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ON WEAKLY S-PRIME SUBMODULES

Hani A. Khashan and Ece Yetkin Celikel

Abstract. Let R be a commutative ring with a non-zero identity, S be a

multiplicatively closed subset of R and M be a unital R-module. In this

paper, we define a submodule N of M with (N :R M)∩S = ∅ to be weakly
S-prime if there exists s ∈ S such that whenever a ∈ R and m ∈ M with

0 6= am ∈ N , then either sa ∈ (N :R M) or sm ∈ N . Many properties,
examples and characterizations of weakly S-prime submodules are intro-

duced, especially in multiplication modules. Moreover, we investigate the

behavior of this structure under module homomorphisms, localizations,
quotient modules, cartesian product and idealizations. Finally, we define

two kinds of submodules of the amalgamation module along an ideal and

investigate conditions under which they are weakly S-prime.

1. Introduction

Throughout this paper, unless otherwise stated, R denotes a commutative
ring with non-zero identity and M is a unital R-module. It is well-known that
a proper submodule N of M is called prime if rm ∈ N for r ∈ R and m ∈ M
implies r ∈ (N :R M) or m ∈ N where (N :R M) = {r ∈ R : rM ⊆ N}.
Since prime ideals and submodules have a vital role in ring and module theory,
several generalizations of these concepts have been studied extensively by many
authors (see, for example, [3, 5, 13,16,18,19]).

In 2007, Atani and Farzalipour introduced the concept of weakly prime
submodules as a generalization of prime submodules. Following [7], a proper
submodule N of M is said to be weakly prime if for r ∈ R and m ∈ M ,
whenever 0 6= rm ∈ N , then r ∈ (N :R M) or m ∈ N . In 2019 a new kind
of generalizations of prime submodules has been introduced and studied by
Şengelen Sevim et al. [18]. For a multiplicatively closed subset S of R, they
called a proper submodule N of an R-module M with (N :R M) ∩ S = ∅
an S-prime if there exists s ∈ S such that for r ∈ R and m ∈ M , whenever
rm ∈ N , then either sr ∈ (N :R M) or sm ∈ N . In particular, an ideal I of
R is called an S-prime ideal if I is an S-prime submodule of an R-module R,
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[13]. Recently, Almahdi et al. generalized S-prime ideals by defining the notion
of weakly S-prime ideals. A proper ideal I of R disjoint with S is said to be
weakly S-prime if there exists s ∈ S such that for a, b ∈ R and 0 6= ab ∈ I,
then either sa ∈ I or sb ∈ I, [3].

Our objective in this paper is to define and study the concept of weakly
S-prime submodules as an extension of the above concepts. Let S be a multi-
plicatively closed subset of R. We call a submodule N of an R-module M with
(N :R M) ∩ S = ∅ a weakly S-prime submodule if there exists s ∈ S such that
for a ∈ R and m ∈ M , whenever 0 6= am ∈ N , then either sa ∈ (N :R M) or
sm ∈ N . In Section 2, we obtain many equivalent statements to characterize
this class of submodules (see Theorems 1 and 2), particularly in multiplica-
tion modules (Theorem 4). Moreover, various properties of weakly S-prime
submodules are considered and many examples are given for supporting the
results (see for example Theorem 3, Propositions 1, 2, and Examples 1, 3). We
investigate the behavior of this structure under module homomorphisms, local-
izations, quotient modules, cartesian product of modules (see Propositions 4, 8,
Theorem 5 and Corollary 3). Let S be a multiplicatively closed subset of R, M
be an R-module and consider the idealization ring RnM . For any submodule
K of M , the set S nK = {(s, k) : s ∈ S, k ∈ K} is a multiplicatively closed
subset of RnM . In Theorem 7, we justify the relation among weakly S-prime
ideals of R, weakly S-prime submodules of M and weakly S nK-prime ideals
of the idealization ring RnM .

Let f : R1 → R2 be a ring homomorphism, J be an ideal of R2, M1 be an
R1-module, M2 be an R2-module (which is an R1-module induced naturally
by f) and ϕ : M1 → M2 be an R1-module homomorphism. The subring
R1 onf J = {(r, f(r) + j) : r ∈ R1, j ∈ J} of R1×R2 is called the amalgamation
of R1 and R2 along J with respect to f , [10]. The amalgamation of M1 and
M2 along J with respect to ϕ is defined in [14] as

M1 onϕ JM2 = {(m1, ϕ(m1) +m2) : m1 ∈M1 and m2 ∈ JM2}

which is an (R1 onf J)-module with the scaler product defined as

(r, f(r) + j)(m1, ϕ(m1) +m2) = (rm1, ϕ(rm1) + f(r)m2 + jϕ(m1) + jm2).

For submodules N1 and N2 of M1 and M2, respectively, the sets

N1 onϕ JM2 = {(m1, ϕ(m1) +m2) ∈M1 onϕ JM2 : m1 ∈ N1}

and

N2
ϕ

= {(m1, ϕ(m1) +m2) ∈M1 onϕ JM2 : ϕ(m1) +m2 ∈ N2}

are submodules of M1 onϕ JM2. Section 3 is devoted for studying several
conditions under which the submodules N1 onϕ JM2 and N2

ϕ
of M1 onϕ JM2

are (weakly) S-prime submodules, (see Theorems 8, 10). Furthermore, we
conclude some particular results for the duplication of a module along an ideal
(see Corollaries 4-6, 7-9 and Theorem 9).
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For the sake of completeness, we start with some definitions and notations
which will be used in the sequel. A non-empty subset S of a ring R is said to be
a multiplicatively closed set if S is a subsemigroup of R under multiplication.
An R-module M is called multiplication provided for each submodule N of
M, there exists an ideal I of R such that N = IM . In this case, I is said
to be a presentation ideal of N . In particular, for every submodule N of a
multiplication module M , ann(M/N) = (N :R M) is a presentation for N .
The product of two submodules N and K of a multiplication module M is
defined as NK = (N :R M)(K :R M)M . For m1,m2 ∈M , by m1m2, we mean
the product of Rm1 and Rm2 which is equal to IJM for presentation ideals I
and J of m1 and m2, respectively, [4]. Let N be a proper submodule of an R-
module M . The radical of N (denoted by M -rad(N)) is defined in [11] to be the
intersection of all prime submodules of M containing N . If M is multiplication,
then M -rad(N) = {m ∈ M : mk ⊆ N for some k ≥ 0}. As usual, Z, Zn and
Q denotes the ring of integers, the ring of integers modulo n and the field of
rational numbers, respectively. For more details and terminology, one may refer
to [1, 2, 8, 12,15].

2. Characterizations of weakly S-prime submodules

We begin with the definitions and relationships of the main concepts of the
paper.

Definition 1. Let S be a multiplicatively closed subset of a ring R and N be
a submodule of an R-module M with (N :R M) ∩ S = ∅. We call N a weakly
S-prime submodule if there exists (a fixed) s ∈ S such that for a ∈ R and
m ∈ M , whenever 0 6= am ∈ N , then either sa ∈ (N :R M) or sm ∈ N . The
fixed element s ∈ S is said to be a weakly S-element of N.

It is clear that every S-prime submodule is a weakly S-prime submodule.
Since the zero submodule is (by definition) a weakly S-prime submodule of any
R-module, then the converse is not true in general. For a less trivial example,
let M be a non-zero local multiplication R-module with the unique maximal
submodule K such that (K :R M)K = 0. If we consider S = {1R}, then
every proper submodule of M is weakly S-prime, [2]. Hence, there is a weakly
S-prime submodule in M that is not S-prime.

Also, every weakly prime submodule N of an R-module M satisfying (N :R
M)∩S = ∅ is a weakly S-prime submodule of M and the two concepts coincide
if S ⊆ U(R) where U(R) denotes the set of units in R. The following example
shows that the converse need not be true.

Example 1. Consider the Z-module M = Z×Z6 and let N = 2Z×〈3̄〉. Then N
is a (weakly) S-prime submodule of M where S = {2n : n ∈ N ∪ {0}}. Indeed,
let (0, 0̄) 6= r·(r′,m) ∈ N for r, r′ ∈ Z andm ∈ Z6 such that 2r /∈ (N : M) = 6Z.
Then r·m ∈ 〈3̄〉 with r /∈ 3Z and som ∈ 〈3̄〉. Thus, 2·(r′,m) ∈ N as needed. On
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the other hand, N is not a weakly prime submodule since (0, 0̄) 6= 2 · (1, 0̄) ∈ N
but 2 /∈ (N : M) and (1, 0̄) /∈ N .

Let N be a submodule of an R-module M and I be an ideal of R. The
residual of N by I is the set (N :M I) = {m ∈ M : Im ⊆ N}. It is clear that
(N :M I) is a submodule of M containing N . More generally, for any subset
A ⊆ R, (N :M A) is a submodule of M containing N .

Theorem 1. Let S be a multiplicatively closed subset of a ring R. Then for
a submodule N of an R-module M with (N :R M) ∩ S = ∅, the following
conditions are equivalent.

(1) N is a weakly S-prime submodule of M .
(2) There exists s ∈ S such that (N :M a) = (0 :M a) or (N :M a) ⊆

(N :M s) for each a /∈ (N :R sM).
(3) There exists s ∈ S such that for any a ∈ R and for any submodule K

of M , if 0 6= aK ⊆ N , then sa ⊆ (N :R M) or sK ⊆ N.
(4) There exists s ∈ S such that for any ideal I of R and a submodule K

of M , if 0 6= IK ⊆ N , then sI ⊆ (N :R M) or sK ⊆ N.

Proof. (1)⇒(2). Let s ∈ S be a weakly S-element of N and a /∈ (N :M sM).
Let m ∈ (N :M a). If am = 0, then clearly m ∈ (0 :M a). If 0 6= am ∈ N ,
then, we conclude sm ∈ N as sa /∈ (N :R M) and N is weakly S-prime
in M . Thus, m ∈ (N :M s) and so (N :M a) ⊆ (0 :M a) ∪ (N :M s).
Therefore, (N :M a) ⊆ (0 :M a) (which implies (N :M a) = (0 :M a)) or
(N :M a) ⊆ (N :M s).

(2)⇒(3). Choose s ∈ S as in (2) and suppose 0 6= aK ⊆ N and sa /∈ (N :R
M) for some a ∈ R and a submodule K of M . Then K ⊆ (N :M a)\(0 :M a)
and by (2) we get K ⊆ (N :M a) ⊆ (N :M s). Thus, sK ⊆ N as required.

(3)⇒(4). Choose s ∈ S as in (3) and suppose 0 6= IK ⊆ N and sI *
(N :R M) for some ideal I of R and a submodule K of M. Then there exists
a ∈ I with sa /∈ (N :R M). If aK 6= 0, then by (3), we have sK ⊆ N
as needed. Assume that aK = 0. Since IK 6= 0, there is some b ∈ I with
bK 6= 0. If sb /∈ (N :R M), then from (3), we have sK ⊆ N . Now, assume that
sb ∈ (N :R M). Since sa /∈ (N :R M), we have s(a + b) /∈ (N :R M). Hence,
0 6= (a+ b)K ⊆ N implies sK ⊆ I again by (3) and we are done.

(4)⇒(1). Let a ∈ R, m ∈ M with 0 6= am ∈ N . The result follows directly
by taking I = aR and K = 〈m〉 in (4). �

Theorem 2. Let M be a faithful multiplication R-module and S be a multi-
plicatively closed subset of R. Then the following are equivalent.

(1) N is a weakly S-prime submodule of M .
(2) N ∩ SM = ∅ and there exists s ∈ S such that whenever K,L are

submodules of M and 0 6= KL ⊆ N , then sK ⊆ N or sL ⊆ N .

Proof. Clearly, we have N ∩ SM = ∅ if and only if (N :R M) ∩ S = ∅.
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(1)⇒(2). Let I be a presentation ideal of K and s be a weakly S-element
of N . Then 0 6= IL ⊆ N yields that either sI ⊆ (N :R M) or sL ⊆ N by
Theorem 1. Hence, sK = sIM ⊆ N or sL ⊆ N , as needed.

(2)⇒(1). Let s ∈ S be as in (2) and suppose 0 6= IL ⊆ N for some ideal I
of R and submodule L of M . Put K = IM and assume that sL * N . Then
0 6= KL ⊆ N which implies sK ⊆ N . Therefore, sI ⊆ (N :R M) and the result
follows by Theorem 1. �

Let I be a proper ideal of a ring R. In the following proposition, the notation
ZI(R) denotes the set {r ∈ R : rs ∈ I for some s ∈ R\I}.

Theorem 3. Let N be a submodule of an R-module M and S be a multiplica-
tively closed subset of R. Then the following statements hold.

(1) If N is a weakly S-prime submodule of M , then for every submodule
K with (N :R K) ∩ S = ∅ and Ann(K) = 0, (N :R K) is a weakly
S-prime ideal of R. In particular, if M is faithful, then (N :R M) is a
weakly S-prime ideal of R.

(2) If M is multiplication and (N :R M) is a weakly S-prime ideal of R,
then N is a weakly S-prime submodule of M .

(3) If M is faithful multiplication and I is an ideal of R, then I is weakly
S-prime in R if and only if IM is a weakly S-prime submodule of M .

(4) If N is a weakly S-prime submodule of M and A is a subset of R such
that (0 :M A) = 0 and Z(N :RM)(R)∩A = ∅, then (N :M A) is a weakly
S-prime submodule of M .

Proof. (1) Suppose s ∈ S is a weakly S-element of N and let a, b ∈ R with
0 6= ab ∈ (N :R K). Since Ann(K) = 0, we have 0 6= abK ⊆ N which
implies sa ∈ (N :R M) or sbK ⊆ N by Theorem 1. Hence, sa ∈ (N :R K) or
sb ∈ (N :R K). Thus, (N :R K) is a weakly S-prime ideal associated with the
same s ∈ S. The “in particular” part is clear.

(2) Suppose M is multiplication and (N :R M) is a weakly S-prime ideal of
R. Let I be an ideal of R and K be a submodule of M with 0 6= IK ⊆ N .
Since M is multiplication, we may write K = JM for some ideal J of R.
Thus, 0 6= IJ ⊆ (N :R M), and by [13, Theorem 1], there exists an s ∈ S
such that sI ⊆ (N :R M) or sJ ⊆ (N :R M). Thus, sI ⊆ (N :R M) or
sK = sJM ⊆ (N :R M)M = N . Therefore, N is a weakly S-prime submodule
of M by Theorem 1(4).

(3) Suppose M is faithful multiplication and I is an ideal of R. Since (IM :R
M) = I, the result follows from (1) and (2).

(4) Let s ∈ S be a weakly S-element of N . We firstly note that ((N :M A) :R
M) ∩ S = ∅. Indeed, if t ∈ ((N :M A) :R M) ∩ S, then tA ⊆ (N :R M) and so
t ∈ (N :R M) as Z(N :RM)(R) ∩ A = ∅, a contradiction. Let r ∈ R and m ∈M
such that 0 6= rm ∈ (N :M A). Then 0 6= Arm ⊆ N since (0 :M A) = 0. By
assumption, either sr ∈ (N :R M) or sAm ⊆ N . Thus, sr ∈ ((N :M A) :R M)
or sm ∈ (N :M A) as needed. �
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We show by the following example that the condition “faithful module” in
Theorem 3(1) is crucial.

Example 2. Let p1, p2 and p3 be distinct prime integers. Consider the non-
faithful Z-module M = Zp1p2

× Zp1p2
and the multiplicatively closed subset

S = {pn3 : n ∈ N ∪ {0}} of Z. While N = 0× 0 is a weakly S-prime submodule
of M , we have clearly (N :Z M) = 〈p1p2〉 is not a weakly S-prime ideal of Z.

Let N be a proper submodule of an R-module M . Then N is said to be a
maximal weakly S-prime submodule if there is no weakly S-prime submodule
which contains N properly. In the following corollary, by Z(M), we denote the
set {r ∈ R : rm = 0 for some m ∈M\{0M}}.

Corollary 1. Let N be a submodule of M such that Z(N :RM)(R) ∪ Z(M) ⊆
(N :R M). If N is a maximal weakly S-prime submodule of M , then N is an
S-prime submodule of M .

Proof. Let s ∈ S be a weakly S-element of N . Suppose that am ∈ N and
sa /∈ (N :R M) for some a ∈ R and m ∈ M . Since a /∈ (N :R M), then by
assumption, a /∈ Z(N :RM)(R) and (0 :M a) = 0. It follows by Theorem 3(4) that
(N :M a) is a weakly S-prime submodule of M . Therefore, sm ∈ (N :M a) = N
by the maximality of N and so N is an S-prime submodule of M . �

As N = (N : M)M for any submodule N of a multiplication R-module M,
we have the following consequence of Theorem 3.

Theorem 4. Let M be a faithful multiplication R-module and N be a submod-
ule of M . Then the following are equivalent.

(1) N is a weakly S-prime submodule of M .
(2) (N :R M) is a weakly S-prime ideal of R.
(3) N = IM for some weakly S-prime ideal I of R.

For a next result, we need to recall the following lemma.

Lemma 1 ([1]). For an ideal I of a ring R and a submodule N of a finitely
generated faithful multiplication R-module M , the following hold.

(1) (IN :R M) = I(N :R M).
(2) If I is finitely generated faithful multiplication, then

(a) (IN :M I) = N .
(b) Whenever N ⊆ IM , then (JN :M I) = J(N :M I) for any ideal

J of R.

Proposition 1. Let I be a finitely generated faithful multiplication ideal of a
ring R, S a multiplicatively closed subset of R and N a submodule of a finitely
generated faithful multiplication R-module M . Then

(1) If IN is a weakly S-prime submodule of M and (N :R M) ∩ S = ∅,
then either I is a weakly S-prime ideal of R or N is a weakly S-prime
submodule of M .
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(2) N is a weakly S-prime submodule of IM if and only if (N :M I) is a
weakly S-prime submodule of M .

Proof. (1) Let s ∈ S be a weakly S-element of IN . Suppose N = M . In this
case, I = I(N :R M) = (IN :R M) is a weakly S-prime ideal of R by Theorem
4. Now, suppose that N is proper. Hence, Lemma 1 implies N = (IN :M I)
and so we conclude that (N :R M) = ((IN :M I) :R M) = (I(N :R M) :M I).
Suppose a ∈ R, m ∈ M such that 0 6= am ∈ N and sa /∈ (N :R M). Since I
is faithful, then (0 :M I) = AnnR(I)M = 0, [1] and so 0 6= Iam ⊆ IN. Since
clearly sa /∈ (IN :R M) and IN is a weakly S-prime submodule, sIm ⊆ IN
by Theorem 1. By Lemma 1(2), we have sm ∈ (IN :M I) = N , and thus N is
a weakly S-prime submodule of M .

(2) Suppose N is a weakly S-prime submodule of IM with a weakly S-
element s′ ∈ S. Then ((N :M I) :R M) ∩ S = (N :R IM) ∩ S = ∅. Let a ∈ R
and m ∈M with 0 6= am ∈ (N :M I) and s′a /∈ ((N :M I) :R M) = (N :R IM).
If amI = 0, then am ∈ (0M : I) = AnnR(I)M = 0, a contradiction. Thus,
0 6= amI ⊆ N . Since N is a weakly S-prime submodule of IM, Theorem 1
yields that s′mI ⊆ N , and so s′m ∈ (N :M I), as required.

Conversely, suppose (N :M I) is a weakly S-prime submodule of M with a
weakly S-element s′ ∈ S. Then (N :R IM) ∩ S = ((N :M I) :R M) ∩ S = ∅.
Now, let a ∈ R and m′ ∈ IM such that 0 6= am′ ∈ N and s′a /∈ (N :R
IM) = ((N :M I) :R M). Then a(〈m′〉 :M I) = (〈am′〉 :M I) ⊆ (N :M I).
If a(〈m′〉 :M I) = 0, then by (2) of Lemma 1, we have am′ ∈ a(Im′ :M I) ⊆
a(〈m′〉 :M I) = 0, a contradiction. Thus, 0 6= a(〈m′〉 :M I) ⊆ (N :M I) and so
s′(〈m′〉 :M I) ⊆ (N :M I) as s′a /∈ ((N :M I) :R M). Again, by Lemma 1, we
conclude that s′m′ ∈ (I 〈s′m′〉 :M I) = Is′(〈m′〉 :M I) ⊆ I(N :M I) = (IN :M
I) = N . Therefore, N is a weakly S-prime submodule of IM. �

Proposition 2. Let S be a multiplicatively closed subset of a ring R and N
be a submodule of an R-module M such that (N :R M) ∩ S = ∅. If (N :M s)
is a weakly prime submodule of M for some s ∈ S, then N is a weakly S-
prime submodule of M . The converse holds for non-zero submodules N if
S ∩ Z(M) = ∅.

Proof. Suppose (N :M s) is a weakly prime submodule of M for some s ∈ S
and let a ∈ R, m ∈ M such that 0 6= am ∈ N ⊆ (N :M s). Then either
a ∈ ((N :M s) :R M) = ((N :R M) :R s) or m ∈ (N :M s) and so either
sa ∈ (N :R M) or sm ∈ N as required. Conversely, suppose N 6= 0M is a
weakly S-prime submodule of M with weakly S-element s ∈ S. Let a ∈ R
and m ∈ M such that 0 6= am ∈ (N :M s). Since S ∩ Z(M) = ∅, we have
0 6= sam ∈ N which implies either s2a ∈ (N :R M) or sm ∈ N . If sm ∈ N ,
then m ∈ (N :M s) and we are done. Suppose s2a ∈ (N :R M). If s2aM = 0,
then s2 ∈ S ∩ Z(M), a contradiction. Hence, 0 6= s2aM ⊆ N implies either
s3 ∈ (N :R M) or saM ⊆ N . But (N :R M) ∩ S = ∅ implies saM ⊆ N and



1394 H. A. KHASHAN AND E. YETKIN CELIKEL

so a ∈ (N :R sM) = ((N :M s) :R M). Therefore, (N :M s) is a weakly prime
submodule of M . �

If S ∩Z(M) 6= ∅, then the converse of Proposition 2 need not be true as we
can see in the following example.

Example 3. Consider the Z-module M = Z × Z6 and let N = 〈0〉 × 〈0̄〉.
Then N is a weakly S-prime submodule of M for S = {3n : n ∈ N}. Now, for
each n ∈ N, we have clearly (N :M 3n)= 〈0〉× 〈2̄〉 which is not a weakly prime
submodule of M . Indeed, 2·(0, 1̄) ∈ (N :M 3n) but 2 /∈ ((N :M 3n) :R M) = 〈0〉
and (0, 1̄) /∈ (N :M 3n). We note that S ∩ Z(M) = S 6= ∅.

Proposition 3. Let M be a faithful multiplication R-module and S be a mul-
tiplicatively closed subset of R. Then

(1) If N is a weakly S-prime submodule of M that is not S-prime, then
s
√

0RN = 0M for some s ∈ S.
(2) If N and K are two weakly S-prime submodules of M that are not

S-prime, then sNK = 0M for some s ∈ S.

Proof. (1) Let N be a weakly S-prime submodule of M which is not S-prime.
Then by (1) of Theorem 3 and [18, Proposition 2.9(ii)], (N :R M) is a weakly
S-prime ideal of R that is not S-prime. Hence, we get s(N :R M)

√
0R = 0R

by [3, Proposition 9] and thus, sN
√

0R = s(N :R M)M
√

0R = 0RM = 0M .
(2) Since N and K are two weakly S-prime submodules that are not S-prime,

(N :R M) and (K :R M) are weakly S-prime ideals of R that are not S-prime
by Theorem 3 and [18, Proposition 2.9(ii)]. Hence, there exists some s ∈ S
such that s(N :R M)(K :R M) = 0R by [3, Corollary 11] and so sNK = 0. �

Corollary 2. Let M be a faithful multiplication R-module, S be a multiplica-
tively closed subset of a ring R. If N is a weakly S-prime submodule of M , then
either N ⊆

√
0RM or s

√
0RM ⊆ N for some s ∈ S. Additionally, if R is a

reduced ring, then N = 0M or N is S-prime.

Proof. Suppose that N is a weakly S-prime submodule of M . Then from
Theorem 3(1), (N :R M) is a weakly S-prime ideal of R and by [3, Corollary
6], we conclude either (N :R M) ⊆

√
0R or s

√
0R ⊆ (N :R M). Since N =

(N :R M)M , we are done. �

Proposition 4. Let N be a submodule of an R-module M and S be a multi-
plicatively closed subset of R with Z(M) ∩ S = ∅. Then

(1) If N is a weakly S-prime submodule of M , then S−1N is a weakly
prime submodule of S−1M and there exists an s ∈ S such that (N :M
t) ⊆ (N :M s) for all t ∈ S.

(2) If M is finitely generated, then the converse of (1) holds.

Proof. (1) Suppose s ∈ S is a weakly S-element of N . In proving that S−1N is
a weakly prime submodule of S−1M we do not need the assumption Z(M)∩S =
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∅. Let 0S−1M 6= r
s1

m
s2
∈ S−1N for some r

s1
∈ S−1R and m

s2
∈ S−1M. Then

urm ∈ N for some u ∈ S. If urm = 0, then rm
s1s2

= urm
us1s2

= 0S−1M , a

contradiction. Hence, 0 6= urm ∈ N yields either sur ∈ (N :R M) or sm ∈ N.
Thus, r

s1
= sur

sus1
∈ S−1(N :R M) ⊆ (S−1N :S−1R S−1M) or m

s2
= sm

ss2
∈ S−1N

and so S−1N is a weakly prime submodule of S−1M. Now, let t ∈ S and
m ∈ (N :M t). Then 0 6= tm ∈ N as Z(M) ∩ S = ∅ and so st ∈ (N :M M) ∩ S
or sm ∈ N. Since the first one gives a contradiction, we have m ∈ (N :M s).
Thus, (N :M t) ⊆ (N :M s) for all t ∈ S.

(2) Suppose M is finitely generated. Choose s ∈ S as in (1). If (N :R
M) ∩ S 6= ∅, then clearly S−1N = S−1M , a contradiction. Let 0 6= am ∈ N
for some a ∈ R and m ∈ M . Since Z(M) ∩ S = ∅, we have 0 6= a

1
m
1 ∈ S

−1N .

By assumption, either a
1 ∈ (S−1N :S−1R S−1M) = S−1(N :R M) as M is

finitely generated or m
1 ∈ S−1N. Hence, va ∈ (N :R M) for some v ∈ S or

wm ∈ N for some w ∈ S. If va ∈ (N :R M), then our hypothesis implies
aM ⊆ (N :M v) ⊆ (N :M s) and so sa ∈ (N :R M). If wm ∈ N , then again
m ∈ (N :M w) ⊆ (N :M s), and so sm ∈ N . Therefore, N is a weakly S-prime
submodule of M. �

However, S−1N being a weakly prime submodule of S−1M does not imply
that N is a weakly prime submodule of M . For example, it was shown in
[18, Example 2.4] that N = Z × {0} is not a (weakly) S-prime submodule of
the Z-module Q×Q where S = Z\{0}. But S−1N is a weakly prime submodule
of the vector space (over S−1Z = Q) S−1(Q×Q).

Remark 1. Let M be an R-module and S, T be two multiplicatively closed
subsets of R with S ⊆ T . If N is a weakly S-prime submodule of M and
(N :R M) ∩ T = ∅, then N is a weakly T -prime submodule of M.

Let S be a multiplicatively closed subset of a ring R. The saturation of S is
the set S∗ = {x ∈ R : xy ∈ S for some y ∈ R}, see [12]. It is clear that S∗ is a
multiplicatively closed subset of R and that S ⊆ S∗.

Proposition 5. Let S be a multiplicatively closed subset of a ring R and N
be a submodule of an R-module M such that (N :R M) ∩ S = ∅. Then N
is a weakly S-prime submodule of M if and only if N is a weakly S∗-prime
submodule of M.

Proof. Let N be a weakly S∗-prime submodule of M with a weakly S-element
s∗ ∈ S∗. Choose r ∈ R such that s = s∗r ∈ S. Suppose 0 6= am ∈ N for
some a ∈ R and m ∈ M . Then either s∗a ∈ (N :R M) or s∗m ∈ N . Thus,
sa ∈ (N :R M) or sm ∈ N and we are done. Conversely, suppose N is weakly
S∗-prime. By using Remark 1, it is enough to prove that (N :R M) ∩ S∗ = ∅.
Suppose there exists s∗ ∈ (N :R M) ∩ S∗. Then there is r ∈ R such that
s = s∗r ∈ (N :R M) ∩ S, a contradiction. �
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Lemma 2. Let S be a multiplicatively closed subset of a ring R. If I is a weakly
S-prime ideal of R and {0R} is an S-prime ideal of R, then

√
I is an S-prime

ideal of R.

Proof. Suppose I is weakly S-prime associated to s1 and {0R} is S-prime as-

sociated with s2. Since I ∩ S = ∅, we have
√
I ∩ S = ∅. Let a, b ∈ R with

ab ∈
√
I. Then anbn ∈ I for some positive integer n. If anbn 6= 0, then we

have s1a
n ∈ I or s1b

n ∈ I that is s1a ∈
√
I or s1b ∈

√
I. If anbn = 0, then by

assumption, either s2a
n = 0 or s2b

n = 0 and so s2a ∈
√
I or s2b ∈

√
I. Thus,√

I is an S-prime ideal of R associated with s = s1s2. �

Proposition 6. Let M be a finitely generated faithful multiplication R-module
and S be a multiplicatively closed subset of R. If N is a weakly S-prime sub-
module of M and {0R} is an S-prime ideal of R, then M -rad(N) is an S-prime
submodule of R.

Proof. By [16, Lemma 2.4], we have (M -rad(N) : M) =
√

(N :R M). Since
N is a weakly S-prime submodule of M, (N :R M) is so by Theorem 3. By

Lemma 2,
√

(N :R M) is an S-prime ideal of R. Thus, the claim follows from
[18, Proposition 2.9(ii)]. �

Proposition 7. Let S be a multiplicatively closed subset of a ring R. If N
is a weakly S-prime submodule of an R-module M , then for any submodule K
of M with (K :R M) ∩ S 6= ∅, N ∩ K is a weakly S-prime submodule of M .
Additionally, if M is multiplication, then NK is a weakly S-prime submodule
of M.

Proof. Note that (N ∩K :R M) ∩ S = ∅ as (N :R M) ∩ S = ∅. Let s ∈ S be
a weakly S-element of N and let 0 6= am ∈ N ∩K ⊆ N . Then sa ∈ (N :R M)
or sm ∈ N . Choose s′ ∈ (K :R M) ∩ S. Then ss′a ∈ (N :R M) ∩ (K :R M) =
(N ∩K :R M) or ss′m ∈ N ∩ (K :R M)M = N ∩K. Thus, N ∩K is a weakly
S-prime submodule of M with a weakly S-element t = ss′. Putting in mind
that NK = (N :R M)(K :R M)M, the rest of the proof is very similar. �

Notice that if N is weakly prime and K is as above, then N ∩K need not
be weakly prime. For instance, consider the Z12-module Z12, S = {1̄, 3̄, 9},
N = 〈2̄〉 and K = 〈3̄〉. Then N ∩K = 〈6̄〉 is not a weakly prime submodule of
Z12.

Proposition 8. Let f : M1 →M2 be a module homomorphism where M1 and
M2 are two R-modules and S be a multiplicatively closed subset of R. Then the
following statements hold.

(1) If f is an epimorphism and N is a weakly S-prime submodule of M1

containing Ker(f), then f(N) is a weakly S-prime submodule of M2.
(2) If f is a monomorphism and K is a weakly S-prime submodule of

M2 with (f−1(K) :R M1) ∩ S = ∅, then f−1(K) is a weakly S-prime
submodule of M1.
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Proof. (1) First, observe that (f(N) :R2
M2) ∩ S = ∅. Indeed, assume that

t ∈ (f(N) :R2
M2) ∩ S. Then f(tM1) = tf(M1) = tM2 ⊆ f(N), and so

tM1 ⊆ N as Ker(f) ⊆ N. It follows that t ∈ (N : M1) ∩ S, a contradiction.
Let s be a weakly S-element of N and a ∈ R, m2 ∈M2 with 0 6= am2 ∈ f(N).
Then m2 = f(m1) for some m1 ∈ M1 and 0 6= af(m1) = f(am1) ∈ f(N) and
since Ker(f) ⊆ N, we have 0 6= am1 ∈ N . This yields either sa ∈ (N :R M1) or
sm1 ∈ N . Thus, clearly we have either sa ∈ (f(N) :R M2) or sm2 = f(sm1) ∈
f(N) as required.

(2) Let s be a weakly S-element of K and let a ∈ R, m ∈M1 with 0 6= am ∈
f−1(K). Then 0 6= f(am) = af(m) ∈ K as f is a monomorphism. Since K is
a weakly S-prime submodule of M2, we have sa ∈ (K :R M2) or sf(m) ∈ K.
Thus, clearly we have sa ∈ (f−1(K) :R M1) or sm ∈ f−1(K) as needed. �

Corollary 3. Let S be a multiplicatively closed subset of a ring R and N , K
are two submodules of an R-module M with K ⊆ N . Then

(1) If N is a weakly S-prime submodule of M , then N/K is a weakly S-
prime submodule of M/K.

(2) If K ′ is a weakly S-prime submodule of M with (K ′ :R N) ∩ S = ∅,
then K ′ ∩N is a weakly S-prime submodule of N.

(3) If N/K is a weakly S-prime submodule of M/K and K is an S-prime
submodule of M , then N is an S-prime submodule of M .

(4) If N/K is a weakly S-prime submodule of M/K and K is a weakly
S-prime submodule of M , then N is a weakly S-prime submodule of
M .

Proof. Note that (N/K :R M/K) ∩ S = ∅ if and only if (N :R M) ∩ S = ∅.
(1) Consider the canonical epimorphism π : M →M/K defined by π(m) =

m+K. Then π(N) = N/K is a weakly S-prime submodule of M/K by (1) of
Proposition 8.

(2) Let K ′ be a weakly S-prime submodule of M and consider the natural
injection i : N →M defined by i(m) = m for allm ∈ N . Then (i−1(K ′) :R N)∩
S = ∅. Indeed, if s ∈ (i−1(K ′) :R N) ∩ S, then sN ⊆ i−1(K ′) = K ′ ∩N ⊆ K ′

and so s ∈ (K ′ :R N)∩S, a contradiction. Thus i−1(K ′) = K ′ ∩N is a weakly
S-prime submodule of M by (2) of Proposition 8.

(3) Let s1 be a weakly S-element of N/K and suppose K is an S-prime
submodule of M associated with s2 ∈ S. Let a ∈ R and m ∈ M such that
am ∈ N. If am ∈ K, then s2a ∈ (K :R M) ⊆ (N :R M) or s2m ∈ K ⊆ N .
If am /∈ K, then K 6= a(m + K) ∈ N/K which implies either s1a ∈ (N/K :R
M/K) or s1(m + K) ∈ N/K. Thus, s1a ∈ (N :R M) or s1m ∈ N . It follows
that N is an S-prime submodule of M associated with s = s1s2 ∈ S.

(4) Similar to (3). �

The next example shows that the converse of Corollary 3(1) is not valid in
general.
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Example 4. Consider the submodules N = K = 〈6〉 of the Z-module Z and
the multiplicatively closed subset S = {5n : n ∈ N ∪ {0}} of Z. It is clear that
N/K is a weakly S-prime submodule of Z/K but N is not a weakly S-prime
submodule of Z as 0 6= 2 · 3 ∈ N but neither 2s ∈ (N :Z Z) nor 3s ∈ N for all
s ∈ S.

Proposition 9. Let S be a multiplicatively closed subset of a ring R and N ,
K be two weakly S-prime submodules of an R-module M such that ((N+K) :R
M) ∩ S = ∅. Then N +K is a weakly S-prime submodule of M.

Proof. Suppose N and K are two weakly S-prime submodules of M . By Corol-
lary 3(1), N/(N ∩ K) is a weakly S-prime submodule of M/(N ∩ K). Now,
from the module isomorphism N/(N ∩ K) ∼= (N + K)/K, we conclude that
(N +K)/K is a weakly S-prime submodule of M/K. Thus, N +K is a weakly
S-prime submodule of M by Corollary 3(4). �

Theorem 5. Let S1, S2 be multiplicatively closed subsets of rings R1, R2 re-
spectively and N1, N2 be non-zero submodules of an R1-module M1 and an
R2-module M2, respectively. Consider M = M1×M2 as an (R1×R2)-module,
S = S1 × S2 and N = N1 ×N2. Then the following are equivalent.

(1) N is a weakly S-prime submodule of M .
(2) N1 is an S1-prime submodule of M1 and (N2 :R2

M2) ∩ S2 6= ∅ or N2

is an S2-prime submodule of M2 and (N1 :R1 M1) ∩ S1 6= ∅.
(3) N is an S-prime submodule of M .

Proof. (1)⇒(2). Suppose N is a weakly S-prime submodule of M with a weakly
S-element s = (s1, s2) ∈ S. Assume that (N1 :R1

M1)∩S1 and (N2 :R2
M2)∩S2

are both empty. Choose 0 6= m ∈ N1. Then (0M1
, 0M2

) 6= (1, 0)(m, 1M2
) ∈ N

which implies (s1, s2)(1, 0) ∈ (N :R M) = (N1 :R1
M1) × (N2 :R2

M2) or
(s1, s2)(m, 1M2) ∈ N1 × N2. Hence, we have either s1 ∈ (N1 :R1 M1) ∩ S1 or
s2 ∈ N2 ∩ S2 ⊆ (N2 :R2 M2) ∩ S2, a contradiction. Now, we may assume
that (N1 :R1

M1) ∩ S1 6= ∅ and we show that N2 is an S2-prime submodule of
M2. Suppose am′ ∈ N2 for some a ∈ R2 and m′ ∈ M2. Then (0M1

, 0M2
) 6=

(1R1
, a)(m,m′) ∈ N implies either (s1, s2)(1R1

, a) ∈ (N1 :R1
M1)×(N2 :R2

M2)
or (s1, s2)(m,m′) ∈ N1 × N2. Thus, s2a ∈ (N2 :R2 M2) or s2m

′ ∈ N2 and so
N2 is an S2-prime submodule of M2.

(2)⇒(3). It follows from [18, Theorem 2.14].
(3)⇒(1). It is straightforward. �

Theorem 6. Let M = M1 ×M2 × · · · ×Mn be an R1 ×R2 × · · · ×Rn-module
and S = S1×S2× · · · ×Sn where Ri’s are rings, Si is a multiplicatively closed
subset of Ri and Ni is a non-zero submodule of Mi for each i = 1, 2, . . . , n.
Then the following assertions are equivalent.

(1) N = N1 ×N2 × · · · ×Nn is a weakly S-prime submodule of M .
(2) For i = 1, 2, . . . , n, Ni is an S-prime submodule of Mi and (Nj :Rj

Mj) ∩ Sj 6= ∅ for all j 6= i.
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Proof. We prove the claim by using mathematical induction on n. The claim
follows by Theorem 5 for n = 2. Now, we assume that the claim holds for
all k < n and prove it for k = n. Suppose N = N1 × N2 × · · · × Nn is a
weakly S-prime submodule of M . Then Theorem 5 implies that N = N ′ ×Nn

where, say, N ′ = N1 × N2 × · · · × Nn−1 is a weakly S-prime submodule of
M ′ = M1 ×M2 × · · · ×Mn−1 and Sn ∩ (Nn :Rn

Mn) 6= ∅. Thus, the result
follows by the induction hypothesis. �

Let M be an R-module and S be a multiplicatively closed subset of R with
S ∩ AnnR(M) = ∅. Following [18], M is called S-torsion-free if there is s ∈ S
such that whenever rm = 0 for r ∈ R and m ∈ M , then sr = 0 or sm = 0.
Compare with [18, Proposition 2.24], we have the following result.

Proposition 10. Let S be a multiplicatively closed subset of a ring R and N
be a submodule of an S-torsion-free R-module M . If η : R → R/(N :R M) is
the canonical homomorphism, then N is weakly S-prime in M if and only if
M/N is an η(S)-torsion-free R/(N :R M)-module.

Proof. First, we clearly note that s ∈ S ∩ (N :R M) if and only if s̄ ∈ η(S) ∩
AnnR/(N :RM)(M/N).

(⇒) Suppose N is a weakly S-prime in M with a weakly S-element s1 ∈ S.
Let r̄ ∈ R/(N :R M), m̄ ∈M/N such that r̄m̄ = 0̄. Then rm ∈ N and we have
two cases. If rm = 0, then by assumption there is s2 ∈ S such that s2r = 0
or s2m = 0. Thus s̄2r̄ = 0̄ or s̄2m̄ = 0̄ where s̄2 ∈ η(S) as needed. If rm 6= 0,
then s1r ∈ (N :R M) or s1m ∈ N and so s̄1r̄ = 0̄R/(N :RM) or s̄1m̄ = 0̄M/N

where s̄1 ∈ η(S). Therefore, M/N is an η(S)-torsion-free R/(N :R M)-module
associated to s̄1s̄2 ∈ η(S).

(⇐) Follows directly by [18, Proposition 2.24]. �

Let R be a ring and M be an R-module. Recall that the idealization of M
in R denoted by R nM is the commutative ring R ⊕M with coordinate-wise
addition and multiplication defined as (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1)
[17]. For an ideal I of R and a submodule N of M, the set I n N = I ⊕ N
is not always an ideal of R n M and it is an ideal if and only if IM ⊆ N
[6, Theorem 3.1]. Among many other properties of an ideal InN of RnM , we

have
√
I nN =

√
InM and in particular,

√
0 n 0 =

√
0nM , [6, Theorem 3.2].

It is clear that if S is a multiplicatively closed subset of R and K a submodule
of M , then S nK = {(s, k) : s ∈ S, k ∈ K} is a multiplicatively closed subset
of RnM . In [3, Proposition 27], it is proved that if I nM is a weakly SnM -
prime (or weakly S n 0-prime) ideal of RnM where I is an ideal of R disjoint
with S, then I is a weakly S-prime ideal of R. In general, we have:

Theorem 7. Let S be a multiplicatively closed subset of a ring R, I be an ideal
of R and K ⊆ N be submodules of an R-module M with IM ⊆ N . Let I nN
be a weakly S nK-prime ideal of RnM . Then
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(1) I is a weakly S-prime ideal of R and N is a weakly S-prime submodule
of M whenever (N :R M) ∩ S = ∅.

(2) There exists s ∈ S such that for all a, b ∈ R, ab = 0, sa /∈ I, sb /∈ I
implies a, b ∈ ann(N) and for all c ∈ R, m ∈ M , cm = 0, sc /∈ (N :R
M), sm /∈ N implies c ∈ ann(I) and m ∈ (0 :M I).

(3) If InN is not SnK-prime, then (s, k)(InN) = (sIn0)⊕(0nsN+Ik)
for some (s, k) ∈ S nK.

(4) If I nN is S nK-prime, then sM ⊆ N for some s ∈ S.

Proof. Let (s, k) ∈ S nK be a weakly S nK-element of I nN .
(1) Note that clearly (SnK)∩ (InN) = ∅ if and only if I ∩S = ∅. Suppose

that a, b ∈ R with 0 6= ab ∈ I. Then (0, 0) 6= (a, 0)(b, 0) ∈ I nN implies that
either (s, k)(a, 0) ∈ I nN or (s, k)(b, 0) ∈ I nN . Thus, either sa ∈ I or sb ∈ I
and I is weakly S-prime in R. Now, let 0 6= rm ∈ N for r ∈ R, m ∈ M .
Then (0, 0) 6= (r, 0)(0,m) ∈ I n N and so (sr, rk) = (s, k)(r, 0) ∈ I n N or
(0, sm) = (s, k)(0,m) ∈ InN . In the first case, we get sr ∈ I ⊆ (N :R M) and
the second case implies sm ∈ N . Therefore, N is a weakly S-prime submodule
of M .

(2) Let a, b ∈ R such that ab = 0 and sa /∈ I, sb /∈ I. Suppose a /∈ ann(N)
so that there exists n ∈ N such that an 6= 0. Thus, (0, 0) 6= (a, 0)(b, n) =
(0, an) ∈ InN and so either (s, k)(a, 0) ∈ InN or (s, k)(b, n) ∈ InN . Hence,
sa ∈ I or sb ∈ I, a contradiction. Similarly, if b /∈ ann(N), then we get a
contradiction. Therefore, a, b ∈ ann(N) as needed. Next, we assume cm = 0
for c ∈ R, m ∈M and sc /∈ (N :R M), sm /∈ N . We have two cases.

Case 1. If c /∈ ann(I), then there exists a ∈ I such that ca 6= 0. Hence,
(0, 0) 6= (c, 0)(a,m) = (ca, 0) ∈ InN and so (s, k)(c, 0) ∈ InN or (s, k)(a,m) ∈
I n N . Therefore, sc ∈ I ⊆ (N :R M) or sm + ka ∈ N (and so sm ∈ N as
K ⊆ N) which contradicts the assumption.

Case 2. If m /∈ (0 :M I), then there exists a ∈ I such that am 6= 0. Thus,
(0, 0) 6= (a,m)(c,m) = (ac, am) ∈ I n N implies either (s, k)(a,m) ∈ I n N
or (s, k)(c,m) ∈ I n N . It follows that either sc ∈ I ⊆ (N :R M) or sm ∈ N
which is also a contradiction.

(3) If I n N is not S n K-prime, then (s, k)(I n N)(
√

0 n M) = (0, 0)
for some (s, k) ∈ S n K by [3, Proposition 9]. Thus, by [6, Theorem 3.3]

s
√

0In (sIM +s
√

0N +
√

0Ik) = (0, 0). Then clearly sIM = 0 and so sIn0 is
an ideal of RnM . Now, (s, k)(InN) = sIn(sN+Ik) = (sIn0)⊕(0nsN+Ik)
as required.

(4) If I nN is S nK-prime in R nM , then (s, k)(
√

0 nM) ⊆ (I nN) for

some (s, k) ∈ S nK by [3, Corollary 6]. Thus, s
√

0 n (sM +
√

0k) ⊆ (I nN)
and so clearly, sM ⊆ N as needed. �

In general if I is a (weakly) S-prime ideal of a ring R and N a (weakly)
S-prime submodule of an R-module M , then I n N need not be a (weakly)
S nK-prime ideal of RnM .
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Example 5. Consider the multiplicatively closed subset S = {3n : n ∈ N} of
Z. While clearly 0 is (weakly) S-prime in Z and 〈2̄〉 is (weakly) S-prime in
the Z-module Z6, the ideal 0 n 〈2̄〉 is not (weakly) S n 0-prime in Z n Z6.
Indeed, (0, 0) 6= (0, 1̄)(2, 1̄) = (0, 2̄) ∈ 0 n 〈2̄〉 but (s, 0̄)(0, 1̄) /∈ 0 n 〈2̄〉 and
(s, 0̄)(2, 1̄) /∈ 0 n 〈2̄〉 for all s ∈ S.

3. (Weakly) S-prime submodules of amalgamation modules

Let R be a ring, J an ideal of R and M an R-module. We recall that the
set

R on J = {(r, r + j) : r ∈ R, j ∈ J}
is a subring of R×R called the amalgamated duplication of R along J , see [10].
Recently, in [9], the duplication of the R-module M along the ideal J denoted
by M on J is defined as

M on J = {(m,m′) ∈M ×M : m−m′ ∈ JM}

which is an (R on J)-module with scalar multiplication defined by (r, r +
j).(m,m′) = (rm, (r + j)m′) for r ∈ R, j ∈ J and (m,m′) ∈ M on J . Many
properties and results concerning this kind of modules can be found in [9].

Let N be a submodule of an R-module M and J be an ideal of R. Then
clearly

N on J = {(n,m) ∈ N ×M : n−m ∈ JM}
and

N̄ = {(m,n) ∈M ×N : m− n ∈ JM}
are submodules of M on J . If S is a multiplicatively closed subset of R, then
obviously, the sets

S on J = {(s, s+ j) : s ∈ S, j ∈ J} and S̄ = {(r, r + j) : r + j ∈ S}

are multiplicatively closed subsets of R on J .
In general, let f : R1 → R2 be a ring homomorphism, J be an ideal of R2,

M1 be an R1-module, M2 be an R2-module (which is an R1-module induced
naturally by f) and ϕ : M1 → M2 be an R1-module homomorphism. The
subring

R1 onf J = {(r, f(r) + j) : r ∈ R1, j ∈ J}
of R1×R2 is called the amalgamation of R1 and R2 along J with respect to f .
In [14], the amalgamation of M1 and M2 along J with respect to ϕ is defined
as

M1 onϕ JM2 = {(m1, ϕ(m1) +m2) : m1 ∈M1 and m2 ∈ JM2}
which is an (R1 onf J)-module with the scalar product defined as

(r, f(r) + j)(m1, ϕ(m1) +m2) = (rm1, ϕ(rm1) + f(r)m2 + jϕ(m1) + jm2).

For submodules N1 and N2 of M1 and M2, respectively, clearly the sets

N1 onϕ JM2 = {(m1, ϕ(m1) +m2) ∈M1 onϕ JM2 : m1 ∈ N1}
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and

N2
ϕ

= {(m1, ϕ(m1) +m2) ∈M1 onϕ JM2 : ϕ(m1) +m2 ∈ N2}
are submodules of M1 onϕ JM2. Moreover if S1 and S2 are multiplicatively
closed subsets of R1 and R2, respectively, then

S1 onf J = {(s1, f(s1) + j) : s ∈ S1, j ∈ J}
and

S2
ϕ

= {(r, f(r) + j) : r ∈ R1, f(r) + j ∈ S2}
are clearly multiplicatively closed subsets of M1 onϕ JM2.

Note that if R = R1 = R2, M = M1 = M2, f = IdR and ϕ = IdM ,
then the amalgamation of M1 and M2 along J with respect to ϕ is exactly the
duplication of the R-module M along the ideal J . Moreover, in this case, we
have N1 onϕ JM2 = N on J , N2

ϕ
= N̄ , S1 onf J = S on J and S2

ϕ
= S̄.

Theorem 8. Consider the (R1 onf J)-module M1 onϕ JM2 defined as above.
Let S be a multiplicatively closed subset of R1 and N1 be a submodule of M1.
Then

(1) N1 onϕ JM2 is an S onf J-prime submodule of M1 onϕ JM2 if and only
if N1 is an S-prime submodule of M1.

(2) N1 onϕ JM2 is a weakly S onf J-prime submodule of M1 onϕ JM2 if
and only if N1 is a weakly S-prime submodule of M1 and for r1 ∈ R1,
m1 ∈ M1 with r1m1 = 0 but s1r1 /∈ (N1 :R1 M1) and s1m1 /∈ N1 for
all s1 ∈ S, then f(r1)m2 + jφ(m1) + jm2 = 0 for every j ∈ J and
m2 ∈ JM2.

Proof. We clearly note that (N1 onϕ JM2 :R1onfJ M1 onϕ JM2)∩S onf J = ∅ if
and only if (N1 :R1

M1) ∩ S = ∅.
(1) Suppose (s, f(s) + j) is an S onf J-element of N1 onϕ JM2 and let

r1m1 ∈ N1 for r1 ∈ R1 and m1 ∈ M1. Then (r1, f(r1)) ∈ R1 onf J and
(m1, ϕ(m1)) ∈ M1 onϕ JM2 with (r1, f(r1))(m1, ϕ(m1)) = (r1m1, ϕ(r1m1)) ∈
N1 onϕ JM2. Thus, either

(s, f(s) + j)(r1, f(r1)) ∈ (N1 onϕ JM2 :R1onfJ M1 onϕ JM2)

or
(s, f(s) + j)(m1, ϕ(m1)) ∈ N1 onϕ JM2.

In the first case, for all m ∈M1, (s, f(s)+j)(r1, f(r1))(m,ϕ(m)) ∈ N1 onϕ JM2

and so sr1M1 ⊆ N1. In the second case, sm1 ∈ N1 and so N1 is an S-prime
submodule of M1. Conversely, let s be an S-element of N1. Let (r1, f(r1)+j1) ∈
R1 onf J and (m1, ϕ(m1) +m2) ∈M1 onϕ JM2 such that

(r1m1, ϕ(r1m1) + f(r1)m2 + j1ϕ(m1) + j1m2)

= (r1, f(r1) + j1)(m1, ϕ(m1) +m2) ∈ N1 onϕ JM2.

Then r1m1 ∈ N1 and hence either sr1M1 ⊆ N1 or sm1 ∈ N1. If sr1M1 ⊆ N1,
then clearly (s, f(s))(r1, f(r1) + j1) ∈ (N1 onϕ JM2 :R1onfJ M1 onϕ JM2)
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and if sm1 ∈ N1, then (s, f(s))(m1, ϕ(m1) + m2) ∈ N1 onϕ JM2. Therefore,
N1 onϕ JM2 is an S onf J-prime submodule of M1 onϕ JM2 associated to
(s, f(s)) ∈ S onf J .

(2) Suppose (s, f(s) + j) is a weakly S onf J-element of N1 onϕ JM2.
Let r1 ∈ R1 and m1 ∈ M1 such that 0 6= r1m1 ∈ N1 so that (0, 0) 6=
(r1, f(r1))(m1, ϕ(m1)) = (r1m1, ϕ(r1m1)) ∈ N1 onϕ JM2. By assumption,
either (s, f(s) + j)(r1, f(r1)) ∈ (N1 onϕ JM2 :R1onfJ M1 onϕ JM2) or (s, f(s) +
j)(m1, ϕ(m1)) ∈ N1 onϕ JM2 and so N1 is S-prime in M1 as in the proof of (1).
Now, we use the contrapositive to prove the other part. Let r1 ∈ R1, m1 ∈M1

with r1m1 = 0 and f(r1)m2 + jφ(m1) + jm2 6= 0 for some j ∈ J and some
m2 ∈ JM2. Then

(0, 0) 6= (r1, f(r1) + j)(m1, ϕ(m1) +m2)

= (0, f(r1)m2 + jϕ(m1) + jm2) ∈ N1 onϕ JM2.

By assumption, either (s, f(s)+ j)(r1, f(r1)+ j) ∈ (N1 onϕ JM2 :R1onfJ M1 onϕ

JM2) or (s, f(s) + j)(m1, ϕ(m1) + m2) ∈ N1 onϕ JM2 and so again sr1 ∈
(N1 :R1 M1) or sm1 ∈ N1 as needed. Conversely, let s be a weakly S-element
of N1 and let (r1, f(r1) + j) ∈ R1 onf J and (m1, ϕ(m1) +m2) ∈ M1 onϕ JM2

such that

(0, 0) 6= (r1m1, ϕ(r1m1) + f(r1)m2 + jϕ(m1) + jm2)

= (r1, f(r1) + j)(m1, ϕ(m1) +m2) ∈ N1 onϕ JM2.

If 0 6= r1m1, then the proof is similar to that of (1). Suppose r1m1 = 0. Then
f(r1)m2 + jϕ(m1) + jm2 6= 0 and so by assumption there exists s′ ∈ S such
that either s′r1 ∈ (N1 :R1

M1) or s′m1 ∈ N1. Thus, (s′, f(s′))(r1, f(r1) +
j) ∈ (N1 onϕ JM2 :R1onfJ M1 onϕ JM2) or (s′, f(s′))(m1, ϕ(m1) + m2) ∈
N1 onϕ JM2. Therefore, N1 onϕ JM2 is a weakly S onf J-prime submodule of
M1 onϕ JM2 associated to (ss′, f(ss′)) ∈ S onf J . �

In particular, if S is a multiplicatively closed subset of R1, then S × f(S) is
a multiplicatively closed subset of R1 onf J . Moreover, one can similarly prove
Theorem 8 if we consider S × f(S) instead of S onf J .

Corollary 4. Consider the (R1 onf J)-module M1 onϕ JM2 defined as in
Theorem 8 and let N1 be a submodule of M1. Then

(1) N1 onϕ JM2 is a prime submodule of M1 onϕ JM2 if and only if N1 is
a prime submodule of M1.

(2) N1 onϕ JM2 is a weakly prime submodule of M1 onϕ JM2 if and only
if N1 is a weakly prime submodule of M1 and for r1 ∈ R1, m1 ∈ M1

with r1m1 = 0 but r1 /∈ (N1 :R1
M1) and m1 /∈ N1, then f(r1)m2 +

jφ(m1) + jm2 = 0 for every j ∈ J and m2 ∈ JM2.

Proof. We just take S = {1R1
} (and so S × f(S) = {(1R1

, 1R2
)}) and use

Theorem 8. �
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Theorem 9. Consider the (R1 onf J)-module M1 onϕ JM2 defined as in The-
orem 8 where f and ϕ are epimorphisms. Let S be a multiplicatively closed
subset of R2 and N2 be a submodule of M2. Then

(1) N2 is an S-prime submodule of M2 if and only if N2
ϕ

is an S
ϕ

-prime
submodule of M1 onϕ JM2.

(2) If N2
ϕ

is an S
ϕ

-prime submodule of M1 onϕ JM2, and (N2 :R2
JM2)∩

S = ∅, then (N2 :M2
J) is an S-prime submodule of M2.

Proof. (1) We note that (N2
ϕ

:R1onfJ M1 onϕ JM2) ∩ Sϕ
= ∅ if and only if

(N2 :R2 M2)∩S = ∅. Indeed if (t, f(t)+j) = (t, s) ∈ Sϕ
such that (t, s)(M1 onϕ

JM2) ⊆ N2
ϕ

, then for each m2 = ϕ(m1) ∈M2, we have (t, s)(m1,m2) ∈ N2
ϕ

.
Therefore, sm2 ∈ N2 and s ∈ (N2 :R2 M2). The converse is similar.

Suppose N2 is an S-prime submodule of M2 associated to s = f(t) ∈ S. Let
(r1, f(r1) + j) ∈ R1 onf J and (m1, ϕ(m1) +m2) ∈M1 on JM2 such that

(r1, f(r1) + j)(m1, ϕ(m1) +m2) ∈ N2
ϕ
.

Then (f(r1) + j)(ϕ(m1) + m2) ∈ N2 and so s(f(r1) + j) ∈ (N2 :R2
M2) or

s(ϕ(m1) +m2) ∈ N2. If s(f(r1) + j) ∈ (N2 :R2
M2), then for all (m1, ϕ(m1) +

m2) ∈M1 onϕ JM2, clearly (t, s)(r1, f(r1) + j)(m1, ϕ(m1) +m2) ∈ N2
ϕ

and so

(t, s)(r1, f(r1) + j) ∈ (N2
ϕ

:R1onfJ M1 onϕ JM2). If s(ϕ(m1) +m2) ∈ N2, then

(t, s)(m1, ϕ(m1)+m2) ∈ N2
ϕ

and the result follows. Conversely, suppose N2
ϕ

is

an S
ϕ

-prime submodule of M1 onϕ JM2 associated to (t, f(t)+j) = (t, s) ∈ Sϕ
.

Let r2 = f(r1) ∈ R2 and m2 = ϕ(m1) ∈ M2 such that r2m2 ∈ N2. Then
(r1, r2) ∈ R1 onf J and (m1,m2) ∈ M1 onϕ JM2 with (r1, r2)(m1,m2) ∈
N2

ϕ
. Thus, (t, s)(r1, r2)(M1 onϕ JM2) ⊆ N2

ϕ
or (t, s)(m1,m2) ∈ N2

ϕ
. If

(t, s)(r1, r2)(M1 onϕ JM2) ⊆ N2
ϕ

, then for all m = ϕ(m′) ∈ M2, we have

(t, s)(r1, r2)(m′,m) ∈ N2
ϕ

and so sr2M2 ⊆ N2. If (t, s)(m1,m2) ∈ N2
ϕ

, then
sm2 ∈ N2 and we are done.

(2) Suppose N2
ϕ

is an S
ϕ

-prime submodule of M1 onϕ JM2 associated to

(t, f(t)+j′) = (t, s) ∈ Sϕ
. Let r2 ∈ R2, m2 ∈M2 such that r2m2 ∈ (N2 :M2

J).

Then r2Jm2 ⊆ N2 and so for all j ∈ J , we have (r1, f(r1))(0, jm2) ∈ N2
ϕ

where f(r1) = r2. By assumption, (t, s)(r1, r2) ∈ (N2
ϕ

:R1onfJ M1 onϕ JM2) or

(t, s)(0, jm2) ∈ N2
ϕ

. If (t, s)(r1, r2) ∈ (N2
ϕ

:R1onfJ M1 onϕ JM2), then for all

m2 ∈ M2 and all j ∈ J , we have (t, s)(r1, r2)(0, jm2) ∈ N2
ϕ

and so sr2jm2 ∈
N2. Thus, sr2 ∈ (N2 :R2

JM2) = ((N2 :M2
J) :R2

M2). If (t, s)(r1, r2) /∈
(N2

ϕ
:R1onfJ M1 onϕ JM2), then (t, s)(0, jm2) ∈ N2

ϕ
for all j ∈ J and so

sm2 ∈ (N2 :M2
J) as required. �

In particular, if we consider S = {1R2
} and take T = {(1R1

, 1R2
)} instead

of S
ϕ

in Theorem 9, then we get the following corollary.

Corollary 5. Consider the (R1 onf J)-module M1 onϕ JM2 defined as in
Theorem 8 where f and ϕ are epimorphisms and let N2 be a submodule of M2.
Then
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(1) N2 is a prime submodule of M2 if and only if N2
ϕ

is a prime submodule
of M1 onϕ JM2.

(2) If N2
ϕ

is a prime submodule of M1 onϕ JM2 and J * (N2 :R2 M2),
then (N2 :M2

J) is a prime submodule of M2.

Theorem 10. Consider the (R1 onf J)-module M1 onϕ JM2 defined as in
Theorem 8 where f and ϕ are epimorphisms. Let S be a multiplicatively closed
subset of R2 and N2 be a submodule of M2. Then

(1) N2
ϕ

is a weakly S
ϕ

-prime submodule of M1 onϕ JM2 if and only if
N2 is a weakly S-prime submodule of M2 and for r1 ∈ R1, m1 ∈ M1,
m2 ∈ JM2, j ∈ J with (f(r1) + j)(ϕ(m1) +m2) = 0 but s(f(r1) + j) /∈
(N2 :R2

M2) and s(ϕ(m1) +m2) /∈ N2 for all s ∈ S, then r1m1 = 0.

(2) If N2
ϕ

is a weakly S
ϕ

-prime submodule of M1 onϕ JM2, (N2 :R2 JM2)∩
S = ∅ and ZR2

(M2) ∩ J = {0}, then (N2 :M2
J) is a weakly S-prime

submodule of M2.

Proof. (1) Suppose s = f(t) ∈ S is a weakly S-element of N2. Let (r1, f(r1) +
j) ∈ R1 onf J and (m1, ϕ(m1) +m2) ∈M1 onϕ JM2 such that

(0, 0) 6= (r1, f(r1) + j)(m1, ϕ(m1) +m2) ∈ N2
ϕ
.

Then (f(r1) + j)(ϕ(m1) +m2) ∈ N2. If (f(r1) + j)(ϕ(m1) +m2) 6= 0, then the
result follows as in the proof of (1) in Theorem 9. Suppose (f(r1)+ j)(ϕ(m1)+
m2) = 0 so that r1m1 6= 0. Then by assumption, there exists s′ = f(t′) ∈ S
such that s′(f(r1)+j) ∈ (N2 :R2

M2) or s′(ϕ(m1)+m2) ∈ N2. It follows clearly

that (t′, s′)(r1, f(r1) + j) ∈ (N2
ϕ

:R1onfJ M1 onϕ JM2) or (t′, s′)(m1, ϕ(m1) +

m2) ∈ N2
ϕ

. Hence, (tt′, ss′) is a weakly S
ϕ

-element of N2
ϕ

. Conversely, let

(t, f(t) + j) = (t, s) be a weakly S
ϕ

-element of N2
ϕ

. Let r2 = f(r1) ∈ R2 and
m2 = f(m1) ∈ M2 such that 0 6= r2m2 ∈ N2. Then (r1, r2) ∈ R1 onf J and

(m1,m2) ∈ M1 onϕ JM2 with (0.0) 6= (r1, r2)(m1,m2) ∈ N2
ϕ

. Hence, either

(t, s)(r1, r2) ∈ (N2
ϕ

:R1onfJ M1 onϕ JM2) or (t, s)(m1,m2) ∈ N2
ϕ

. In the first

case, for all m = ϕ(m′) ∈ M2, (tr1, sr2)(m′,m) ∈ N2
ϕ

. Hence, sr2m ∈ N2

and then sr2 ∈ (N2 :R2
M2). In the second case, we have sm2 ∈ N2 and

so s is a weakly S-element of N2. Now, let r1 ∈ R1, m1 ∈ M1, m2 ∈ JM2,
j ∈ J with (f(r1) + j)(ϕ(m1) + m2) = 0 and suppose r1m1 6= 0. Then

(0, 0) 6= (r1, f(r1) + j)(m1, ϕ(m1) + m2) ∈ N2
ϕ

and so (t, s)(r1, f(r1) + j) ∈
(N2

ϕ
:R1onfJ M1 on JM2) or (t, s)(m1, ϕ(m1) + m2) ∈ N2

ϕ
. Hence, clearly,

either s(f(r1)+j) ∈ (N2 :R2
M2) or s(ϕ(m1)+m2) ∈ N1 and the result follows

by contrapositive.
(2) Suppose (t, f(t) + j) = (t, s) is a weakly S

ϕ
-element of N2

ϕ
. Let r2 =

f(r1) ∈ R2, m2 ∈M2 such that 0 6= r2m2 ∈ (N2 :M2 J). Then r2Jm2 ⊆ N2 and

so for all j ∈ J , we have (r1, r2)(0, jm2) ∈ N2
ϕ

. If j 6= 0 and (r1, r2)(0, jm2) =
(0, 0), then r2jm2 = 0 and so r2m2 = 0 as ZR2(N2)∩J = {0}, a contradiction.
Thus, for all j 6= 0, (r1, r2)(0, jm2) 6= (0, 0). By assumption and similar to
the proof of (2) of Theorem 9, we have for all j 6= 0, either sr2jm2 ∈ N2 or
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(t, s)(0, jm2) ∈ N2
ϕ

for all m2 ∈ M2. Thus, sr2 ∈ (N2 :R2
JM2) = ((N2 :M2

J) :R2
M2) or sm2 ∈ (N2 :M2

J) and we are done. �

Corollary 6. Consider the (R1 onf J)-module M1 onϕ JM2 defined as in
Theorem 8 where f and ϕ are epimorphisms. If N2 is a submodule of M2, then

(1) N2
ϕ

is a weakly prime submodule of M1 onϕ JM2 if and only if N2 is a
weakly prime submodule of M2 and for r1 ∈ R1, m1 ∈M1, m2 ∈ JM2,
j ∈ J with (f(r1) + j)(ϕ(m1) +m2) = 0 but (f(r1) + j) /∈ (N2 :R2 M2)
and (ϕ(m1) +m2) /∈ N2, then r1m1 = 0.

(2) If N2
ϕ

is a weakly prime submodule of M1 onϕ JM2, J * (N2 :R2 M2)
and ZR2

(N2) ∩ J = {0}, then (N2 :M2
J) is a weakly prime submodule

of M2.

Corollary 7. Let N be a submodule of an R-module M , J an ideal of R and
S a multiplicatively closed subset of R. Then

(1) N on J is an (S on J)-prime submodule of M on J if and only if N is
an S-prime submodule of M .

(2) N on J is a weakly (S on J)-prime submodule of M on J if and only
if N is a weakly S-prime submodule of M and for r ∈ R, m ∈ M
with rm = 0 but sr /∈ (N :R1

M) and sm /∈ N for all s ∈ S, then
(r + j)m′ = 0 for every j ∈ J and m′ ∈M where (m,m′) ∈M on J.

Corollary 8. Let N be a submodule of an R-module M , J an ideal of R and
S a multiplicatively closed subset of R. Then

(1) N is an S-prime submodule of M if and only if N is an S-prime sub-
module of M on J .

(2) If N is an S-prime submodule of M on J and (N :R JM)∩S = ∅, then
(N :M J) is an S-prime submodule of M .

Corollary 9. Let N be a submodule of an R-module M , J an ideal of R and
S a multiplicatively closed subset of R. Then

(1) N is a weakly S-prime submodule of M on J if and only if N is a weakly
S-prime submodule of M and for r ∈ R, m ∈ M , m′ ∈ JM , j ∈ J
with (r+ j)(m+m′) = 0 but s(r+ j) /∈ (N :R M) and s(m+m′) /∈ N
for all s ∈ S, then rm = 0.

(2) If N is a weakly S-prime submodule of M on J , (N :M J) ∩ S = ∅ and
ZR(N)∩J = {0}, then (N :M J) is a weakly S-prime submodule of M .

In the following example, we show that in general N being a weakly S-prime
submodule of M does not imply N on J is a weakly (S on J)-prime submodule
of M on J .

Example 6. Consider the Z-submodule N = 0 × 〈0̄〉 of M = Z × Z6 and let
J = 2Z. Then N is a weakly prime submodule of M . Now

M on J = {(m,m′) ∈M ×M : m−m′ ∈ JM = 2Z× 〈2̄〉}
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and

N on J = {(n,m) ∈ N ×M : n−m ∈ 2Z× 〈2̄〉} .
If we consider (2, 4) ∈ Z on J and ((0, 3̄), (0, 1̄)) ∈M on J , then we have (2, 4) ·
((0, 3̄), (0, 1̄)) = ((0, 0̄), (0, 4̄)) ∈ N on J . But we have (2, 4) /∈ ((N on J) :ZonI

(M on J)) as for example (2, 4)((2, 2̄), (0, 0̄)) /∈ N on J and ((0, 3̄), (0, 1̄)) /∈ N on
J . Thus, N on J is not a weakly prime submodule of M on J .

We note that the condition in the reverse implication of Corollary 7(2) does
not hold in Example 6. For example, if we take r = 2 and m = (0, 3̄) ∈ M ,
then clearly, rm = 0, r /∈ (N :R M) = 0 and m /∈ N but for m′ = (0, 2̄) ∈
JM = 2Z× 〈2̄〉, we have (r + 0)m′ 6= 0.

Also, if the condition in the reverse implication of Corollary 9(1) does not
hold, then we may find a weakly S-prime submodule N of M such that N is
not a weakly S-prime submodule of M on J .

Example 7. Consider N , M and J as in Example 6. If we consider (2, 4) ∈
Z on J and ((0, 1̄), (0, 3̄)) ∈M on J , then we have (2, 4) ·((0, 1̄), (0, 3̄)) = N . But
(2, 4) /∈ (N̄ :ZonI (M on J)) and ((0, 1̄), (0, 3̄)) /∈ N . Thus, N̄ is not a weakly
prime submodule of M on J .

References

[1] M. M. Ali, Residual submodules of multiplication modules, Beiträge Algebra Geom. 46
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