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NOTES ON GENERALIZED FIBONACCI NUMBERS
AND MATRICES

HALM OZDEMIR*, SINAN KARAKAYA, AND TUGBA PETIK

Abstract. In this study, some new relations between generalized
Fibonacci numbers and matrices are given. The work is designed in
three stages: Firstly, it is obtained a relation between generalized
Fibonacci numbers and integer powers of the matrices X satisfying
the relation X2 = pX +¢I, and also, many results are derived from
obtained relation. Then, it is established more general relation
between generalized Fibonacci numbers and the square matrices
X satisfying the condition X? = V,X — (—¢)"I. Finally, some
applications and numerical examples related to the obtained results
are given.

1. Introduction

The sequence {F,} defined by the recurrence relation F,, = F,,_1 +
F,,_o for all integers n > 2 with the initial conditions Fy = 0 and
F1 = 1is called the Fibonacci sequence. An another sequence associated
with the Fibonacci sequence is the Lucas sequence. The sequence {L;,}
defined by the recurrence relation L, = L,_1 + L,_o for all integers
n > 2 with the initial conditions Ly = 2 and L; = 1 is called the Lucas
sequence.

The roots of the equation 22 — 2 — 1 = 0 are indicated by a and j.
The positive root « is called the golden ratio. Many examples of this
number can be seen in nature and art [3, 4, 8, 9].

The generalized Fibonacci sequence {U, } and the generalized Lucas
sequence {V,,} are, respectively, defined by the recurrence relations U,, =
pUn—1 4+ qUp—o and V,, = pV,,_1 + qV,_o for all integer n > 2 and the
initial conditions Uy = 0, U; = 1, Vj = 2 and V; = p, where p and q
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are nonzero real numbers. Note that the numbers p and ¢ will also be
nonzero on the rest of the work, in order to avoid any uncertainty.

Generalized Fibonacci and generalized Lucas sequences with negative
subscript are given by the relations

-U,
(1) U_, = W
and

(2) Viop = Vo

(=g)"
respectively [6, 7]. The Fibonacci sequence {F}, } and the Lucas sequence
{L,} are, respectively, the specific cases of the sequences {U,,} and {V,,}
forp=qg=1.

Now, suppose that p? + 4¢ > 0. There are the relations

O‘IT)Lq B gq
Q) R
" Qp,q — Bpq

and
(4) Vi =g+ Brg

. /P2t
known as Binet’s formulas for all n € Z. Here o, 4 = Zﬂzﬂ and

—i/n2
Bpq = % are the solutions of the quadratic equation 22 —pzr—q =
0. In addition, the identities

(5) g = Unap g+ qUn—1
and
(6) Bg,q = Unﬂp,q +qUp—1

hold for all n € Z [6].
Relations between number sequences and matrices are of particular

Fn+1 Fn)

importance in mathematics. It was first shown that Q" =
Fn anl

for all n € N via the matrix QQ = (1 1) which is called as the Fibonacci

10
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@ matrix in [3]. And then, it was proved that the same relation is main-
tained for alln € Z in [2]. In [5], a relation between generalized Fibonacci
numbers and matrices was investigated. In [1], the authors developed a
procedure for deriving special matrices of size 3 x 3, whose powers are
related to Fibonacci and Lucas numbers, and then they found some spe-
cial matrices thanks to the procedure developed. In [2], some relations
between the powers of the square matrices X satisfying the conditions
X? = X + I and Fibonacci numbers were shown. In [6], a relation
between the powers of the square matrices X satisfying the condition
X2 = pX + ¢qI and generalized Fibonacci numbers was given.

In this paper, the main aim is to get some results by showing a relation
between the powers of the square matrices X satisfying the condition
X? =V, X — (—q)"I and generalized Fibonacci numbers.

2. Results

In this section, some new results will be given by using some relations
between generalized Fibonacci numbers and matrices. At first, let’s start
by reminding well-known identities

(7) UnVi = Untn + (=0)"Unm—n,

(8) (=0)" " Um-n = Un-1Un — UnUn-1,
9) Voo = Unt1 + qUp—1 = pUy, + 2qU,,—1,
and

(10) Un+rUn—r = U = —(=q)" " U}

for all m,n,r € Z [6]. These identities will be used to establish the
results in the rest of the work.

Now, let us remind the following result.
Theorem 2.1. [2.1.Theorem, [6]] If X is a square matrix with X? =
pX + ql, then

XF = U X + qUyp_11
for allk € 7.
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Theorem 2.2. If X is a square matrix with X% = pX + ¢I, then

()" " U X" + Up— X™ = Uppn X"
for all m,n, k € 7Z.

Proof. If m = n, then the proof is obvious. Now, assume that m # n.
By Theorem 2.1, we get the equality

(_Q)k_nUm—k(UnX + qUn—ll) + Uk:—n(UmX + qu—II)
= it (-0 U Un X + U1 1)+ (—0)" " Vs (Ui X + U T)].

Hence, taking the equality (8) into account, it is seen that
(—)* Uy o X" + Upn X™ = Upp_n(Up X + qUy_11).

Thus, according to Theorem 2.1, the desired result is obtained.
O

Corollary 2.3. For all m,n, k € 7Z, the identities
(a) (_Q>kinUmfk(aUn+qUn—l)+Uk7n(aUm+qu—1) = Um—n(aUk+
qUi-1),
(b) (_q)k—nUmkan + Uk—nUm = Upn—n U,
(C) <_Q)k_nUmfk(Un+1 - aUn) + Uk:fn(Um—&—l - aUm) = Um—n(UkJrl -
aUy)
hold.

a
ap — a’ + q p—a
X? = pX 4+ ¢I. So, from Theorem 2.1, we get the equality X°* =
< aUs + qUs—1 Us

(ap — a® + qQ)Us Ugyq — aUs
are immediate consequences of the matrix equality in Theorem 2.2.
O

Proof. The matrix X = ( > satisfies the relation

> for all s € Z. Hence, the desired results

Corollary 2.4. The following identities are true for all m,n,k € Z.
(8) (=0)""Un-rapq + Uk-npy = Un-ncyq
(b) (_Q)k_nUm—kﬁg,q + Uk—nﬁg}q = Um—nﬁgq

apg 0

0 fpg
(5) and (6), it is obvious that the matrix X satisfies the relation X? =
pX + qI. Hence, the desired results are immediate consequences of the
matrix equality in Theorem 2.2.

Proof. Consider the matrix X = ( > From the equalities

O]
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Corollary 2.5. If A = <CCL v b_@) is a matrix with det(A) =
(_Q)n7 then
kE_ aUpi — (_Q)nUnk—n bUnk
U, A% = ( Uk Uni i — aUni for all n, k € Z.

Proof. 1t is clear that the equality is true for n = 0. Now, assume
that n # 0. In addition, let us define the matrix C as

a—qUn_1 b
— U, U
C - Cn Vn_a_rz]Un—l .

Un Un
It can be easily seen that the matrix C satisfies the relation C? = pC+qI.
So, taking Theorem 2.1 into account, we get

7a_qUU"71 UL a b
Cn = Un UL" Vn*a[;’,&Un—l + qUTL—II = (C Vn B a> = A.

Moreover, according to Theorem 2.2, we have the relation

(11) (=) " Upp—sC" + Up—n O™ = Uy C*.

Now, if necessary arrangements are made in equality (11) by taking
0 and kn instead of m and k, respectively, and by using the identity (1)

U Ak — (aUnk - (_Q)nUnkfn bUnk >
" CUnk (Vn - a)Unk - (_Q)nUnkz—n

is obtained. Hence, taking the equality (7) into account, the desired

result is found.
O

The following two results are immediate consequences of Corollary
2.5 for all m,n, k € Z.

Corollary 2.6. If A = <(—q‘)/zm _(_OQ) ), then

Unk n _<_Q)m nk >
UTLAk = n—JTrn n
<(_Q) nk _(_Q) Unkfn
for all m,n, k € 7Z.

Corollary 2.7. If B = <_(_§)n_m (_‘gn) ), then

= ({0 )

Q)nimUnk UnkJrn
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for allm,n, k € Z.

Corollary 2.8. The following equalities are true for all m,n,k € Z
with n # 0.

ko (k “UnitnUne—i)—ntUniUn—s) _  VF
(@) 2 {; 0z = o

=0
(b) k <k> UnitnUnk—i) =UniUn@—i)4n _ 0
’i U2 - %
i=0 "
ko (&
—UniUp(k—i)—ntUni—nUn—i)
© = (}) s _o,
=0 "
(d) i k UniUn(kfi)_Uni—nUn(kfiH»n _ V;.]LC
=\ Ui SO

Proof. Let the matrices A and B be the matrices in Corollary 2.6
and Corollary 2.7, respectively. First, notice that the matrices A and B
Vo O
0 V,
Binomial Expansion Theorem, we get

o S )

i=0 "

are commutative, and A+ B = < > . So, according to well-known

for all k € Z.

nz+n _(_Q)mUni
On the other hand, we have A’ = <( n-my —(—q)”Um'—n>

- —(—q)"U,x )mU
and BF 1 = L (=) ~lk=i)—n > from Corollary 2.6
Un <—(—Q)” " Unp(k—i) Y
and Corollary 2.7, respectively. Hence the desu"ed results are easily
obtained from the matrix equality (12).
O

The matrix A in Corollary 2.5 has the characteristic equation 2% —

Vi 4+ (—q)™ = 0. Moreover, the matrix A satisfies the equality U, A* =
UnkA — (—q)"Upg—nI for all n,k € Z. So, the following result can be
regarded as an extension of this result to any square matrix.

Theorem 2.9. If X is a square matrix with X% = V, X — (—q)"I,
then
UnXk = UnkX - (_Q)nUnknt
for all k,n € Z.
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Proof. If k = 0, then the proof is obvious. Taking the equality (7)
into account, it can be easily shown that the proof of theorem is true
for all £k € N.

Now, let Y = —X + V,,I. Then it is seen that the matrix Y satisfies
the condition Y2 = V,,Y — (—q)"I of the theorem. Therefore, U,Y* =
UnkY — (—q)"Upng—nI for all k € N. Hence, taking the equalities (1) and
(7) into account, it is easily obtained the equality

UnXik = Un(fk:)X - (_Q)nUn(fk)nt
for all £ € N, and the proof is completed.

O

The following result is the special case of Theorem 2.9 with p = ¢ = 1.

Corollary 2.10. If X is a square matrix with X? = L, X — (=1)"I,
then
Fo Xk = F X — (—1)"Fp_nl

for all k,n € Z.

3. Applications and Examples

Theorem 2.9 and Corollary 2.10 imply that the powers of any 2 x 2
matrices having the characteristics equation other than 22 —z —1 =0
can be obtained using the Fibonacci sequence.

g) _31> have the characteristics

equation 2> — 3z +1 = 0. So, the matrix C satisfies C?> — LyC +
(=1)2I = 0. Therefore, we get, from Corollary 2.10 with n = 2, C* =

—Fop_9  —Fyy
for all k € 7.
( oy Fypyn) 117

Example 3.1. The matrix C' = <

We see, via Corollary 2.10, that the powers of some square matrices
having the characteristic equation different from 2> — 2 — 1 = 0, as in
Example 3.1, calculated by using Fibonacci sequence. This fact reminds
us an idea related to compute the roots of some square matrices. For

. . . . -1 -1
example, since the characteristic equation of the matrix D = ( 1 9 )

—Fy—o —Fj
Fp Figo
However, D? = C for the matrix C' in Example 3.1. So, the matrix D =

is 2?2 —2x—1 =0, we get DF = < ) by Corollary 2.10.
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—F, —F\. . . .
( r ! r 1) is a square root of the matrix C having the characteristic
1 3

polynomial C? — LyC + (—1)21.
The following theorem given inspired by this idea presents a method

to calculate nth roots of any square matrix X satisfying the equality
X2~V X + (—q)"I =0 for all n € Z\ {0}.

Theorem 3.2. Let X be any n x n matrix such that X% — V, X +
. X—qUn 11
(=)"I =0 for alln € Z\ {0}. Then C" = X if C = ===~
Proof. First, we have

X — qUnfll X — qUnfl-[ B

C? —pC —ql = ( i )’ —p i ql
X2 - (2qUn71 +pUn)X + Q(QU5—1 +pUnUn71 - Ug)j
= U% .

Then, taking the equality (9) into account, we get

X2 - Vo X + q[Un_l(qUn_l -|—pUn) — UEL]I
Uz
_X2 — Vo X + q(Un_lUnH — Ug)]
Uy

C? —pC —ql =

On the other hand, we also get the equality U, 1U,+1 — U2 =
—(—¢)"! from equality (10). Thus, taking the condition of the the-
orem into account, we obtain

X2 -V, X +q[—(—)" I  X?2-V, X+ (—q)"I
2 _ n _ n _
C“—pC—ql = 02 = 02 = 0.

Consequently, the matrix C' satisfies the condition of Theorem 2.1. So,
we get

(13) O = UpC + qUp_11
for all n € Z\{0}. Hence, substituting the matrix C' = %ﬂ"’l] into
(13) completes the proof.

O

Now, we present two examples.
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Example 3.3. The characteristic polynomial of the matrix A =
((73 :g) is 22 —2x+1. The matrix satisfies the equality A?—Vo A+q*1 =
0 with p?> +2¢ =2 and ¢> = 1. If ¢ = 1, then p = 0, which is a contra-
diction. So, it must be ¢ = —1, and therefore p = +2. By Theorem 3.2,

we get the square roots of the matrix A as C = :l:% <2 :i), which

satisfy C? = A.

On the other hand, the matrix also satisfies the equality A?> — V3 A +
(—q)3I = 0 with p® + 3pq = 2 and (—q)® = 1. One pair of the p and q
that satisfies these equalities is (2, —1). Hence, from the Theorem 3.2,

we get C = (; :?), which satisfies C® = A.

3 2 4
Example 3.4. The matrix A= |2 0 2| satisfies the polynomial
4 2 3

22 — Twx — 8. So, the matrix A satisfies A2 — V3A + (—q)3I = 0 with
p3 +3pg = 7 and (—q)® = —8. Hence, one pair of the p and q that
satisfies these equalities is (1,2). In this case, from Theorem 3.2, we get

1 2 4
C = % 2 —2 2| satisfies C® = A.
4 2 1

The proof of the following result is an immediate consequence of

. ayg 0
Theorem 2.9 by taking X = 0 -
Pa

Corollary 3.5. Upalk = Uppal ,—(—q)"Uni—p and Up B2k = Uy, 87, —
(=q)"Unk—n for all k,n € Z.

Now, let us choose fixed nonzero real numbers p; and ¢; with p% +
4¢1 > 0. And then let us create the generalized Fibonacci sequence {U, }
and generalized Lucas sequence {V,,} in terms of p; and ¢;. Fixing the
number n such that V2 — 4(—gq;)" > 0, we define the numbers ps = V,,
and ¢o = —(—q1)", and create the generalized Fibonacci sequence {S}
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in terms of py and g2. So, we get, by Binet’s formulas,

P2+ /D3 + 4go
2

Qpo,g2 =

Vot \/Vn2 —4(—q)" gt T Pprag + \/(a;}hql + B ,q)? = 4(=q)"

2
2
pl q1 Pl q1 \/ O‘p?th 1, ql) - 2( ) n
- aPl#h
and similarly, 8p, ¢, = By, 4,
" 0
Now, if X = (ap(l)’Q1 " ) , then the matrix X can be used directly
P1,91

in Theorem 2.9 or Corollary 3.5. However, it can not be used in Theorem
2.1 for the generalized Fibonacci sequence {U,} with n # 1. Of course,
the matrix X can be used directly in Theorem 2.1 for the generalized
Fibonacci sequence {S;} defined as above. This raises the question
whether there is any relation between the sequences {U,} and {Si}.
Indeed there is. It is easily seen that

(14) Unr = Uy, Sk

for n, k € Z with V.2 — 4(—q)" > 0.
We want to complete this section by giving two examples.

Example 3.6. Let us consider the generalized Fibonacci sequence
{Un} and generalized Lucas sequences {V,,} with pi=¢q1=1. In fact,
these are the classical Fibonacci and Lucas sequence, respectively;

(U} ={... ~1,1,0,1,1,2,3,5,8,13,21,34,55,...}

and

{(Vid = {..7,-4,3,-1,2,1,3,4,7,11,18, 29,47, ...}.

Then choosing, for example, n = 2 leads to ps = Vo = 3 and ¢ =
—(=1)2 = —1. In this case, the condition Vi — 4(—q1)* > 0 is also
satisfied. Hence, we get

{Si} ={..., ~1,0,1,3,8,21,55,144, ...}

It is easy to see that Ug, = Us Sy, = Sy for k € 7.



Notes on generalized Fibonacci numbers and matrices 483

Example 3.7. Let us consider the generalized Fibonacci sequence
{U,} and the generalized Lucas sequences {V,,} with py =2, q1 = 3;

20 7 21
Ub={.,— = = 2 20,1,2,7,20,61,182, ...
{ TL} { ? 817 277 9’ 37 Y Y }
and
26 10 2
Vot =AH..,——,—,—=,2,2,10, 26,82, ...}.
{ n} { ) 277 9 ) 37 ) ) ) ) ) }
Then choosing n = —2 leads to pp = V_o = % and gg = —(—3)72 =
—%, and the condition V2, — 4(—q1)~2 > 0 is satisfied. Hence, we get
10 91
St=4...,-90,1,—,—,...}.
{ k} { ) AT }

It can be easily checked that U_op, = U_9Sk = —%Sk for k € 7.

NOTE: Notice that Theorem 2.1 is a special case of Theorem 2.9. On
the other hand, Theorem 2.2 is an extension of Theorem 2.1 to com-
binations of integer powers of the matrices X satisfying the relation
X2 =pX + ql. So, in this logical framework, Theorem 2.9 can be han-
dled, as in Theorem 2.2, for some combinations of integer powers of the
matrices X satisfying the relation X2 = V,, X — (—¢)"I. In addition, the
relation (14) can be useful to derive different identities for generalized
Fibonacci sequences.
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