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HOMOGENEOUS STRUCTURES ON CONTACT

HYPERSURFACES IN HERMITIAN SYMMETRIC SPACES

Jong Taek Cho

Abstract. We find a 1-parameter family of homogeneous structure ten-

sors on contact hypersurfaces in Hermitian symmetric spaces. Among

their associated Ambrose-Singer connections, we prove that the Tanaka-
Webster connection is the unique pseudo-homothetically invariant con-

nection.

1. Introduction

A contact manifold (M,η) is a smooth manifold M2n−1 together with a
global one-form η such that η ∧ (dη)n−1 ̸= 0 everywhere on M . Given a con-
tact manifold, we have two associated structures interacting with each other.
One is a Riemannian structure (or, metric) g. The other is an almost CR struc-
ture (η, L), where L is the Levi form associated with an endomorphism J on
D such that J2 = −I. In particular, if J on D is integrable, then we call it the
(integrable) CR structure. There is a one-to-one correspondence between the
two associated structures by the relation g = L+η⊗η, where we denote by the
same letter L the natural extension (iξL = 0) of the Levi form to a (0,2)-tensor
field on M . For this reason, we use a contact Riemannian structure together
with a contact strongly pseudo-convex almost CR structure. Corresponding to
the Levi-Civita connection with respect to g, there is a canonical affine con-
nection, namely, the Tanaka-Webster connection on a strongly pseudo-convex
CR manifold. Tanno [16] defined the generalized Tanaka-Webster connection
in a contact Riemannian manifold. On the other hand, the so-called contact
(k, µ)-spaces ([4]) are defined by the condition:

(1) R(X,Y )ξ = (kI + µh)(η(Y )X − η(X)Y )

for k, µ ∈ R, where I denotes the identity transformation. It includes Sasakian
spaces for k = 1 (h = 0) and it provides a plenty of strongly pseudo-convex
CR manifolds. Indeed, the present author gave a complete classification of
non K-contact (k, µ)-hypersurfaces which are realized in Hermitian symmetric
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spaces of rank 1 and of rank 2 (see, Theorem 8 in [8] and Theorem 4.1). In
this article, we find a 1-parameter family of homogeneous structure tensors on
them (Theorem 4.2). Moreover, we prove that the Tanno’s generalized Tanaka-
Webster connection is the unique pseudo-homothetically invariant connection
among the 1-parameter family of affine connections (Theorem 3.7).

2. Preliminaries

We start by collecting some fundamental materials about (almost) contact
manifolds and strongly pseudo-convex pseudo-Hermitian manifolds. All mani-
folds in the present paper are assumed to be connected, oriented, and of class
C∞.

Definition 2.1 ([10],[13]). A (2n − 1)-dimensional manifold M is said to
be an almost contact manifold if its structure group of the linear frame bundle
is reducible to U(n− 1)×{1}, or equivalently, if there exist a (1, 1)-tensor field
ϕ, a vector field ξ and a 1-form η satisfying

η(ξ) = 1 and ϕ2 = −I+ η ⊗ ξ,

where I denotes the identity transformation. We call (η, ϕ, ξ) an almost contact
structure.

Then we can always find a compatible Riemannian metric g:

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

for any vector fields X and Y on M . Such a metric is called an associated
metric and (M ; η, ϕ, ξ, g) is said to be an almost contact metric manifold. The
fundamental 2-form Φ is defined by Φ(X,Y ) = g(X,ϕY ). If, in addition,
M satisfies dη = Φ, then M is called a contact Riemannian manifold or a
contact metric manifold, where d is the exterior differential operator. On a
contact metric manifold, η is a contact form, i.e., η∧ (dη)n−1 ̸= 0, which yields
that every contact metric manifold is orientable. We call the structure vector
field ξ the Reeb vector field or the characteristic vector field. Given a contact
metric manifold M , we define the structural operator h by h = 1

2Lξϕ, where
Lξ denotes Lie differentiation for ξ. Then we may observe that h is self-adjoint
and it satisfies hϕ = −ϕh and hξ = 0. Moreover, we have

(2) ∇Xξ = −ϕX − ϕhX,

where ∇ denotes the Levi-Civita connection on M . It follows that each trajec-
tory of ξ is a geodesic. A contact Riemannian manifold for which ξ is Killing is
called a K-contact manifold. It is easy to see that a contact Riemannian man-
ifold is K-contact if and only if h vanishes. On the other hand, we may define
naturally an almost complex structure J× on the product manifold M ×R. In
the case of J× is integrable (the Nijenhuis torsion of J× vanishes), M is said
to be normal. The integrability condition for the almost complex structure is
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the vanishing of the tensor [ϕ, ϕ] + 2dη ⊗ ξ, where [ϕ, ϕ] denotes the Nijenhuis
torsion of ϕ. Then we find that the associated pseudo-Hermitian structure of
a normal almost contact structure is CR-integrable (cf. [3]). A normal contact
metric manifold is said to be a Sasakian manifold. A Sasakian manifold is
characterized by a condition

(3) (∇Xϕ)Y = g(X,Y )ξ − η(Y )X

or
R(X,Y )ξ = η(Y )X − η(X)Y

for all vector fields X and Y on the manifold.

Definition 2.2 ([9]). Let M be a (2n− 1)-dimensional manifold and TM
be its tangent bundle. A CR structure on M is a complex rank (n − 1) sub-
bundle H ⊂ CTM = TM ⊗ C satisfying (i) H ∩ H̄ = {0} and (ii) [H,H] ⊂
H (integrability), where H̄ denotes the complex conjugation of H.

For a CR structure H, there exists a unique subbundle D = Re{H ⊕ H̄},
which is maximally holomorphic subbundle of (M,H), and a unique bundle
map J such that J2 = −I and H = {X − iJX|X ∈ D}. We call (D,J) the
real representation of H. Let E ⊂ T ∗M be the conormal bundle of D. If M
is an oriented CR manifold, then E is a trivial bundle, and hence it admits
globally defined a nowhere zero section η, i.e., a real one-form on M such that
Ker(η) = D. For (D,J) we define the Levi form by

L : Γ(D)× Γ(D) → F(M), L(X,Y ) = −dη(X, JY ),

where F(M) denotes the algebra of differentiable functions on M . If the Levi
form is non-degenerate (positive or negative definite, resp.) and hermitian,
then (η, J) is called a non-degenerate (strongly pseudo-convex, resp.) pseudo-
Hermitian CR structure. Then we have a unique globally defined nowhere zero
tangent vector field ξ such that η(ξ) = 1 and iξdη = 0. Here, iX denotes the
interior product with a vector field X on M . We define the Webster metric on
M by

gη = L+ η ⊗ η,

where iξL = 0. The transversal complex structure ϕ is deduced from J : ϕ|D =
J and ϕξ = 0.

Returning to an almost contact manifold M = (M ; η, ϕ, ξ), the tangent
space TpM of M at each point p ∈ M is decomposed as TpM = Dp ⊕ {ξ}p,
where we denote Dp = {v ∈ TpM |η(v) = 0}. Then D : p → Dp defines a
distribution orthogonal to ξ, which is called a contact distribution, and the
restriction J = ϕ|D of ϕ to D defines an almost complex structure in D. Such
(η, J) is called an almost CR structure if M satisfies

[JX, JY ]− [X,Y ] ∈ Γ(D) (or [JX, Y ] + [X, JY ] ∈ Γ(D))

for all X,Y ∈ Γ(D). Furthermore, when it satisfies

[J, J ](X,Y ) = 0,
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where [J, J ] is the Nijenhuis torsion of J , the pair (η, J) is a pseudo-Hermitian
(integrable) CR structure associated with the almost contact structure (η, ϕ, ξ).
In fact, it should be notable that for a contact metric manifold (M ; η, g) it
has a strongly pseudo-convex pseudo-Hermitian structure (η, J) but the CR-
integrability does not hold in general. In terms of the structure tensors, CR-
integrability condition is equivalent to the condition Ω = 0, where Ω is the
(1, 2)-tensor field on M defined by

(4) Ω(X,Y ) = (∇Xϕ)Y − g(X + hX, Y )ξ + η(Y )(X + hX)

for any vector fields X,Y on M (see [16, Proposition 2.1]). From (3) and (4),
we see that the associated pseudo-Hermitian structure of a Sasakian manifold is
strongly pseudo-convex and CR-integrable. The same is true for the associated
CR structure of any three-dimensional contact Riemannian manifold.

Definition 2.3 ([15]). A pseudo-homothetic or Da-homothetic transfor-
mation of a contact metric manifold is a diffeomorphism f on M such that
f∗η = aη, f∗ξ = 1

aξ, ϕ ◦ f∗ = f∗ ◦ ϕ, f∗g = ag + a(a − 1)η ⊗ η, where a is a
positive constant.

A pseudo-homothetic or Da-homothetic deformation (η̄, ϕ̄, ξ̄, ḡ) of a given
contact metric structure (η, ϕ, ξ, g) is defined by

(5) η̄ = aη, ξ̄ =
1

a
ξ, ϕ̄ = ϕ, ḡ = ag + a(a− 1)η ⊗ η.

From (5), we have h̄ = (1/a)h. By using the Koszul formula, we have

(6) ∇̄XY = ∇XY + C(X,Y ),

where C is the (1,2)-type tensor defined by

C(X,Y ) = −(a− 1)
(
η(Y )ϕX + η(X)ϕY

)
− a− 1

a
g(ϕhX, Y )ξ.

We remark that CR-integrability of the associated pseudo-Hermitian structure
is preserved under pseudo-homothetic transformations. In fact, by direct com-
putations, we have that Ω = 0 implies Ω̄ = 0 ([7]).

We review the generalized Tanaka-Webster connection ∇̂(2) ([16]) on a con-
tact strongly pseudo-convex almost CR manifold M = (M ; η, J). It is defined
by

∇̂(2)
X Y = ∇XY + η(X)ϕY + (∇Xη)(Y )ξ − η(Y )∇Xξ

for all vector fields X,Y on M . Together with (2), ∇̂(2) is rewritten as

(7) ∇̂(2)
X Y = ∇XY +A(2)(X,Y ),

where we put

(8) A(2)(X,Y ) = η(X)ϕY + η(Y )(ϕX + ϕhX)− g(ϕX + ϕhX, Y )ξ.

We see that the generalized Tanaka-Webster connection ∇̂(2) has the torsion

(9) T̂ (2)(X,Y ) = 2g(X,ϕY )ξ + η(Y )ϕhX − η(X)ϕhY.
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In particular, for a K-contact Riemannian manifold we get T̂ (2)(X,Y ) =
2g(X,ϕY )ξ. The generalized Tanaka-Webster connection can also be charac-
terized differently.

Proposition 2.4 ([16]). The generalized Tanaka-Webster connection ∇̂(2)

on a contact Riemannian manifold M = (M ; η, g) is the unique linear connec-
tion satisfying the following conditions:

(i) ∇̂(2)η = 0, ∇̂(2)ξ = 0;

(ii) ∇̂(2)g = 0;

(iii-1) T̂ (2)(X,Y ) = 2L(X, JY )ξ, X, Y ∈ Γ(D);

(iii-2) T̂ (2)(ξ, ϕY ) = −ϕT̂ (2)(ξ, Y ), Y ∈ Γ(D);

(iv) (∇̂(2)
X ϕ)Y = Ω(X,Y ), X, Y ∈ Γ(TM), where Ω is defined by (4).

We note that the Tanaka-Webster connection ([14], [18]) was in origin de-
fined for a nondegenerate integrable CR manifold, in which case condition (iv)

reduces to ∇̂(2)J = 0. So, the above definition is a natural generalization to
the non-integrable case.

We may refer to [3] and [9] for more details about almost contact structures
and their associated almost CR structures.

3. The Ambrose-Singer connections and contact (k, µ)-spaces

First, we review the notion of a locally homogeneous Riemannian manifold
and its structure tensors.

Definition 3.1. A Riemannian manifold (M ; g) is said to be a homogeneous
Riemannian manifold if there exists a Lie group G of isometries which acts
transitively on M . If there exists a local isometry which sends p to q for each
p, q ∈ M , then M is said to be locally homogeneous Riemannian manifold

Ambrose and Singer [1] gave an infinitesimal characterisation of the local
homogeneity of Riemannian manifolds.

Definition 3.2. A homogeneous Riemannian structure P on (M ; g) is a
tensor field of type (1, 2) which satisfies

∇̂g = 0, ∇̂R = 0, ∇̂P = 0.

Here ∇̂ is a linear connection on M defined by ∇̂ = ∇+P . The linear connec-

tion ∇̂ is called the Ambrose-Singer connection.

Theorem 3.3 ([1]). A Riemannian manifold (M ; g) with a homogeneous
Riemannian structure P is locally homogeneous. Moreover, if (M ; g) is com-
plete and simply connected locally homogeneous Riemannian space is (globally)
homogeneous Riemannian space.
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For a homogeneous Riemannian structure tensor P of type (1, 1) on a Rie-
mannian manifold (M ; g), we denote by the same P the (0, 3)-tensor field in
consideration of the isomorphism:

P (X,Y, Z) = g(PXY,Z)

for all X,Y, Z ∈ Γ(TM). Tricerri and Vanhecke [17] obtained the following
decompositions of all possible types of homogeneous Riemannian structures
into eight classes:

Classes Defining conditions
Symmetric P = 0
T1 P (X,Y, Z) = g(X,Y )ω(Z)− g(Z,X)ω(Y ) for some 1-form ω
T2 SX,Y,ZP (X,Y, Z) = 0 and c12(P ) = 0
T3 P (X,Y, Z) + P (Y,X,Z) = 0
T1 ⊕ T2 SX,Y,ZP (X,Y, Z) = 0
T1 ⊕ T3 P (X,Y, Z) + P (Y,X,Z) = 2g(X,Y )ω(Z)− g(Z,X)ω(Y )

−g(y, Z)ω(X) for some 1-form ω
T2 ⊕ T3 c12(P ) = 0
T1 ⊕ T2 ⊕ T3 no conditions

Here SX,Y,ZP denotes the cyclic sum of P , i.e.,

SX,Y,ZP (X,Y, Z) = P (X,Y, Z) + P (Y, Z,X) + P (Z,X, Y ),

and c12 denotes the contraction operator in (1, 2)-entries:

c12(P )(Z) =
∑
i

P (ei, ei, Z),

where {ei}, i = 1, 2, · · · ,dim M, is an orthonormal basis.

Next, we review the contact (k, µ)-spaces, introduced by Blair, Koufogiorgos
and Papantoniou [4], are defined by the curvature condition (1). This class
includes Sasakian manifolds (for k = 1 and h = 0) and the trivial sphere
bundle Rn×Sn−1(4) (for k = µ = 0). Typical examples of non-Sasakian (k, µ)-
contact spaces are the unit tangent sphere bundles of Riemannian manifolds of
constant curvature ̸= 1. Boeckx [6] proved the equivalence theorems of contact
(k, µ)-spaces.

Theorem 3.4 ([6]). Let (M2n−1; η, ϕ, ξ, g) and (M ′2n−1; η′, ϕ′, ξ′, g′) be two
non-Sasakian (k, µ)-spaces. Then they are locally isometric as contact metric
spaces. In particular, if they are simply connected and complete, then they are
globally isometric.

The Boeckx invariant IM of a non-Sasakian contact (k, µ)-space M is de-
fined by IM = (1−µ/2)/

√
1− k, which determines completely a contact (k, µ)-

space with the fixed dimension up to equivalence.
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Theorem 3.5 ([6]). Let (Mi; ηi, ϕi, ξi, gi), i = 1, 2, be two contact (ki, µi)-
spaces of the same dimension. Then IM1

= IM2
if and only if, up to a pseudo-

homothetic deformation of the contact metric structure, the two spaces are
locally isometric as contact metric spaces. In particular, if both spaces are
simply connected and complete, then they are globally isometric up to a pseudo-
homothetic transformation.

Based on the above fundamental theorem of contact (k, µ)-spaces, Boeckx
himself gave examples of contact (k, µ)-spaces by a two-parameter family of
solvable Lie groups which admit a left-invariant contact metric structure (other
than the unit tangent sphere bundles of Riemannian manifolds of constant cur-
vature). However, their geometric description or explicit realization has been
desirable. Very recently, the present author [8] proved a complete classification
theorem of non-Sasakian (k, µ)-spaces which are realized as real hypersurfaces
in the complex quadric Qn, its non-compact dual space Q∗n, and the complex
Euclidean space Cn (Theorem 4.1). It provides a new geometric description and
moreover unifies all the contact (k, µ)-spaces by real hypersurfaces in Hermitian
symmetric spaces.

On the other hand, in [5], using the following (1,2)-type tensor field A(µ):

(10) A(µ)(X,Y ) =
µ

2
η(X)ϕY + η(Y )(ϕX + ϕhX)− g(ϕX + ϕhX, Y )ξ

for all vector fields X,Y , we define ∇̂(µ) by

∇̂(µ)
X Y = ∇XY +A(µ)(X,Y ).

In case that µ = 2, that is, ∇̂(2) is the generalized Tanaka-Webster connection.
Then we can show that the tensor field A(µ) gives a Riemannian homogeneous
structure, that is, ∇̂(µ) satisfies ∇̂(µ)g = 0, ∇̂(µ)R = 0, ∇̂(µ)A(µ) = 0. In
addition to them, it holds ∇̂(µ)ξ = 0, ∇̂(µ)η = 0, ∇̂(µ)ϕ = 0. Then due
to Kiričenko’s generalization ([11]) of the Ambrose-Singer theorem we have
a transitive pseudo-group of local automorphisms of the associated contact
Riemannian structure (η, ϕ, ξ, g). Moreover, from (10) we have that among the
1-parameter family of homogeneous structures A(µ) the case µ = 4 is the only
homogeneous Riemannian structure of type T2.

Proposition 3.6. For a contact (k, µ)-space, A(µ) is a homogeneous Rie-
mannian structure. In particular, a contact (k, 4)-space has a homogeneous
Riemannian structure of type T2.

Now, we may define the linear connections ∇̂(µ) on contact strongly pseudo-
convex almost CR manifolds, in general. Then we have

Theorem 3.7. Among the linear connections ∇̂(µ), the generalized Tanaka-
Webster connection ∇̂(2) is the unique pseudo-Hermitian invariant connection.
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Proof. From (5) and (6) we have

ˆ̄∇(µ)
X Y = ∇̄XY + Ā(µ)(X,Y )

= ∇XY + C(X,Y ) + Ā(µ)(X,Y )

and

Ā(µ)(X,Y ) = a
(
η(Y )ϕX+

µ

2
η(X)ϕY

)
+η(Y )ϕhX−g(ϕX, Y )ξ− 1

a
g(ϕhX, Y )ξ.

Together with the definition of the tensor C we see that C(X,Y )+Ā(µ)(X,Y ) =
A(µ)(X,Y ) for any positive a if and only if µ = 2. Hence, we find that among

the linear connections ∇̂(µ) the generalized Tanaka-Webster connection is the
unique pseudo-homothetically invariant connection.

4. Homogeneous structures on contact hypersurfaces

In this section, we treat real hypersurfaces of the complex quadric Qn =
SOn+2/SOnSO2 and its noncompact dual space Qn∗ = SOn,2/SOnSO2. Then
Qn (resp. Qn∗) has two fundamental geometric structures which completely

describe its Riemannian curvature tensor R̃. The first one is the Kähler struc-
ture (J̃ , g̃) and the second one is a rank two vector bundle A over Qn(resp.
Qn∗) which contains an S1-bundle of real structures on the tangent spaces.
The complex quadric Qn is also realized as a complex hypersurface in the
(n + 1)-dimensional complex projective space CPn+1. Then the bundle A is
just the family of shape operators with respect to the normal vectors in the
normal bundle of rank two. We should remark that Qn∗ = SOn,2/SOnSO2 is
not realized as a homogeneous complex hypersurface in the (n+1)-dimensional
complex hyperbolic space CHn+1 (cf. [12]). Now we consider Qn (resp. Qn∗)

as a Hermitian symmetric space equipped with the Kähler structure (J̃ , g̃) for
which the maximal (resp. minimal) sectional curvature c > 0 (resp. c < 0).
Then we have

R̃(X,Y )Z =
c

4
{g̃(Y,Z)X − g̃(X,Z)Y + g̃(J̃Y, Z)X − g̃(J̃X, Z)J̃Y

− 2g̃(J̃X, Y )J̃Z}+ ϵ{g̃(AY,Z)AX − g̃(AX,Z)AY

+ g̃(J̃AY, Z)J̃AX − g̃(J̃AX,Z)J̃AY },

(11)

where X,Y, Z ∈ Γ(TQn) (resp. Γ(TQn∗)) and ϵ = ±1 for Qn (resp. Qn∗). For
more details about the geometric structure ofQn andQn∗, and the fundamental
properties of their real hypersurfaces, we refer to [2], [12].

Theorem 4.1. The simply connected, complete, non K-contact, contact
metric space M is a (0, µ)-space if and only if it is globally isometric (as a
contact metric space) to one of (i), (ii), (iii), (iv) and (v) in the following:
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(i) a tube of radius r =
√

2
c arctan

2
√
2√
c
∈ (0, π/

√
2c) around a real form Sn

of the complex quadric Qn of maximal curvature c > 0;
(ii) Rn × Sn−1(4) in Cn, c = 0;

(iii-1) a tube of radius r =
√

2
|c| coth

−1 2
√
2√
|c|

around a real form RHn in the dual

space Qn∗ of the complex quadric Qn of minimal curvature c, −4 < c < 0;

(iii-2) a tube of radius r =
√
2
2 coth−1

√
2 around a real form RHn in Qn∗,

c = −4;

(iii-3) a tube of radius r =
√

2
|c| coth

−1 2
√
2√
|c|

around a real form RHn in Qn∗,

−8 < c < −4;
(iv) a horosphere in Qn∗ whose center at infinity is determined by an A-

principal geodesic in Qn∗, c = −8;

(v) a tube of radius r =
√

2
|c| tanh

−1 2
√
2√
|c|

around Q(n−1)∗ in Qn∗ c < −8.

Proof. From (11), we have the Gauss equation, and then we can compute
R(X,Y )ξ for real hypersurfaces (i), (iii), (iv), (v), which shows that they are
(0, µ)-spaces, where µ = − c

2 . Moreover, we already know that (ii) Rn×Sn−1(4)
(in Cn) is a contact (0, 0)-space. Then, due to Theorem 3.4, we have completed
the proof. For the detailed computation, we refer to [8].

Due to Proposition 3.6 and Theorem 4.1, we have

Theorem 4.2. Real hypersurfaces (i), (ii), (iii), (iv) and (v) in Theorem
(4.1) are homogeneous and the corresponding (1-parameter family of) homo-
geneous Riemannian structures P = A(− c

2 ). In particular, (iv) a horosphere in
Qn∗ whose center at infinity is determined by an A-principal geodesic in Qn∗,
c = −8 has the homogeneous Riemannian structure P = A(4) of type T2.
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