DOI QR코드

DOI QR Code

Buckling and free vibration analysis of multi-directional functionally graded sandwich plates

  • Ali, Alnujaie (Mechanical Engineering Department, Faculty of Engineering, Jazan University) ;
  • Atteshamuddin S., Sayyad (Department of Structural Engineering, Sanjivani College of Engineering, Savitribai Phule Pune University) ;
  • Lazreg, Hadji (Department of Civil Engineering, University of Tiaret) ;
  • Abdelouahed, Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2022.09.30
  • Accepted : 2022.12.12
  • Published : 2022.12.25

Abstract

In this article, the buckling and free vibration of multi-directional FGM sandwich plates are investigated. The material properties of FGM sandwich plates are assumed to be varying continuously in the in the longitudinal, transverse and thickness directions. The material properties are evaluated based on Voigt's micro-mechanical model considering power law distribution method with arbitrary power index. Equations of motion for the buckling and vibration analysis of multi-directional FGM sandwich plate are obtained based on refined shear deformation theory. Analytical solution for simply supported multidirectional FGM sandwich plate is carried out using Navier's solution technique. The FGM sandwich plate considered in this work has a homogeneous ceramic core and two functionally graded face sheets. Influence of volume fraction index in the longitudinal, transverse and thickness direction, layer thickness, and geometrical parameter over natural frequency and critical buckling load of multi-directional FGM sandwich plate is investigated. The finding shows a multi-directional functionally graded structures perform better compared to uni-directional gradation. Hence, critical grading parameters have been identified which will guide researchers in selecting fabrication routes for improving the performance of such structures.

Keywords

References

  1. Abazid, M.A., Alotebi, M.S. and Sobhy, M. (2018), "A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation", Struct. Eng. Mech., 67(3), 219-232. https://doi.org/10.12989/sem.2018.67.3.219.
  2. Adda, H.M. and Merdaci, S. (2020), "Influence of porosity,y on the analysis of sandwich plates FGM using of high order shear-deformation theory", Frattura ed Integrita Strutturale, 51, 199-214.
  3. Al Rjoub, Y.S. and Alshatnawi, J.A. (2020), "Free vibration of functionally-graded porous cracked plates", Struct., 28, 2392-2403. https://doi.org/10.1016/j.istruc.2020.10.059.
  4. Burlayenko, V.N. and Sadowski, T. (2020), "Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements", Meccanica, 55, 815-832. https://doi.org/10.1007/s11012-019-01001-7.
  5. Chai, Q.D. and Wang, Y.Q. (2022), "Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion", Eng. Struct., 252, 113718. https://doi.org/10.1016/j.engstruct.2021.113718.
  6. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  7. Daikh, A.A. and Zenkour, A.M. (2019), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Expr., 6(11), 115707. https://doi.org/10.1088/2053-1591/ab48a9.
  8. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004.
  9. Garg, A., Belarbi, M.O. Chalak, H.D. and Chakrabarti, A. (2021), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
  10. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behavior of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  11. Karamanli, A. and Aydogdu, M. (2020), "Vibration of functionally graded shear and normal deformable porous microplates via finite element method", Compos. Struct., 237, 111934. https://doi.org/10.1016/j.compstruct.2020.111934.
  12. Kumar, V., Singh, S.J., Saran, V.H. and Harsha, S.P. (2021), "Vibration characteristics of porous FGM plate with variable thickness resting on Pasternak's foundation", Eur. J. Mech.-A/Solid., 85, 104124. https://doi.org/10.1016/j.euromechsol.2020.104124.
  13. Liang, C. and Wang, Y.Q. (2020), "A quasi-3D trigonometric shear deformation theory for wave propagation analysis of FGM sandwich plates with porosities resting on viscoelastic foundation", Compos. Struct., 247, 112478. https://doi.org/10.1016/j.compstruct.2020.112478.
  14. Nguyen, K.T., Thai, T.H. and Vo, T.P. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091.
  15. Nguyen, N.V., Nguyen-Xuan, H., Lee, D. and Lee, J. (2020), "A novel computational approach to functionally graded porous plates with graphene platelets reinforcement", Thin Wall. Struct., 150, 106684. https://doi.org/10.1016/j.tws.2020.106684.
  16. Nguyen, Q.H., Nguyen, L.B., Nguyen, H.B. and Nguyen-Xuan, H. (2020), "A three-variable high order shear deformation theory for isogeometric free vibration, buckling and instability analysis of FG porous plates reinforced by graphene platelets", Compos. Struct., 245, 112321. https://doi.org/10.1016/j.compstruct.2020.112321.
  17. Sah, S.K. and Ghosh, A. (2022), "Influence of porosity distribution on free vibration and buckling analysis of multidirectional functionally graded sandwich plates", Compos. Struct., 279, 114795. https://doi.org/10.1016/j.compstruct.2021.114795.
  18. Saidi, H. and Sahla M. (2019), "Vibration analysis of functionally graded plates with porosity composed of a mixture of Aluminum (Al) and Alumina (Al2O3) embedded in an elastic medium", Frattura ed Integrita Strutturale, 13(50), 286-299. https://doi.org/10.3221/igf-esis.50.24
  19. Saleh, B., Jiang, J., Fethi, R., Al-Hababi, T., Xu, Q., Wang, L., Song, D. and M.A. (2020), "30 Years of functionally graded materials: An overview of manufacturing methods, applications, and future challenges", Compos. Part B: Eng., 201, 108376. https://doi.org/10.1016/j.compositesb.2020.108376.
  20. Shokravi, M. (2017), "Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct., 23(6), 623-631. https://doi.org/10.12989/scs.2017.23.6.623.
  21. Singh, S.J. and Harsha, S.P. (2020), "Analysis of porosity effect on free vibration and buckling responses for sandwich sigmoid function based functionally graded material plate resting on Pasternak foundation using Galerkin Vlasov's method", J. Sandw. Struct. Mater., 23(5), 1717-1760. https://doi.org/10.1177/1099636220904340.
  22. Slimane, M., Hadj Mostefa, A, Merazi, M., Belghoul, H., Hellal, H. and Boutaleb, S. (2020), "Effects of even pores distribution of functionally graded plate porous rectangular and square", Procedia Struct. Integr., 26, 35-45. https://doi.org/10.1016/j.prostr.2020.06.006.
  23. Swaminathan, K., Sachin, H. and Rajanna, T. (2021), "Buckling analysis of functionally graded materials by dynamic approach", Mater. Today: Proc., 45(1), 172-178. https://doi.org/10.1016/j.matpr.2020.10.412.
  24. Van Vinh, P. and Huy, L.Q. (2021), "Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory", Defence Technol., 18(3), 490-508. https://doi.org/10.1016/j.dt.2021.03.006.
  25. Wang, J., Wang, Y.Q. and Chai, Q.D. (2022), "Free vibration analysis of a spinning functionally graded spherical-cylindrical-conical shell with general boundary conditions in a thermal environment", Thin Wall. Struct., 180, 109768. https://doi.org/10.1016/j.tws.2022.109768.
  26. Wang, J.F., Cao, S.H. and Zhang, W. (2021), "Thermal vibration and buckling analysis of functionally graded carbon nanotube-reinforced composite quadrilateral plate", Eur. J. Mech.-A/Solid., 85, 104105. https://doi.org/10.1016/j.euromechsol.2020.104105.
  27. Wang, Q., Li, Z., Qin, B., Zhong, R. and Zhai, Z. (2021), "Vibration characteristics of functionally graded corrugated plates by using differential quadrature finite element method", Compos. Struct., 274, 114344. https://doi.org/10.1016/j.compstruct.2021.114344.
  28. Wang, Y.Q. (2018), "Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state", Acta Astronautica, 143, 263-271. https://doi.org/10.1016/j.actaastro.2017.12.004.
  29. Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
  30. Xu, H., Wang, Y.Q. and Zhang, Y. (2021), "Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method", Arch. Appl. Mech., 91, 4817-4834. https://doi.org/10.1007/s00419-021-02036-7.
  31. Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: Internal resonances", Nonlin. Dyn., 104, 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.