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NOTES ON GENERALIZED FIBONACCI NUMBERS

AND MATRICES

Halim Özdemir∗, Sinan Karakaya, and Tuğba Petik

Abstract. In this study, some new relations between generalized
Fibonacci numbers and matrices are given. The work is designed in
three stages: Firstly, it is obtained a relation between generalized
Fibonacci numbers and integer powers of the matrices X satisfying
the relation X2 = pX+ qI, and also, many results are derived from
obtained relation. Then, it is established more general relation
between generalized Fibonacci numbers and the square matrices
X satisfying the condition X2 = VnX − (−q)nI. Finally, some
applications and numerical examples related to the obtained results
are given.

1. Introduction

The sequence {Fn} defined by the recurrence relation Fn = Fn−1 +
Fn−2 for all integers n ≥ 2 with the initial conditions F0 = 0 and
F1 = 1 is called the Fibonacci sequence. An another sequence associated
with the Fibonacci sequence is the Lucas sequence. The sequence {Ln}
defined by the recurrence relation Ln = Ln−1 + Ln−2 for all integers
n ≥ 2 with the initial conditions L0 = 2 and L1 = 1 is called the Lucas
sequence.

The roots of the equation x2 − x − 1 = 0 are indicated by α and β.
The positive root α is called the golden ratio. Many examples of this
number can be seen in nature and art [3, 4, 8, 9].

The generalized Fibonacci sequence {Un} and the generalized Lucas
sequence {Vn} are, respectively, defined by the recurrence relations Un =
pUn−1 + qUn−2 and Vn = pVn−1 + qVn−2 for all integer n ≥ 2 and the
initial conditions U0 = 0, U1 = 1, V0 = 2 and V1 = p, where p and q
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are nonzero real numbers. Note that the numbers p and q will also be
nonzero on the rest of the work, in order to avoid any uncertainty.

Generalized Fibonacci and generalized Lucas sequences with negative
subscript are given by the relations

(1) U−n =
−Un

(−q)n

and

(2) V−n =
Vn

(−q)n

respectively [6, 7]. The Fibonacci sequence {Fn} and the Lucas sequence
{Ln} are, respectively, the specific cases of the sequences {Un} and {Vn}
for p = q = 1.

Now, suppose that p2 + 4q > 0. There are the relations

(3) Un =
αn
p,q − βn

p,q

αp,q − βp,q

and

(4) Vn = αn
p,q + βn

p,q

known as Binet’s formulas for all n ∈ Z. Here αp,q =
p+
√

p2+4q
2 and

βp,q =
p−
√

p2+4q
2 are the solutions of the quadratic equation x2−px−q =

0. In addition, the identities

(5) αn
p,q = Unαp,q + qUn−1

and

(6) βn
p,q = Unβp,q + qUn−1

hold for all n ∈ Z [6].
Relations between number sequences and matrices are of particular

importance in mathematics. It was first shown thatQn =

(
Fn+1 Fn

Fn Fn−1

)
for all n ∈ N via the matrix Q =

(
1 1
1 0

)
which is called as the Fibonacci
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Q matrix in [3]. And then, it was proved that the same relation is main-
tained for all n ∈ Z in [2]. In [5], a relation between generalized Fibonacci
numbers and matrices was investigated. In [1], the authors developed a
procedure for deriving special matrices of size 3 × 3, whose powers are
related to Fibonacci and Lucas numbers, and then they found some spe-
cial matrices thanks to the procedure developed. In [2], some relations
between the powers of the square matrices X satisfying the conditions
X2 = X + I and Fibonacci numbers were shown. In [6], a relation
between the powers of the square matrices X satisfying the condition
X2 = pX + qI and generalized Fibonacci numbers was given.

In this paper, the main aim is to get some results by showing a relation
between the powers of the square matrices X satisfying the condition
X2 = VnX − (−q)nI and generalized Fibonacci numbers.

2. Results

In this section, some new results will be given by using some relations
between generalized Fibonacci numbers and matrices. At first, let’s start
by reminding well-known identities

(7) UmVn = Um+n + (−q)nUm−n,

(8) (−q)n−1Um−n = Um−1Un − UmUn−1,

(9) Vn = Un+1 + qUn−1 = pUn + 2qUn−1,

and

(10) Un+rUn−r − U2
n = −(−q)n−rU2

r

for all m,n, r ∈ Z [6]. These identities will be used to establish the
results in the rest of the work.

Now, let us remind the following result.

Theorem 2.1. [2.1.Theorem, [6]] If X is a square matrix with X2 =
pX + qI, then

Xk = UkX + qUk−1I

for all k ∈ Z.
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Theorem 2.2. If X is a square matrix with X2 = pX + qI, then

(−q)k−nUm−kX
n + Uk−nX

m = Um−nX
k

for all m,n, k ∈ Z.

Proof. If m = n, then the proof is obvious. Now, assume that m ̸= n.
By Theorem 2.1, we get the equality

(−q)k−nUm−k(UnX + qUn−1I) + Uk−n(UmX + qUm−1I)

= 1
(−q)n−1 [(−q)k−1Um−k(UnX+ qUn−1I)+(−q)n−1Uk−n(UmX+ qUm−1I)].

Hence, taking the equality (8) into account, it is seen that

(−q)k−nUm−kX
n + Uk−nX

m = Um−n(UkX + qUk−1I).

Thus, according to Theorem 2.1, the desired result is obtained.

Corollary 2.3. For all m,n, k ∈ Z, the identities

(a) (−q)k−nUm−k(aUn+qUn−1)+Uk−n(aUm+qUm−1) = Um−n(aUk+
qUk−1),

(b) (−q)k−nUm−kUn + Uk−nUm = Um−nUk,
(c) (−q)k−nUm−k(Un+1− aUn)+Uk−n(Um+1− aUm) = Um−n(Uk+1−

aUk)

hold.

Proof. The matrix X =

(
a 1

ap− a2 + q p− a

)
satisfies the relation

X2 = pX + qI. So, from Theorem 2.1, we get the equality Xs =(
aUs + qUs−1 Us

(ap− a2 + q)Us Us+1 − aUs

)
for all s ∈ Z. Hence, the desired results

are immediate consequences of the matrix equality in Theorem 2.2.

Corollary 2.4. The following identities are true for all m,n, k ∈ Z.
(a) (−q)k−nUm−kα

n
p,q + Uk−nα

m
p,q = Um−nα

k
p,q

(b) (−q)k−nUm−kβ
n
p,q + Uk−nβ

m
p,q = Um−nβ

k
p,q

Proof. Consider the matrix X =

(
αp,q 0
0 βp,q

)
. From the equalities

(5) and (6), it is obvious that the matrix X satisfies the relation X2 =
pX + qI. Hence, the desired results are immediate consequences of the
matrix equality in Theorem 2.2.
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Corollary 2.5. If A =

(
a b
c Vn − a

)
is a matrix with det(A) =

(−q)n, then

UnA
k =

(
aUnk − (−q)nUnk−n bUnk

cUnk Unk+n − aUnk

)
for all n, k ∈ Z.

Proof. It is clear that the equality is true for n = 0. Now, assume
that n ̸= 0. In addition, let us define the matrix C as

C =

(
a−qUn−1

Un

b
Un

c
Un

Vn−a−qUn−1

Un

)
.

It can be easily seen that the matrix C satisfies the relation C2 = pC+qI.
So, taking Theorem 2.1 into account, we get

Cn = Un

(
a−qUn−1

Un

b
Un

c
Un

Vn−a−qUn−1

Un

)
+ qUn−1I =

(
a b
c Vn − a

)
= A.

Moreover, according to Theorem 2.2, we have the relation

(11) (−q)k−nUm−kC
n + Uk−nC

m = Um−nC
k.

Now, if necessary arrangements are made in equality (11) by taking
0 and kn instead of m and k, respectively, and by using the identity (1)

UnA
k =

(
aUnk − (−q)nUnk−n bUnk

cUnk (Vn − a)Unk − (−q)nUnk−n

)
is obtained. Hence, taking the equality (7) into account, the desired
result is found.

The following two results are immediate consequences of Corollary
2.5 for all m,n, k ∈ Z.

Corollary 2.6. If A =

(
Vn −(−q)m

(−q)n−m 0

)
, then

UnA
k =

(
Unk+n −(−q)mUnk

(−q)n−mUnk −(−q)nUnk−n

)
for all m,n, k ∈ Z.

Corollary 2.7. If B =

(
0 (−q)m

−(−q)n−m Vn

)
, then

UnB
k =

(
−(−q)nUnk−n (−q)mUnk

−(−q)n−mUnk Unk+n

)
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for all m,n, k ∈ Z.

Corollary 2.8. The following equalities are true for all m,n, k ∈ Z
with n ̸= 0.

(a)
k∑

i=0

(
k
i

)
−Uni+nUn(k−i)−n+UniUn(k−i)

U2
n

= V k
n

(−q)n ,

(b)
k∑

i=0

(
k
i

)
Uni+nUn(k−i)−UniUn(k−i)+n

U2
n

= 0,

(c)
k∑

i=0

(
k
i

)
−UniUn(k−i)−n+Uni−nUn(k−i)

U2
n

= 0,

(d)
k∑

i=0

(
k
i

)
UniUn(k−i)−Uni−nUn(k−i)+n

U2
n

= V k
n

(−q)n .

Proof. Let the matrices A and B be the matrices in Corollary 2.6
and Corollary 2.7, respectively. First, notice that the matrices A and B

are commutative, and A+B =

(
Vn 0
0 Vn

)
. So, according to well-known

Binomial Expansion Theorem, we get

(12)
k∑

i=0

(
k
i

)
AiBk−i =

(
V k
n 0
0 V k

n

)
for all k ∈ Z.

On the other hand, we have Ai = 1
Un

(
Uni+n −(−q)mUni

(−q)n−mUni −(−q)nUni−n

)
and Bk−i = 1

Un

(
−(−q)nUn(k−i)−n (−q)mUn(k−i)

−(−q)n−mUn(k−i) Un(k−i)+n

)
from Corollary 2.6

and Corollary 2.7, respectively. Hence, the desired results are easily
obtained from the matrix equality (12).

The matrix A in Corollary 2.5 has the characteristic equation x2 −
Vnx+ (−q)n = 0. Moreover, the matrix A satisfies the equality UnA

k =
UnkA − (−q)nUnk−nI for all n, k ∈ Z. So, the following result can be
regarded as an extension of this result to any square matrix.

Theorem 2.9. If X is a square matrix with X2 = VnX − (−q)nI,
then

UnX
k = UnkX − (−q)nUnk−nI

for all k, n ∈ Z.
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Proof. If k = 0, then the proof is obvious. Taking the equality (7)
into account, it can be easily shown that the proof of theorem is true
for all k ∈ N.

Now, let Y = −X + VnI. Then it is seen that the matrix Y satisfies
the condition Y 2 = VnY − (−q)nI of the theorem. Therefore, UnY

k =
UnkY − (−q)nUnk−nI for all k ∈ N. Hence, taking the equalities (1) and
(7) into account, it is easily obtained the equality

UnX
−k = Un(−k)X − (−q)nUn(−k)−nI

for all k ∈ N, and the proof is completed.

The following result is the special case of Theorem 2.9 with p = q = 1.

Corollary 2.10. If X is a square matrix with X2 = LnX − (−1)nI,
then

FnX
k = FnkX − (−1)nFnk−nI

for all k, n ∈ Z.

3. Applications and Examples

Theorem 2.9 and Corollary 2.10 imply that the powers of any 2 × 2
matrices having the characteristics equation other than x2 − x − 1 = 0
can be obtained using the Fibonacci sequence.

Example 3.1. The matrix C =

(
0 −1
1 3

)
have the characteristics

equation x2 − 3x + 1 = 0. So, the matrix C satisfies C2 − L2C +
(−1)2I = 0. Therefore, we get, from Corollary 2.10 with n = 2, Ck =(
−F2k−2 −F2k

F2k F2k+2

)
for all k ∈ Z.

We see, via Corollary 2.10, that the powers of some square matrices
having the characteristic equation different from x2 − x − 1 = 0, as in
Example 3.1, calculated by using Fibonacci sequence. This fact reminds
us an idea related to compute the roots of some square matrices. For

example, since the characteristic equation of the matrixD =

(
−1 −1
1 2

)
is x2 − x − 1 = 0, we get Dk =

(
−Fk−2 −Fk

Fk Fk+2

)
by Corollary 2.10.

However, D2 = C for the matrix C in Example 3.1. So, the matrix D =
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−F−1 −F1

F1 F3

)
is a square root of the matrix C having the characteristic

polynomial C2 − L2C + (−1)2I.

The following theorem given inspired by this idea presents a method
to calculate nth roots of any square matrix X satisfying the equality
X2 − VnX + (−q)nI = 0 for all n ∈ Z \ {0}.

Theorem 3.2. Let X be any n × n matrix such that X2 − VnX +

(−q)nI = 0 for all n ∈ Z \ {0}. Then Cn = X if C = X−qUn−1I
Un

.

Proof. First, we have

C2 − pC − qI = (
X − qUn−1I

Un
)2 − p

X − qUn−1I

Un
− qI

=
X2 − (2qUn−1 + pUn)X + q(qU2

n−1 + pUnUn−1 − U2
n)I

U2
n

.

Then, taking the equality (9) into account, we get

C2 − pC − qI =
X2 − VnX + q[Un−1(qUn−1 + pUn)− U2

n]I

U2
n

=
X2 − VnX + q(Un−1Un+1 − U2

n)I

U2
n

.

On the other hand, we also get the equality Un−1Un+1 − U2
n =

−(−q)n−1 from equality (10). Thus, taking the condition of the the-
orem into account, we obtain

C2−pC−qI =
X2 − VnX + q[−(−q)n−1]I

U2
n

=
X2 − VnX + (−q)nI

U2
n

= 0.

Consequently, the matrix C satisfies the condition of Theorem 2.1. So,
we get

(13) Cn = UnC + qUn−1I

for all n ∈ Z\{0}. Hence, substituting the matrix C = X−qUn−1I
Un

into

(13) completes the proof.

Now, we present two examples.
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Example 3.3. The characteristic polynomial of the matrix A =(
7 −6
6 −5

)
is x2−2x+1. The matrix satisfies the equality A2−V2A+q2I =

0 with p2 + 2q = 2 and q2 = 1. If q = 1, then p = 0, which is a contra-
diction. So, it must be q = −1, and therefore p = ±2. By Theorem 3.2,

we get the square roots of the matrix A as C = ±1
2

(
8 −6
6 −4

)
, which

satisfy C2 = A.

On the other hand, the matrix also satisfies the equality A2 − V3A+
(−q)3I = 0 with p3 + 3pq = 2 and (−q)3 = 1. One pair of the p and q
that satisfies these equalities is (2,−1). Hence, from the Theorem 3.2,

we get C =

(
3 −2
2 −1

)
, which satisfies C3 = A.

Example 3.4. The matrix A =

3 2 4
2 0 2
4 2 3

 satisfies the polynomial

x2 − 7x − 8. So, the matrix A satisfies A2 − V3A + (−q)3I = 0 with
p3 + 3pq = 7 and (−q)3 = −8. Hence, one pair of the p and q that
satisfies these equalities is (1, 2). In this case, from Theorem 3.2, we get

C = 1
3

1 2 4
2 −2 2
4 2 1

 satisfies C3 = A.

The proof of the following result is an immediate consequence of

Theorem 2.9 by taking X =

(
αn
p,q 0
0 βn

p,q

)
.

Corollary 3.5. Unα
nk
p,q = Unkα

n
p,q−(−q)nUnk−n and Unβ

nk
p,q = Unkβ

n
p,q−

(−q)nUnk−n for all k, n ∈ Z.

Now, let us choose fixed nonzero real numbers p1 and q1 with p21 +
4q1 > 0. And then let us create the generalized Fibonacci sequence {Un}
and generalized Lucas sequence {Vn} in terms of p1 and q1. Fixing the
number n such that V 2

n − 4(−q1)
n > 0, we define the numbers p2 = Vn

and q2 = −(−q1)
n, and create the generalized Fibonacci sequence {Sk}
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in terms of p2 and q2. So, we get, by Binet’s formulas,

αp2,q2 =
p2 +

√
p22 + 4q2
2

=
Vn +

√
V 2
n − 4(−q1)n

2
=

αn
p1,q1 + βn

p1,q1 +
√
(αn

p1,q1 + βn
p1,q1)

2 − 4(−q1)n

2

=
αn
p1,q1 + βn

p1,q1 +
√

(α2n
p1,q1 + β2n

p1,q1)− 2(−q1)n

2
= αn

p1,q1

and similarly, βp2,q2 = βn
p1,q1 .

Now, if X =

(
αn
p1,q1 0
0 βn

p1,q1

)
, then the matrixX can be used directly

in Theorem 2.9 or Corollary 3.5. However, it can not be used in Theorem
2.1 for the generalized Fibonacci sequence {Un} with n ̸= 1. Of course,
the matrix X can be used directly in Theorem 2.1 for the generalized
Fibonacci sequence {Sk} defined as above. This raises the question
whether there is any relation between the sequences {Un} and {Sk}.
Indeed there is. It is easily seen that

(14) Unk = UnSk

for n, k ∈ Z with V 2
n − 4(−q1)

n > 0.

We want to complete this section by giving two examples.

Example 3.6. Let us consider the generalized Fibonacci sequence
{Un} and generalized Lucas sequences {Vn} with p1=q1=1. In fact,
these are the classical Fibonacci and Lucas sequence, respectively;

{Un} = {...− 3, 2,−1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...}

and

{Vn} = {...7,−4, 3,−1, 2, 1, 3, 4, 7, 11, 18, 29, 47, ...}.

Then choosing, for example, n = 2 leads to p2 = V2 = 3 and q2 =
−(−1)2 = −1. In this case, the condition V 2

2 − 4(−q1)
2 > 0 is also

satisfied. Hence, we get

{Sk} = {...,−8,−3,−1, 0, 1, 3, 8, 21, 55, 144, ...}

It is easy to see that U2k = U2Sk = Sk for k ∈ Z.
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Example 3.7. Let us consider the generalized Fibonacci sequence
{Un} and the generalized Lucas sequences {Vn} with p1 = 2, q1 = 3;

{Un} = {...,−20

81
,
7

27
,−2

9
,
1

3
, 0, 1, 2, 7, 20, 61, 182, ...}

and

{Vn} = {...,−26

27
,
10

9
,−2

3
, 2, 2, 10, 26, 82, ...}.

Then choosing n = −2 leads to p2 = V−2 = 10
9 and q2 = −(−3)−2 =

−1
9 , and the condition V 2

−2 − 4(−q1)
−2 > 0 is satisfied. Hence, we get

{Sk} = {...,−9, 0, 1,
10

9
,
91

81
, ...}.

It can be easily checked that U−2k = U−2Sk = −2
9Sk for k ∈ Z.

NOTE: Notice that Theorem 2.1 is a special case of Theorem 2.9. On
the other hand, Theorem 2.2 is an extension of Theorem 2.1 to com-
binations of integer powers of the matrices X satisfying the relation
X2 = pX + qI. So, in this logical framework, Theorem 2.9 can be han-
dled, as in Theorem 2.2, for some combinations of integer powers of the
matrices X satisfying the relation X2 = VnX− (−q)nI. In addition, the
relation (14) can be useful to derive different identities for generalized
Fibonacci sequences.
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