then
necessary and sufficient conditions to satisfy the Eq. (13) are

A1 > 0, A2 > 0, A1A2 > A3.

If the discriminant of the polynomial P (λ) is negative then necessary and
sufficient conditions to satisfy the Eq. (13) are

A1 > 0, A2 > 0, A1A2 = A3.

4. For general β, Aβ > 0 is the necessary condition for Eq. (13) to be
satisfied.

Theorem 6.2. Crime free equilibrium point E1 =
(
0, σ

θ , 0
)
is always un-

stable.

Proof. Jacobian matrix at the crime free equilibrium point E1 is

J(E1) =

 −µ γ1 γ2 − δσ
θ

β −θ −ρσ
θ

0 0 ρσ
θ + ϵ

 .

The eigenvalues of J(E1) is λ1,1 = θϵ+ρσ
θ , λ1,2 =

−θ
√

4βγ1+θ2−2θµ+µ2−θ2−θµ

2θ , λ1,3 =
θ
√

4βγ1+θ2−2θµ+µ2−θ2−θµ

2θ . Since λ1,1 > 0, therefore the Crime-free equilibrium
point is always unstable. This is because crimes are committed by legal guns
also.
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Theorem 6.3. Illegal gun free equilibrium point

E2 =

(
γ1σ

θµ− β1γ1
,

µσ

θµ− β1γ1
, 0

)
,

exists if θµ− β1γ1 > 0. E2 is always unstable.

Proof. Jacobian matrix at the illegal gun free equilibrium point E2 is

J(E2) =

 −µ γ1 γ2 − δµσ
θµ−βγ1

β −θ − µρσ
θµ−βγ1

0 0 µρσ
θµ−βγ1

+ ϵ

 .

The eigenvalues of J(E2) are λ2,1 = ϵ(θµ−βγ1)+µρσ
θµ−βγ1

, λ2,2 = 1
2

(
−
√
4βγ1 + (θ − µ)2 − θ − µ

)
,

λ2,3 = 1
2

(√
4βγ1 + (θ − µ)2 − θ − µ

)
. Since λ2,1 > 0, the illegal gun free equi-

librium point is unstable.

This implies that the society has to sustain with the all the three categories.
In this situation, it is very important to find the measures to keep the crime in
control.

Theorem 6.4. Co-existence equilibrium point is stable if γ1, γ2, and ϵ are
limited.

Proof. To find co-existence equilibrium point we solve the system of equa-
tions

γ1Gl + γ2Gi − δGlGi − µVc = 0,(15)

σ + βVc − ρGlGi − θGl = 0,(16)

ρGlGi + ϵGi − νG2
i = 0.(17)

From Equations (15), (16) and (17), we get

V ∗
c =

G∗
i (γ2 − δG∗

l ) + γ1G
∗
l

µ
,(18)

G∗
l =

√
P1 +Q1

2ρ(βδ + µρ)
(19)

=
Giν − ϵ

ρ
,(20)

G∗
i =

√
P2 +Q2

2ν(βδ + µρ)
.

where, P1 = (−βγ1ν − βγ2ρ+ βδϵ+ θµν + ϵµρ) 2+4ρ(βδ+µρ) (βγ2ϵ+ µνσ) ,
Q1 = βγ1ν + βγ2ρ− βδϵ− θµν − ϵµρ,
P2 = (−βγ1ν − βγ2ρ+ βδϵ+ θµν + ϵµρ) 2 + 4ρ(βδ + µρ) (βγ2ϵ+ µνσ) ,
Q2 = βγ1ν + βγ2ρ+ βδϵ− θµν + ϵµρ.
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Clearly, G∗
l and G∗

i are positive. Co-existence equilibrium point exists if
G∗

i (γ2 − δG∗
l ) + γ1G

∗
l > 0. That is, for the existence of a coexistence point

of equilibrium, crime committed at an equilibrium point must be greater than
the deterrent effect of civilian gun ownership. We observe that violent crime
(Vc) increases with the increase of crime committed by illegal guns (γ2Gi),
crime committed by legal guns (γ1Gl), and decrease with the increase of legal
guns (Gl), the deterrent effect of civilian gun ownership (δ), and action of law
against crime (µ). Further, legal guns increase with the increase of the limi-
tation of trade of illegal guns and decrease with the increase of conversion of
legal guns into illegal guns and increase of the growth rate of illegal guns.
The characteristic equation at the coexistence equilibrium point is

(21) Q(λ,C1, C2, C3) = λ3 + C1λ
2 + C2λ+ C3 = 0,

where
C1 = Giν +Giρ+ θ + µ > 0,
C2 = 2G2

i νρ+ βδGi +Giθν +Giµν +Giµρ+ θµ− βγ1 −Giϵρ > 0,
C3 = 2βδG2

i ν + 2G2
iµνρ+Giθµν −Giϵµ− βγ1Giν − βγ2Giρ− βδGiϵ.

The positivity of C2 depends on limiting the impact of crime committed by le-
gal guns, and the growth of illegal guns. Therefore, the necessary condition for
stability of the coexistence equilibrium point is to limit these factors. Again,
sufficient condition for stability of coexistence equilibrium point is C1C2 > C3.
These conditions are sufficient for affirmation of condition (13).
To describe this set, we employ the boundary locus technique which, as a
first step, requires a description of its boundary in the (C1, C2, C3)-space.
For this purpose, we define the boundary locus in the form We set BL(α) =
(C1, C2, C3) ∈ R3 : ∃λ ∈ C with |arg(λ)| = απ

2 and Q(λ;C1, C2, C3) = 0, where
0 < α < 1. In other words, BL(α) consists of all real triplets (C1, C2, C3) such
that Eq. (21) admits a zero

(22) λ = κe
iαπ
2 , for suitable real κ ≥ 0.

Substituting (22) into (21) and separating real and imaginary parts, one gets

(23) κ3cos(
3απ

2
) + C1κ

2cos(απ) + κC2cos(
απ

2
) + C3 = 0,

and

(24) κ3sin(
3απ

2
) + C1κ

2sin(απ) + κC2sin(
απ

2
) = 0.

This system has the solution κ = C3 = 0 (C1, C2 being arbitrary) and the
solution

C2 = −2κC1cos
απ

2
− 4κ2cos2(

απ

2
) + κ2,(25)

C3 = 2κ3cos(
απ

2
) + C1κ

2.(26)
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Therefore from Eq. 25 we obtain
(27)

κ±(C1, C2;α) =
−C1cos

(
απ
2

)
±
√
C2

1cos
2(απ2 )− C2

(
4cos2

(
απ
2

)
− 1

)
4cos2(απ2 )− 1

, α ̸= 2

3

It holds κ±(C1, C2;α) > 0 if and only if either

(28) 0 < α <
2

3
, C2 ≤

C2
1cos

2(απ2 )

4cos2(απ2 )− 1
,

or

(29)
2

3
< α ≤ 1, C1 ≥ 0, C2 < 0,

or

(30)
2

3
< α ≤ 1, C2 ≥

C2
1cos

2(απ2 )

4cos2(απ2 )− 1
.

With these assumption, by replacing κ into (26) we get,

C3 = (−2C2
1cos(

απ

2
) + 8C2cos

3(
απ

2
)(31)

−2C2cos(
απ

2
)

√
C2

1cos
2(
απ

2
)− 4C2cos(

απ

2
) + C2

−2C3
1cos

2(
απ

2
) + 8C1C2cos

4(
απ

2
) + 2C1C2cos

2(
απ

2
)− C1C2)/

(
4cos2(

απ

2
)− 1

)3

.

Thus we conclude that if 2
3 < α < 1, then (C1, C2, C3) ∈ BL(α) if and only if

C2 ≥
C2

1cos
2(απ2 )

4cos2(απ2 )− 1
,

and C3 is satisfied in Eq. (31). If α = 2
3 , then from Eq. (25) and (26), we have

C2 = −C1κ, C3 = κ3 + C1κ
2. By setting S = cos

(
πα
2

)
from Eq. (31), we get

the inequality

C3

(
4S2 − 1

)3
+ 2C3

1S
2 + C1C2

(
−8S4 − 2S2 + 1

)
> 2S

(
2C2

(
4S2 − 1

)
− C2

1

)√
C2

1S
2 + C2 (1− 4S2).

(32)

The relation (32) gives the facility to analyze the stability in presence of frac-
tional derivative.

7. Numerical Methods

To solve the crime model (2), we have presented the generalized Adams-
Bashforth-Moulton technique in this section. Consider the nonlinear equation
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below.

CDα
t x(t) = ϕ(t, x(t)), 0 ≤ t ≤ T,

x(m)(0) = x
(m)
0 , m = 0, 1, 2, 3, ·, ν, ν = ⌈α⌉.

(33)

The Volterra integral equation corresponding to this case is as follows:

(34) x(t) =

ν−1∑
m=0

x
(m)
0

tm

m!
+

1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s, x(s))ds.

To integrate Eq. (34), Diethelm et al. [13,14] have used Adams-Bashforth Moul-
tan method by setting h = T

N , tn = nh, n = 0, 1, 2, . . . , N ∈ Z+. As a result,
finite difference form of the system (2) can be presented as:

Vcn+1
= Vc0 +

hα

Γ(α+ 2)

(
γ1G

P
ln+1

+ γ2G
P
in+1

− δGP
ln+1

GP
i − µV P

cn+1

)
+

hα

Γ(α+ 2)

n∑
k=0

ak,n+1 (γ1Glk + γ2Gik − δGlkGi − µVck) ,

Gln+1
= Gl0 +

hα

Γ(α+ 2)

(
σ + βV P

cn+1
− ρGP

ln+1
GP

in+1
− θGP

ln+1

)
+

hα

Γ(α+ 2)

n∑
k=0

ak,n+1 (σ + βVck − ρGlkGik − θGlk) ,

Gin+1
= Gi0 +

hα

Γ(α+ 2)

(
ρGP

ln+1
GP

in+1
+ ϵGP

in+1
− νGP 2

in+1

)
+

hα

Γ(α+ 2)

n∑
k=0

ak,n+1

(
ρGlkGik + ϵGik − νG2

ik

)
,

(35)

where

V P
cn+1

= Vc0 +
hα

Γ(α+ 1)

n∑
k=0

bk,n+1 (γ1Glk + γ2Gik − δGlkGi − µVck) ,

GP
ln+1

= Gl0 +
hα

Γ(α+ 1)

n∑
k=0

bk,n+1 (σ + βVck − ρGlkGik − θGlk) ,

GP
in+1

= Gi0 +
hα

Γ(α+ 1)

n∑
k=0

bk,n+1

(
ρGlkGik + ϵGik − νG2

ik

)
,

(36)

in which
(37)

ak,n+1 =


nα+1 − (n− α)(n+ 1)α, k = 0,

(n− k + 2)α+1 + (n− k)α+1 − 2(n− k + 1)α+1, 1 ≤ k ≤ n,

1, k = n+ 1,
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and

(38) bk,n+1 = ((n− k + 1)α − (n− k)α), 0 ≤ k ≤ n.

8. Numerical simulation

We have examined the crime dynamics by assuming the suitable values
of the parameters in this section. Our main focus is to analyze the behav-
ior of the various compartments concerning gun control parameters β, σ, and
θ. With the parameter values γ1 = 0.1, γ2 = 0.5, δ = 0.2, β = 0.8, ϵ =
0.8, ν = 5, θ = 0.5, ρ = 2.5, µ = 2, σ = 2, we have shown the stability
profiles of the Crime, legal guns and illegal guns in Figure 1 under the in-
fluence of fractional derivative. As α reduces it is observed that illegal gun
inertia is reduced and legal gun inertia is stabilized comparatively at a higher
value than illegal guns. Increase in the legal gun inertia with fractional val-
ues of α results in the conclusion that violent crime inertia is inversely pro-
portional to α We have shown the stability of the coexistence equilibrium
point of the model for various values of α. We looked at two situations to
see how different gun control legislation would affect this appealing idea: (1)
strong gun control and (2) weak gun control under the influence of various
fractional derivatives numerically. For strong gun control we have assumed
β → 0, σ → 0, θ → ∞. This reduces the endemic equilibrium to ( ϵγ2

µν , 0,
ϵ
ν ). It

is noticed that strong gun control could not nullify the crime. For weak gun
control we have assumed β → ∞, θ → 0. This leads to the equilibrium point

(0,

√
(−γ1ν−γ2ρ+δϵ)2+4γ2δρϵ+γ1ν+γ2ρ−δϵ

2δρ ,

√
(−γ1ν−γ2ρ+δϵ)2+4γ2δρϵ+γ1ν+γ2ρ+δϵ

2δν ).

This indicates that weak gun control measures can eradicate the crime. Also
controlling legal guns depends on the increased deterrent effect of civilian gun
ownership and the conversion factor. Whereas control of illegal guns depends
on the increase of the deterrent effect of civilian gun ownership and limiting the
trade of illegal guns. In Figure 2, we have analyzed the impact of a strong gun
control measure under the influence of a fractional derivative. It is observed
that by varying α, crime and legal guns can have a balancing nullifying effect.
From Figure 2(a), 2(c), and 2(e), it can be noticed that strong gun control
reduces the crime. Fractional values of α represents the situation when strong
gun control influences in rapid fall in crime inertia. Also 2(b), 2(d), and 2(f)
represent the effect of strong gun control on legal guns. It is observed that
fractional value of α represents the situation where strong gun control delay
the nullyfying effect on crime.

Relation (32) facilitates us to analyze the stability with the direct involve-
ment of fractional derivative. For α = 0.9, using the relation (32) for param-
eter values γ1 = 0.1, γ2 = 0.5, δ = 0.2, β = 0.8, ϵ = 0.8, ν = 5, θ = 0.5, ρ =
5.5, µ = 2, we observe that stability range of σ is 0 < σ < 17.642. We have con-
sidered σ = 17.644. The profile of the solutions of the system (2) for different α
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Figure 1. Profile of (A) Violent Crime, (B) Legal Guns, (C)
Illegal Guns for different α.

is examined in Figure 3. It is observed that for α = 1 the system behaves like
a stable system (Figure 3(a)). But as α take fractional values the system turns
into an unstable system (Figure 3(b),(c),(d)). This is due to the consideration
of the σ value outside the prescribed range.

9. Conclusion

In this work, a crime model about violent crimes committed by registered
and unregistered guns is analyzed in the frame of the Caputo fractional deriv-
ative. We have analyzed three points of equilibrium namely axial equilibrium,
illegal gun-free equilibrium, and endemic equilibrium. The boundedness, exis-
tence and uniqueness of solutions are evaluated theoretically. From the endemic
equilibrium point, we examined two scenarios such as strong gun-control and
weak gun control. We could conclude that strong gun control can eliminate
legal guns from society but can not eliminate the crimes. Whereas weak gun
control can ensure less crime in society. In the projected model numerical
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Figure 2. Effect of strong gun-control measure on (a) Violent
Crime, (b) Legal Guns, for α = 1, (c) Violent Crime,(d) Legal
Guns for α = 0.9 (e) Violent Crime,(f) Legal Guns for α = 0.8

results obtained by incorporating fractional derivative seems more realistic be-
cause the application of fractional value ensures coexistence. As the crimes are
committed by both legal and illegal firearms, eradication of anyone is practi-
cally not possible. Only controlling may be possible. The future scope of the
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Figure 3. Profile of (a) Violent Crime, Legal Guns, Illegal
Guns for α = 1, (b) Violent Crime,(c) Legal Guns, (d) Ille-
gal Guns for α = 0.95. For parameter values γ1 = 0.1, γ2 =
0.5, δ = 0.2, β = 0.8, ϵ = 0.8, ν = 5, θ = 0.5, ρ = 5.5, µ =
2, σ = 17.644.

study in this regard can be considered as the involvement of social factors such
as poverty, unemployment, violent and permissive family, and delinquent peer
groups in the crime model.
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