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HOPF HYPERSURFACES OF THE HOMOGENEOUS
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Abstract. In this article, we first introduce the notion of commuting
Ricci tensor and pseudo-anti commuting Ricci tensor for Hopf hypersur-

faces in the homogeneous nearly Kähler S3× S3 and prove that the mean

curvature of hypersurface is constant under certain assumptions. Next,
we prove the nonexistence of Ricci soliton on Hopf hypersurface with

potential Reeb vector field, which improves a result of Hu et al. on the
nonexistence of Einstein Hopf hypersurfaces in the homogeneous nearly

Kähler S3 × S3.

1. Introduction

Recall that a nearly Kähler (abbrev. NK) manifold is an almost Hermitian

manifold (M̃, g̃, J) such that the covariant derivative of the almost complex

structure J is skew-symmetry, i.e., (∇̃XJ)X = 0 for all X ∈ TM̃ . The six-
dimensional nearly Kähler manifolds are particularly important according to
the result of Nagy’s classification [19] that all complete simply connected nearly
Kähler manifolds are products of twistor spaces of quaternionic Kähler man-
ifolds of positive scalar curvature, homogeneous spaces and six-dimensional
nearly Kähler manifolds. Butruille [6] showed that the only homogeneous six-
dimensional NK manifolds are the six-sphere S6, the S3 × S3, the complex
projective space CP 3 and the flag manifold SU(3)/U(1) × U(1). Moreover,
Foscolo and Haskins [11] constructed inhomogeneous NK structures on both
S6 and S3 × S3. In order to avoid confusion, from now on, when we say NK
S3 × S3, we always mean the homogeneous NK S3 × S3.

Due to the research of Bolton et al. [7], people became more interested in the
study of submanifolds in homogeneous NK S3 × S3, and very rich results were
obtained, referring to Lagrangian, CR submanifolds [1–3,9,17] and almost com-
plex surfaces [7,16]. In particular, there are many results for the classification of
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real hypersurfaces under certain assumptions, such as the commutativity con-
dition, the anticommutative structure tensors, P-isotropic normal and so on,
see [10,12–15]. On the other hand, we notice that some of the above mentioned
assumptions have been applied in the real hypersurfaces of complex two-plane
Grassmannians G2(Cm+2) and complex quadrics. For example, Berndt-Suh [4]
studied the real hypersurfaces of G2(Cm+2) with commuting shape operator
and showed that the hypersurface is an open part of a tube around a totally
geodesic G2(Cm+1) in G2(Cm+2). In 2006, Suh [20] proved that there do not
exist any anti-commuting real hypersurfaces in G2(Cm+2) with constant mean
curvature. More results can be found in references [5, 18,21–23].

The Kähler structure J on NK S3 × S3 induces a structure vector field U
called Reeb vector field on M denoted by U := −Jξ, where ξ is the local unit
normal vector field of M in S3 × S3. If the Reeb vector field U is invariant
under the shape operator, i.e., AU = αU for a certain function α, M is said to
be a Hopf hypersurface. For an Einstein Hopf hypersurface in NK S3 × S3, the
following nonexistence was proved.

Theorem 1.1 ([12, Theorem 1.2]). The homogeneous NK S3 × S3 admits no
Einstein Hopf hypersurface.

Since the above nonexistence, we intend to study the characteristics of Hopf
hypersurfaces of NK S3 × S3 by weakening the Einstein condition. We inves-
tigate the classification of hypersurfaces in the complex quadric and complex
two-plane Grassmannians G2(Cm+2) in the series of articles by Suh and Jeong
[18,21,24,25], where they considered the so-called commuting Ricci tensor and
pseudo-anti commuting Ricci tensor to weaken the Einstein condition. Noticing
the nonexistence of Einstein Hopf hypersurfaces of NK S3 × S3, in the present
paper we shall introduce the notions of commuting Ricci tensor and pseudo-
anti commuting Ricci tensor. The Ricci tensor is commuting if the following
formula holds:

(1) φS = Sφ,

where φ is an almost contact structure induced by the Kähler structure J on
NK S3×S3 and S is the Ricci operator of M defined by g(SX, Y ) = Ric(X,Y )
for all X,Y ∈ TM , and the Ricci tensor is said to be pseudo-anti commuting if

(2) φS + Sφ = 2κφ,

where κ 6= 0 is a constant. We obtain the following theorems.

Theorem 1.2. Let M be a Hopf hypersurface of the homogeneous NK S3× S3
with commuting Ricci tensor. Then the mean curvature H = 2α. In particular,
if P{U}⊥ = {U}⊥, the mean curvature is constant, where P is the almost
product structure of the homogeneous NK S3 × S3.

Theorem 1.3. Let M be a Hopf hypersurfaces of the homogeneous NK S3×S3
with pseudo-anti commuting Ricci tensor. Then the mean curvature H = α is
constant if κ > 19

12 .
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Furthermore, another well-known generalization of Einstein metric is so
called Ricci soliton defined by

1

2
LV g +Ric = ρg, ρ = constant,

which is a solution of the Ricci flow equation ∂
∂tg(t) = −2Ric(g(t)). V is called

the potential vector field. If the potential vector field V vanishes or is Killing,
i.e., LV g = 0, a Ricci soliton becomes an Einstein metric. Also, we notice
that when V is the Reeb vector field U , it satisfies the pseudo-anti commuting
condition φS + Sφ = 2κφ with κ = ρ (by Eqs. (13) and (8) in Section 2), but
the reverse is not true.

For the Ricci soliton on Hopf hypersurfaces, we have the following nonexis-
tence.

Theorem 1.4. There does not exist Ricci soliton on Hopf hypersurfaces of the
homogeneous NK S3 × S3 with the potential Reeb field U .

Remark 1.5. Since the Ricci soliton is a generalization of Einstein metric, our
result can be viewed as the improvement of Theorem 1.1.

This article is organized as follows: In Section 2, in order to prove these
conclusions, we need some notations and formulas for real hypersurfaces in
homogeneous NK S3×S3. The proof of Theorem 1.2, Theorem 1.3 and Theorem
1.4 are given in Section 3, Section 4 and Section 5, respectively.

2. Preliminaries

2.1. The homogeneous NK S3 × S3

In this section we first recall some notions and results from [7]. Denote by S3
the 3-sphere of R4 as the set of all unitary quaternions. For any (p, q) ∈ S3×S3,
by the natural identification T(p,q)(S3×S3) ∼= TpS3⊕TqS3 we can write a tangent

vector Z(p, q) = (Vp,q,Wp,q) or simply Z = (V,W ). On S3 × S3, there is an
almost complex structure J defined by

JZ(p, q) =
1√
3

(2pq−1W − V,−2qp−1V +W ).

We can define a Hermitian metric g̃ compatible with J as

g̃(Z,Z ′) =
1

2
(〈Z,Z ′〉+ 〈JZ, JZ ′〉)

=
4

3
(〈V, V ′〉+ 〈W,W ′〉)− 2

3
(〈p−1V, q−1W ′〉+ 〈p−1V ′, q−1W 〉),

where Z = (V,W ), Z ′ = (V ′,W ′) are tangent vector fields, and 〈·, ·〉 is the
standard product metric on S3×S3. Thus (g̃, J) gives the homogeneous nearly
Kähler structure on S3 × S3.



1570 X. M. CHEN AND Y. F. YANG

Let ∇̃ be the connection on NK S3 × S3 with respect to g̃ and we define a

(1, 2) tensor G(X,Y ) by G(X,Y ) := (∇̃XJ)Y for X,Y ∈ T (S3 × S3). For the
tensor G the following relations hold:

G(X,Y ) +G(Y,X) = 0,(3)

G(X, JY ) + JG(Y,X) = 0,(4)

g̃(G(X,Y ), Z) + g̃(G(X,Z), Y ) = 0,(5)

g̃(G(X,Y ), G(Z,W )) =
1

3
[g(X,Z)g(Y,W )− g(X,W )g(Y, Z)(6)

+ g(JX,Z)g(Y, JW )− g(JX,W )g(Y, JZ)].

An almost product structure P on S3 × S3 is introduced by

PZ = (pq−1V, qp−1W ), ∀ Z = (V,W ) ∈ T(p,q)(S3 × S3).

One can check easily P satisfies the following relations:

P 2 = Id, JP = −PJ, g̃(PX,PY ) = g̃(X,Y ),

2(∇̃XP )Y = JG(X,PY ) + JPG(X,Y ),

PG(X,Y ) +G(PX,PY ) = 0.

The curvature R̃ of the NK S3 × S3 is given by

R̃(X,Y )Z =
5

12
[g̃(Y,Z)X − g̃(X,Z)Y ]

+
1

12
{g̃(JY, Z)JX − g̃(JX,Z)JY − 2g̃(JX, Y )JZ}

+
1

3
{g̃(PY,Z)PX − g̃(PX,Z)PY

+ g̃(JPY,Z)JPX − g̃(JPX,Z)JPY }.

2.2. Hopf hypersurfaces of NK S3 × S3

Let M be an immersed real hypersurface of the NK S3 × S3 with induced
metric g. There exists a local defined unit normal vector field ξ on M and we
write U := −Jξ as the structure vector field of M . There exist two induced
one-forms η and µ, which are defined, respectively, by η(·) = g̃(J ·, ξ) and
µ(·) = g̃(P ·, ξ). For any vector field X on M , the tangent parts of JX and PX
are, respectively, denoted by

(7) φX = JX − η(X)ξ and TX = PX − µ(X)ξ.

Moreover, the following identities hold:

(8)

φ2 = −Id+ η ⊗ U, η ◦ φ = 0, φ ◦ U = 0, η(U) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X,U) = η(X),

g(TX, Y ) = g(X,TY ),
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where X,Y ∈ X(M). By these formulas, we know that (φ, η, U, g) is an almost
contact metric structure on M .

Denote by ∇ and A the induced Riemannian connection and the shape
operator on M , respectively. Then the Gauss and Weigarten formulas are
respectively given by

(9) ∇̃XY = ∇XY + g(AX,Y )ξ, ∇̃Xξ = −AX.

The curvature tensor R and Codazzi equation of M are, respectively, given as
follows:

R(X,Y )Z =
5

12

[
g(Y, Z)X − g(X,Z)Y

]
(10)

+
1

12

[
g(JY, Z)φX − g(JX,Z)φY + 2g(X, JY )φZ

]
+

1

3

[
g(PY,Z)(PX)> − g(PX,Z)(PY )>

+ g(JPY,Z)(JPX)> − g(JPX,Z)(JPY )>
]

+ g(AY,Z)AX − g(AX,Z)AY,

(∇XA)Y − (∇YA)X =
1

12

[
g(X,U)φY − g(Y,U)φX − 2g(JX, Y )U

]
(11)

+
1

3

[
µ(X)TY − µ(Y )TX

+ g(TX,U)(φTY − µ(Y )U)

− g(TY, U)(φTX − µ(X)U)
]
,

where ·> means the tangential part.
In view of (10), the Ricci tensor is given by

Ric(X,Y ) =
5

4
g(X,Y )− 1

4
η(X)η(Y ) +

1

3

[
g(TU,U)g(TX, Y )

+ µ(X)µ(Y ) + µ(U)g(TX, φY ) + µ(U)µ(X)η(Y )

+ g(TX,U)g(TY, U)
]

+Hg(AX,Y )− g(A2X,Y ),

where H = trace(A) is the mean curvature of M . Thus the Ricci operator S
may be expressed as

SX =
5

4
X − 1

4
η(X)U +

1

3

[
g(TU,U)TX + µ(X)µ] − µ(U)φTX(12)

+ µ(U)µ(X)U + g(TX,U)TU
]

+HAX −A2X

for all X ∈ TM , where µ] denotes the dual vector field of µ with respect to g.
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Proposition 2.1 ([12]). For a real hypersurface M of NK S3×S3, the following
formulas hold:

∇XU = −G(X, ξ) + φAX,(13)

(∇Xφ)Y = G(X,Y )> − g(AX,Y )U + η(Y )AX,(14)

(∇XT )Y =
1

2
[JG(X,PY ) + JPG(X,Y )]>(15)

− g(AX,Y )φTU + g(AX,Y )µ(U)U + µ(Y )AX,

(∇Xµ)Y =
1

2
g(G(X,PY ) + PG(X,Y ), U)− g(AX,TY )(16)

− g(AX,Y )g(TU,U).

If M is a Hopf hypersurface in NK S3 × S3, i.e., AU = αU for a smooth
function α on M , then taking inner product of the Codazzi equation (11) with
U and a straightforward computation, we obtain:

Proposition 2.2 ([14, Lemma 2.1]). If M is a Hopf hypersurface of NK S3×S3,
then it holds that

1

6
g(φX, Y )− 2

3

[
g(PX, ξ)g(PY,U)− g(PX,U)g(PY, ξ)

]
(17)

= g((αI −A)G(X, ξ), Y ) + g(G((αI −A)X, ξ), Y )

− αg((Aφ+ φA)X,Y ) + 2g(AφAX, Y )

for any vector fields X,Y ∈ {U}⊥.

In order to choose a suitable frame of hypersurface, following [15], we define

D(p) := Span{ξ(p), U(p), P ξ(p), PU(p)}, p ∈M.

It is clear that D defines a distribution with dimension 2 or 4 since J is anti-
commuting with P , and that it is invariant under both J and P . Denote by
D⊥ the orthogonal complimentary distribution of D, which is a 2-dimensional
subdistribution and also invariant under both J and P .

Case (I). If dimD = 4 holds in an open set, then there exist a unit tangent
vector field e1 ∈ D and functions a, b, c with c > 0 such that

(18) Pξ = aξ + bU + ce1, a2 + b2 + c2 = 1.

Put e2 = Je1, e3 =
√

3c−1G(U,PU), e4 = Je3 and e5 = U , then {ei}5i=1 forms
a well-defined orthonormal frame field of M with the following properties:

(19)

 Pξ = aξ + ce1 + be5, P e1 = cξ − ae1 − be2,
P e2 = ce5 − be1 + ae2, P e3 = e3,
P e4 = −e4, P e5 = bξ + ce2 − ae5.
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Denote e6 = ξ, we obtain the matrix (Gij) = (G(ei, ej))5×6:

(20) (Gij) =
1√
3


0 0 e6 e5 −e4 −e3
0 0 e5 −e6 −e3 e4
−e6 −e5 0 0 e2 e1
−e5 e6 0 0 e1 −e2
e4 e3 −e2 −e1 0 0

 .

From the second term of (7) and (19), we infer to

(21)


Te1 = −ae1 − be2, µ(e1) = c,
Te2 = ce5 − be1 + ae2, µ(e2) = 0,
T e3 = e3, µ(e3) = 0,
T e4 = −e4, µ(e4) = 0,
T e5 = ce2 − ae5, µ(e5) = b.

Thus from (12) we have

Se1 =
5

4
e1 +

1

3

[
(a2 − b2)e1 + cµ] + 2bae2 + bce5

]
+HAe1 −A2e1,(22)

Se2 =
5

4
e2 +

1

3

[
2abe1 + (b2 − a2 + c2)e2 − 2ace5

]
+HAe2 −A2e2,(23)

Se3 =
5

4
e3 +

1

3

[
− ae3 − be4

]
+HAe3 −A2e3,(24)

Se4 =
5

4
e4 +

1

3

[
ae4 − be3

]
+HAe4 −A2e4,(25)

Se5 = e5 +
1

3

[
− 2ace2 + bce1 + (2a2 + b2)e5 + bµ]

]
+HAe5 −A2e5.(26)

Moreover, Choosing (X,Y ) = (e1, e2), (e1, e3), (e1, e4), (e2, e3), (e2, e4),
(e3, e4) in (17) respectively and making use of (19) and (20), we can obtain the
following equations:

−1

2
=

1√
3
a23 +

1√
3
a14 − α(a22 + a11) + 2g(AφAe1, e2),(27)

0 =− 2√
3
α+

1√
3
a33 +

1√
3
a11 − α(a23 − a14) + 2g(AφAe1, e3),(28)

0 =
1√
3
a34 −

1√
3
a12 − α(a24 + a13) + 2g(AφAe1, e4),(29)

0 =− 1√
3
a34 +

1√
3
a12 + α(a13 + a24) + 2g(AφAe2, e3),(30)

0 =
2√
3
α− 1√

3
a22 −

1√
3
a44 + α(a14 − a23) + 2g(AφAe2, e4),(31)

1

6
=

1√
3

(−a14 − a23)− α(a44 + a33) + 2g(AφAe3, e4).(32)
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Case (II). If dimD = 2 holds in an open set, then P{U}⊥ = {U}⊥ and we
can write

(33) Pξ = aξ + bU, a2 + b2 = 1.

Now, D⊥ is a 4-dimensional distribution and invariant under both J and P .
Hence we can choose a unit e1 ∈ D⊥ such that Pe1 = e1. Put e2 = Je1,
e3 = −

√
3G(e1, ξ), e4 = Je3 and e5 = U . Then we obtain a local frame field of

M with the following properties:

(34)

 Pξ = aξ + be5, P e1 = e1,
P e2 = −e2, P e3 = −ae3 − be4,
P e4 = −be3 + ae4, P e5 = bξ − ae5.

Denote e6 = ξ, then we can calculate the matrix (Gij)5×6 = (G(ei, ej)) with
the same expression as (20). From (7) and (34), we have

Te1 = e1, µ(e1) = 0,
T e2 = −e2, µ(e2) = 0,
T e3 = −ae3 − be4, µ(e3) = 0,
T e4 = −be3 + ae4, µ(e4) = 0,
T e5 = −ae5, µ(e5) = b.

(35)

In this case, from (12) we obtain

Se1 =
5

4
e1 −

1

3

[
ae1 + be2

]
+HAe1 −A2e1,(36)

Se2 =
5

4
e2 +

1

3

[
ae2 − be1

]
+HAe2 −A2e2,(37)

Se3 =
5

4
e3 +

1

3

[
(a2 − b2)e3 + 2bae4

]
+HAe3 −A2e3,(38)

Se4 =
5

4
e4 +

1

3

[
(b2 − a2)e4 + 2bae3

]
+HAe4 −A2e4,(39)

SU = U +
1

3

[
2a2U + bµ+ b2U

]
+ (Hα− α2)U.(40)

As in Case I, choosing different vector fields X,Y in (17) and using (20) and
(34), we also have the following equations:

1

6
=

1√
3
a23 +

1√
3
a14 − α(a22 + a11) + 2g(AφAe1, e2),(41)

0 = − 2√
3
α+

1√
3
a33 +

1√
3
a11 − α(a23 − a14) + 2g(AφAe1, e3),(42)

0 =
1√
3
a34 −

1√
3
a12 − α(a24 + a13) + 2g(AφAe1, e4),(43)

0 = − 1√
3
a34 +

1√
3
a12 + α(a13 + a24) + 2g(AφAe2, e3),(44)

0 =
2√
3
α− 1√

3
(a44 + a22) + α(a14 − a23) + 2g(AφAe2, e4),(45)
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1

6
=

1√
3

(−a14 − a23)− α(a44 + a33) + 2g(AφAe3, e4).(46)

3. Hopf hypersurfaces in NK S3 × S3 with commuting Ricci tensor

In this section we consider the Hopf hypersurface M with commuting Ricci
tensor, i.e., its Ricci operator S satisfies (1). In order to prove Theorem 1.2,
we need some lemmas.

Lemma 3.1. Let M be a real Hopf hypersurface in the NK S3×S3 with commut-
ing Ricci tensor. Then for any vector field X ∈ X(M), the following equation
holds:

SG(X,U)> − η(AX)
{1

3

[
2g(TU,U)TU + µ(U)µ] − µ(U)φTU(47)

+ µ(U)µ(U)U
]

+ (Hα− α2 + 1)U
}

+
{5

4
AX − 1

4
η(AX)U

+
1

3

[
g(TU,U)TAX + µ(AX)µ] − µ(U)φTAX

+ µ(U)µ(AX)U + g(TAX,U)TU
]

+HA2X −A3X
}

= G(X,SU)> − g(AX,SU)U + η(SU)AX

− 1

4
φ∇XU +

1

3

[
2g((∇XT )U,U)φTU

+ 3g(T∇XU,U)φTU + 2g(TU,U)φ(∇XT )U

+ (∇Xµ)(U)φµ+ µ(U)φ∇Xµ
] − (∇Xµ)(U)φ2TU − µ(∇XU)φ2TU

− µ(U)φ(∇Xφ)TU − µ(U)φ2(∇XT )U + µ(U)µ(U)φ∇XU

+ g(TU,U)φT∇XU
]

+Hφ(∇XA)U − φ(∇XA
2)U.

Proof. The Ricci tensor of a real hypersurface M is commuting, i.e., the Ricci
operator S satisfies

(48) SφY = φSY

for every vector field Y on M . Let us take the covariant derivative of equation
(48) along vector field X, namely

(49) (∇XS)φY + S(∇Xφ)Y = (∇Xφ)SY + φ(∇XS)Y.

By (12) and (14), we compute

S(∇Xφ)Y(50)

= SG(X,Y )> − g(AX,Y )SU + η(Y )SAX

= SG(X,Y )> − g(AX,Y )
{1

3

[
2g(TU,U)TU + µ(U)µ] − µ(U)φTU

+ µ(U)µ(U)U
]

+ (Hα− α2 + 1)U
}

+ η(Y )
{5

4
AX − 1

4
η(AX)U
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+
1

3

[
g(TU,U)TAX + µ(AX)µ] − µ(U)φTAX

+ µ(U)µ(AX)U + g(TAX,U)TU
]

+HA2X −A3X
}

and

(∇XS)Y

= − 1

4
(∇Xη)(Y )U − 1

4
η(Y )∇XU +

1

3

[
g((∇XT )U,U)TY

+ g(T∇XU,U)TY + g(TU,∇XU)TY + g(TU,U)(∇XT )Y

+ (∇Xµ)(Y )µ] + µ(Y )∇Xµ
] − (∇Xµ)(U)φTY − µ(∇XU)φTY

− µ(U)(∇Xφ)TY − µ(U)φ(∇XT )Y + (∇Xµ)(U)µ(Y )U

+ µ(∇XU)µ(Y )U + µ(U)(∇Xµ)(Y )U + µ(U)µ(Y )∇XU

+ g((∇XT )Y,U)TU + g(TY,∇XU)TU + g(TY, U)∇XTU
]

+X(H)AY +H(∇XA)Y − (∇XA
2)Y.

Since φU = 0, we further obtain

φ(∇XS)Y(51)

= − 1

4
η(Y )φ∇XU +

1

3

[
g((∇XT )U,U)φTY

+ g(T∇XU,U)φTY + g(TU,∇XU)φTY + g(TU,U)φ(∇XT )Y

+ (∇Xµ)(Y )φµ] + µ(Y )φ∇Xµ
] − (∇Xµ)(U)φ2TY − µ(∇XU)φ2TY

− µ(U)φ(∇Xφ)TY − µ(U)φ2(∇XT )Y + µ(U)µ(Y )φ∇XU

+ g((∇XT )Y,U)φTU + g(TY,∇XU)φTU + g(TY, U)φ∇XTU
]

+X(H)φAY +Hφ(∇XA)Y − φ(∇XA
2)Y.

Putting Y = U in (49) gives

(52) S(∇Xφ)U = (∇Xφ)SU + φ(∇XS)U.

Letting Y = U in (50) and (51) and inserting the resulting equations into (52)
yields (47). �

Lemma 3.2. Let M be a real Hopf hypersurface in the NK S3 × S3 with com-
muting Ricci tensor. If dimD = 2, for any vector fields X,Y ∈ X(M), the
following equation holds:

− 1

4
(∇Xη)(φY ) +

1

3

[
2b2g(∇XU, φY )− bg((∇Xφ)TφY,U)(53)

− 2ag((∇XT )φY,U)− ag(TφY,∇XU)
]

+Hg((∇XA)φY,U)− g((∇XA
2)φY,U)
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+ (
5

3
+Hα− α2)[g(G(X,Y )>, U)− g(AX,Y )]

= g(G(X,SY )>, U)− g(AX,SY ).

Proof. Taking the inner product of (49) with U , we have

(54) g((∇XS)φY,U) + g(S(∇Xφ)Y,U) = g((∇Xφ)SY,U).

Noticing that TU = −aU and µ] = bU due to (35), using (14) and (12) we
thus have

g((∇XS)φY,U) = − 1

4
(∇Xη)(φY ) +

1

3

[
2b2g(∇XU, φY )− bg((∇Xφ)TφY,U)

− 2ag((∇XT )φY,U)− ag(TφY,∇XU)
]

+Hg((∇XA)φY,U)− g((∇XA
2)φY,U),

g(S(∇Xφ)Y,U) = (
5

3
+Hα− α2)g((∇Xφ)Y, U)

= (
5

3
+Hα− α2)[g(G(X,Y )>, U)− g(AX,Y ) + η(Y )η(AX)],

g((∇Xφ)SY,U) = g(G(X,SY )>, U)− g(AX,SY ) + η(SY )η(AX).

Substituting the previous equations into (54) gives (53). �

Next, we separate the proof of Theorem 1.2 into the proofs of two lemmas,
depending on the dimension of D.

Lemma 3.3. For the case dimD = 4, the mean curvature H = 2α.

Proof. By φSU = SφU = 0, we see SU = η(SU)U . Thus 0 = g(SU, e2) =
− 2

3ac and 0 = g(SU, e1) = 2
3bc. That means b = a = 0 and c = 1. Thus Te5 =

e2 and µ] = e1 from (21). Let us write Aei =
∑5

j=1 aijej , where aij = aji for
1 ≤ i, j ≤ 5. By AU = αU , it is clear that a15 = a25 = a35 = a45 = 0 and
a55 = α.

Let us choose Y = e1 and Y = e3 in (48), respectively. Then it follows from
Eqs. (22)-(25) that

HφAe1 − φA2e1 = HAe2 −A2e2,(55)

HφAe3 − φA2e3 = HAe4 −A2e4.(56)

Since TU = e2 and µ(U) = 0 (see (21)), Equation (47) may be simplified as

SG(X,U)> +
1

3

[
µ(AX)e1 + g(AX, e2)e2

]
+HA2X −A3X

= G(X,SU)> +
1

4
η(AX)U + (Hα− α2 − 1

4
)AX

− 1

4
φ∇XU +

1

3

[
− 2g((∇XT )U,U)e1 − 3g(∇XU, e2)e1
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+ 2(∇Xµ)(U)e2 + µ(∇XU)e2

]
+Hφ(∇XA)U − φ(∇XA

2)U.

Moreover, using (13), (15) and (16), we conclude that

(57)

SG(X,U)> +
1

3

[
µ(AX)e1 + g(AX, e2)e2

]
+HA2X −A3X

= G(X,SU)> + (Hα− α2)AX +
1

4
φG(X, ξ)

+
1

3

[
− g([JG(X, e2) + JPG(X,U)]>, U)e1

− 3g(−G(X, ξ) + φAX, e2)e1

+ [g(G(X, e2) + PG(X,U), U)− 2g(AX, e2)]e2

+ µ(−G(X, ξ) + φAX)e2

]
+Hφ(α∇XU −A∇XU)− φ(α2∇XU −A2∇XU).

By (20) and (25), we know

SG(e1, U)> = − 1√
3
Se4 = − 1√

3
(
5

4
e4 +HAe4 −A2e4).

Therefore, substituting this into (57) with X = e1 and taking the inner product
with e1, we obtain from (20) that

(58)

− 1√
3
g(HAe4 −A2e4, e1) +

1

3
a11 + g(HA2e1 −A3e1, e1)

= (Hα− α2)a11 − a11 −Hg(α∇e1U −A∇e1U, e2)

+ g(α2∇e1U −A2∇e1U, e2)

= (Hα− α2 − 1)a11 −Hg(αφAe1 −A(
1√
3
e3 + φAe1), e2)

+ g(α2φAe1 −A2(
1√
3
e3 + φAe1), e2)

= − a11 +
1√
3
g(HAe3 −A2e3, e2) + g(HAφAe1 −A2φAe1, e2).

On the other hand, applying Aφ in (55), we get

−HA2e1 +A3e1 = HAφAe2 −AφA2e2.

Inserting the previous relation and (56) into (58) implies

1

3
a11 = −a11.

That means a11 = 0.
By (55) and the symmetry of A, we have

g(HA2e1 −A3e1, e2) = g(HA2e2 −A3e2, e1)

= g(HAφAe1 −AφA2e1, e1) = g(AφAe1, Ae1).
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Also, we can get

g(HA2e1 −A3e1, e2) = g(−HAφAe2 +AφA2e2, e2)

= −g(AφAe2, Ae2).

Comparing the above two formulas yields

(59) g(AφAe1, Ae1) + g(AφAe2, Ae2) = 0.

Letting X = e1 in (57) and taking the inner product with e2 implies a12 = 0
by (59).

Similarly, letting X = e2 in (57) and taking an inner product of the resulting
relation with e2, we have

− 1√
3
g(Se3, e2) +

1

3
a22 + g(HA2e2 −A3e2, e2)

= (Hα− α2)a22 +
1

3

[
− 2a22 + µ(φAe2)

]
+Hg(φ(∇e2A)U, e2)− g(φ(∇e2A

2)U, e2).

Applying (24), (55) and (56) in the above relation, we obtain a22 = 0. Hence
the product of (55) with e2 implies

(60) a213 + a214 = a223 + a224.

Now it follows from (17) and (59) that

(61) 2α(a24 − a13) +
∑
i

a3iai1 −
∑
i

a4iai2 = 0.

On the other hand, taking the inner product of (56) with e2, we find

Ha13 −
∑
i

a3iai1 = Ha24 −
∑
i

a4iai2.

By combining with (61), it implies

(62) (H − 2α)(a24 − a13) = 0.

Next we set a24 = a13 then from (60) we have

(63) (a14 + a23)(a14 − a23) = 0.

In the following we divide into two cases to discuss.
Case I: a24 = a13 6= 0. Because a12 = 0, the inner product of (55) with e1

yields
∑

i a1iai2 = 0, i.e.,

a13a32 + a14a42 = 0.

This shows a32+a14 = 0. By (27), we have − 1
4 = a213+a214, which is impossible.
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Case II: a24 = a13 = 0. If a32 +a14 = 0 we have − 1
4 = a214 from (27), which

is impossible, thus a23 = a14 from (63). If a34 6= 0, then from (29) and (30) we
get a14 = 1

2
√
3
. On the other hand, by virtue of (27), we obtain

(64) a214 −
1√
3
a14 −

1

4
= 0,

but a14 = 1
2
√
3

does not satisfy the above equation. That means that a34 = 0.

Therefore, from (28) and (31) we have

(a33 − a44)(a14 −
1

2
√

3
) = 0.

Since Equation (64) has two solutions: a14 =
√
3
2 or − 1

2
√
3
, the above relation

yields

a33 = a44.

Putting X = e4 in (57) and taking the inner product with e1, we obtain

(65) (H + α)a44a14 +
2

3
√

3
+

4

3
a14 = 0.

Recalling (31), we have

2√
3
α− 1√

3
a44 + 2a14a44 = 0.

Since a14 =
√
3
2 or a14 = − 1

2
√
3
, the above relation correspondingly yields

a44 = −α or a44 = α.

Now substituting a14 =
√
3
2 and a44 = −α into (65) gives a contradiction:

2√
3

+
2√
3

= 0.

Here we have used H = a33 + a44 + α = 2a44 + α. When a14 = − 1
2
√
3

and

a44 = α, (65) implies α = 0. That means that a33 = a44 = α = 0.
In conclusion, we proved a23 = a14 and the other aij = 0 for 1 ≤ i, j ≤ 5.

This implies M satisfies φA+Aφ = 0. According to [14], there does not admit
a hypersurface that satisfies the condition. Thus by (62), we have H = 2α. �

Lemma 3.4. For dimD = 2, the mean curvature H = 2α is constant.

Proof. First, from (40) we get

(66) g(SU,U) =
5

3
+Hα− α2.

From the commuting condition φS = Sφ, we derive from (36)-(39) that

φSe1 =Se2 ⇒ −
2

3

[
ae2−be1

]
+HφAe1−φA2e1 =HAe2−A2e2,(67)

φSe3 =Se4 ⇒
2

3

[
(a2−b2)e4−2bae3

]
+HφAe3−φA2e3 =HAe4−A2e4.(68)
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Since SU = η(SU)U , we conclude from (66) that

(1 +
1

3
(2a2 + b2) +Hα− α2)U +

1

3
bµ = (

5

3
+Hα− α2)U,

that is,

bµ] = b2U.

In the following we divide into two cases to discuss.
Case (a): If b 6= 0 in an open set of M , then µ] = bU . Differentiating this

along any vector field X gives

∇Xµ = X(b)U + b∇XU.

Making use of (13) and (16), we have

1

2
g(G(X,PY ) + PG(X,Y ), U)− g(AX,TY ) + ag(AX,Y )(69)

= X(b)η(Y ) + bg(−G(X, ξ) + φAX, Y ).

If we take (X,Y ) = (e1, e2), (e1, e3) in (69), respectively, then

(1 + a)a12 = ba11,(70)

aa13 + ba14 =
1

2
√

3
b.(71)

Similarly, choosing (X,Y ) = (e2, e2), (e2, e3) in (69), respectively, we obtain

(1 + a)a22 = ba21,(72)

aa23 + ba24 =
1

2
√

3
a.(73)

Since TU = −aU and φU = 0 (see (35)), Equation (47) becomes

(74)

SG(X,U)> − αη(X)(Hα− α2 +
5

3
)U +

5

4
AX − 1

4
η(AX)U

+
1

3

[
− aTAX + (2b2 + a2)η(AX)U − bφTAX

]
+HA2X −A3X

= G(X,SU)> − g(AX,SU)U + η(SU)AX − 1

4
φ∇XU

+
1

3

[
− 2aφ(∇XT )U − bφ(∇Xφ)TU − bφ2(∇XT )U

+ 2b2φ∇XU − aφT∇XU
]

+Hφ
(
α(−G(X, ξ) + φAX)−A(−G(X, ξ) + φAX)

)
− φ

(
α2(−G(X, ξ) + φAX)−A2(−G(X, ξ) + φAX)

)
.
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From (13), (14) and (15), we compute

(75)


∇e3U = − 1√

3
e1 + φAe3,

G(e3, U) = 1√
3
e2,

(∇e3T )U = 1
2
√
3
[be2 + ae1 + e1] + bAe3,

(∇e3φ)TU = − 1√
3
ae2 − aAe3.

Substituting the above relations into (74) with X = e3 yields

(76)

1√
3

[
− (1 + a)2

2
e2 +

1− a
2

be1

]
−
[
aTAe3 + bφTAe3

]
+ 3HA2e3 − 3A3e3

= (2− b2)Ae3 −
[
baφAe3 + aφTφAe3

]
− 3HφAφAe3 + 3φA2φAe3.

By taking the inner product with e3, it further implies that

a2a33 = −aba34.(77)

Similarly, choosing X = e4 in (74) and applying the same method, we get

1√
3

[
− (1− a)2

2
e1 +

1 + a

2
be2

]
−
[
aTAe4 + bφTAe4

]
+ 3HA2e4 − 3A3e4

= (2− b2)Ae4 − [abφAe4 + aφTφAe4]− 3HφAφAe4 + 3φA2φAe4.

Moreover, the inner product of the above equation with e4 gives

a2a44 = aba34.(78)

Letting X = e1 in (74) yields

(79)

1√
3

[
b2e4 + 2bae3

]
−
[
aTAe1 + bφTAe1

]
+ 3HA2e1 − 3A3e1

= (2− b2)Ae1 −
[
abφAe1 + aφTφAe1

]
− 3HφAφAe1 + 3φA2φAe1.

Thus the inner product of (68) with e2 yields

(80) Ha13 −
∑
i

a3iai1 = Ha24 −
∑
i

a4iai2.

On the other hand, as the proof of Lemma 3.3, making use of g(HA2e1 −
A3e1, e2) = g(HA2e2 −A3e2, e1), we derive

g(AφAe1, Ae1) + g(AφAe2, Ae2) = 0.

Hence, it follows from (17) with (X,Y ) = (e1, Ae1) and (e2, Ae2) that

(81) 2α(a24 − a13) +
∑
i

a3iai1 −
∑
i

a4iai2 = 0.

Combining (80) with (81) implies

(82) (H − 2α)(a24 − a13) = 0.
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Choosing (X,Y ) = (e3, Ae3) and (X,Y ) = (e4, Ae4) in (17), respectively,
gives

1

6
a34 =

1√
3

(2αa13 −
∑
i

a1iai3)− α
∑
i

a4iai3 + 2g(AφAe3, Ae3)

and

−1

6
a34 =

1√
3

(−2αa24 +
∑
i

a2iai4) + α
∑
i

a3iai4 + 2g(AφAe4, Ae4).

Thus

0 = − 1√
3
{2α(a24 − a13) +

∑
i

a3iai1 −
∑
i

a4iai2}

+ 2g(AφAe3, Ae3) + 2g(AφAe4, Ae4),

that is, g(AφAe3, Ae3) + g(AφAe4, Ae4) = 0 by (81). Therefore, taking the
inner product of (76) with e4 implies

(83) 2aba33 − 4aba44 − [3(a2 − b2) + 1]a34 = 0.

This leads to a34 = 0 from (77) and (78).
In the following we assume a24 = a13 and separate two cases to discuss.
Case (a)-(i). If a 6= 0, then from (77) and (78), we have

a44 =
b

a
a34 = 0, a33 = − b

a
a34 = 0.

Then
∑

i a3iai1 =
∑

i a4iai2 by (81), i.e.,

a31a11 + a23a12 = a41a12 + a24a22.

So, by virtue of (70)-(73), the previous equation yields

(84) (4a2 − 1)a31a12 = 0.

On the other hand, by (46) we obtain

1

6
=

1√
3

(−a14 − a23) + 2(a13a24 − a23a14)

= − 1

3
+

1√
3

(
b

a
+
a

b
)a13 + 2

[
a213 − (

1

2
√

3
− b

a
a24)(

1

2
√

3
− a

b
a13)

]
=

1√
3

b2 + a2

ab
a13 + 2

[
− 1

12
+

1

2
√

3

1

ab
a13

]
− 1

3

=
2√
3

1

ab
a13 −

1

2
,

that is,

(85) a13 =

√
3

3
ab.
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Substituting this into (84) gives

(86) (1− 4a2)a12 = 0.

If a12 = 0, then a11 = a22 = 0 by (70) and (72). Moreover, from (41) and
(46), we get a23 = −a14. Hence we follows from (43) that −α(a24 + a13) = 0,
this means α = 0 or a24 + a13 = 0. Because the latter will lead to a13 = 0,
which is impossible due to (85), thus in this case we prove α = 0 and H = 0.

If a12 6= 0, then a2 = 1
4 and b2 = 3

4 by (86) and (33). From (71) and (73),
we further have

a14 =
1

4
√

3
, a23 = − 1

4
√

3
.

Due to a24 = a13 =
√
3
3 ab and a12 6= 0, using (70) and (72), we follows

from (41) that α = 0. But from (44) and (72) we obtain a12 = 0, which is a
contradiction.

In summary, in the Case (a)-(i), we have proved H = α = 0.
Case (a)-(ii). If a = 0, then b2 = 1. Eqs. (70)-(73) become{

a12 = ba11, a22 = ba21,
a24 = 0, a14 = 1

2
√
3
.

As a13 = a24, from (43) we get a12 = 0, thus a11 = a22 = 0. Moreover,
Eqs. (42) and (45) are simplified as

0 = −
√

3

2
α− αa23,(87)

0 =
5

2
√

3
α− 1√

3
a44 − αa23 + 2a23a44.(88)

Now putting X = Y = e1 in (53), we conclude

2

3
b
[
ba11 − aa12

]
− 2

3
a11 = g(G(e1, HAe1 −A2e1)>, U)− 2

3
aa11,

then

(89) Ha14 =
∑
i

a1iai4.

Since a34 = a11 = a22 = 0, we know a33 = −α from (89). Moreover, the inner
product of (68) with e1 and (89) imply

Ha23 =
∑
i

a2iai3,

i.e., (a44 + α)a23 = 0. If α 6= 0, then a23 = −
√
3
2 by (87) and a44 = −α.

Inserting this into (88) gives

0 =
5

2
√

3
α+

11

2
√

3
α.

It is impossible, thus we see α = 0. That means a33 = a44 = 0 by (88), i.e.,
H = 0.
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Summarizing Case (a)-(i) and Case (a)-(ii), we have proved H = α = 0
when a13 = a24. If a13 6= a24 in an open subset, we get from (82) that

H = 2α.

According to [13, Lemma 2.2], the mean curvature H is constant.
Case (b). If b = 0, then a2 = 1 and µ] = 0 by (35). In terms of the proof in

Case (a), we know from (71) and (73) with b = 0 that a13 = 0 and a23 = 1
2
√
3
.

Furthermore, from (77) and (78) we also know a33 = a44 = 0. In terms of (46)
we obtain a14 = − 1

2
√
3

= −a23. Here we have used a34 = 0 due to (83).

In the same way, we assume a24 = a13. Then we obtain from (44), (45) and
(42) that a12 = α = a11 = 0. This means H = a22. Finally, if H = a22 = 0,
we proved a23 = −a14 and the other aij = 0 for 1 ≤ i, j ≤ 5. This implies that
M satisfies φA = Aφ. According to [15, Claim 4.2], we can obtain ∇UU = 0.
Thus, following from [12, Lemma 5.2] and [12, Eq. (5.10)], we have

0 =
1

2
‖φA−Aφ‖2 +

2

3
Θ− 1

3
− ‖A‖2 +Hg(AU,U) =

1

6
,

which is impossible. Here we have used Θ = 1 for dimD = 2.
Therefore it completes the proof Lemma 3.4 from Case (a) and Case (b). �

Combining Lemma 3.3 with Lemma 3.4, we complete the proof of Theorem
1.2.

4. Hopf hypersurfaces in NK S3 × S3 with pseudo-anti commuting
Ricci tensor

In this section we study the Hopf hypersurface M with pseudo-anti com-
muting Ricci tensor. Namely, the equation (2) is satisfied.

Lemma 4.1. Let M be a real Hopf hypersurface in the NK S3×S3 with pseudo-
anti commuting Ricci tensor. Then for any vector field X ∈ X(M), the follow-
ing equation holds:

SG(X,U)> − η(AX)
{1

3

[
2g(TU,U)TU + µ(U)µ] − µ(U)φTU

+ µ(U)µ(U)U
]

+ (Hα− α2 + 1− 2κ)U
}

+
{5

4
AX − 1

4
η(AX)U

+
1

3

[
g(TU,U)TAX + µ(AX)µ] − µ(U)φTAX

+ µ(U)µ(AX)U + g(TAX,U)TU
]

+HA2X −A3X
}

= −G(X,SU)> + 2κG(X,U)> + g(AX,SU)U +
(

2κ− η(SU)
)
AX(90)

+
1

4
φ∇XU −

1

3

[
2g((∇XT )U,U)φTU

+ 3g(T∇XU,U)φTU + 2g(TU,U)φ(∇XT )U

+ (∇Xµ)(U)φµ+ µ(U)φ∇Xµ
] − (∇Xµ)(U)φ2TU − µ(∇XU)φ2TU
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− µ(U)φ(∇Xφ)TU − µ(U)φ2(∇XT )U + µ(U)µ(U)φ∇XU

+ g(TU,U)φT∇XU
]
−Hφ(∇XA)U + φ(∇XA

2)U.

Proof. Applying the same method as Lemma 3.1 and utilizing the following
condition:

(91) SφY + φSY = 2κφY, ∀Y ∈ TM,

we have

(92) (∇XS)φY + S(∇Xφ)Y + (∇Xφ)SY + φ(∇XS)Y = 2κ(∇Xφ)Y.

Putting Y = U in (92) and using (14), we have

(93) S(∇Xφ)U = −(∇Xφ)SU−φ(∇XS)U+2κ
(
G(X,U)>−η(AX)U+AX

)
.

Letting Y = U in (50) and (51) and inserting the resulting equations into (93)
yields (90). �

Lemma 4.2. Let M be a real Hopf hypersurface of the NK S3×S3 with pseudo-
anti commuting Ricci tensor. If dimD = 2, for any vector fields X,Y ∈ X(M),
the following equation holds:

(94)

− 1

4
(∇Xη)(φY ) +

1

3

[
2b2g(∇XU, φY )− bg((∇Xφ)TφY,U)

− 2ag((∇XT )φY,U)− ag(TφY,∇XU)
]

+Hg((∇XA)φY,U)− g((∇XA
2)φY,U)

+ (
5

3
+Hα− α2)[g(G(X,Y )>, U)− g(AX,Y ) + 2η(Y )η(AX)]

= − g(G(X,SY )>, U) + g(AX,SY )

+ 2κ
[
g(G(X,Y )>, U)− g(AX,Y ) + η(Y )η(AX)

]
.

Proof. As the proof of Lemma 3.2, taking the inner product of (92) with U ,
we have

g((∇XS)φY,U) + g(S(∇Xφ)Y, U)

= − g((∇Xφ)SY,U) + 2κ
[
g(G(X,Y )>, U)− g(AX,Y ) + η(Y )η(AX)

]
.

Through a series of calculations that are the same as the proof of Lemma 3.2,
we can get the required equation. �

Lemma 4.3. The case dimD = 4 does not occur if κ > 19
12 .

Proof. By φSU + SφU = 2κφU = 0, we derive φSU = −SφU = 0. We see
SU = η(SU)U . Thus 0 = g(SU, e2) = − 2

3ac and 0 = g(SU, e1) = 2
3bc. That

means that b = a = 0 and c = 1.
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Let us choose Y = e1 and Y = e3 in (91), respectively. Then it follows from
Eqs. (22)-(25) that

(
19

6
− 2κ)e2 +HAe2 −A2e2 = φA2e1 −HφAe1,(95)

(
5

2
− 2κ)e4 +HAe4 −A2e4 = φA2e3 −HφAe3.(96)

Since TU = e2 and µ(U) = 0, Equation (90) may be simplified as

SG(X,U)> +
1

3

[
µ(AX)e1 + g(AX, e2)e2

]
+HA2X −A3X

= −G(X,SU)> + 2κG(X,U)> + (2Hα− 2α2 +
9

4
− 2κ)η(AX)U

− (Hα− α2 +
9

4
− 2κ)AX +

1

4
φ∇XU −

1

3

[
− 2g((∇XT )U,U)e1

− 3g(∇XU, e2)e1 + 2(∇Xµ)(U)e2 + µ(∇XU)e2

]
−Hφ(∇XA)U + φ(∇XA

2)U.

Moreover, using (13), (15) and (16), we conclude

(97)

SG(X,U)> +
1

3

[
µ(AX)e1 + g(AX, e2)e2

]
+HA2X −A3X

= −G(X,SU)> + 2κG(X,U)> + (2Hα− 2α2 +
5

2
− 2κ)η(AX)U

− (Hα− α2 +
5

2
− 2κ)AX − 1

4
φG(X, ξ)

− 1

3

[
− g([JG(X, e2) + JPG(X,U)]>, U)e1

− 3g(−G(X, ξ) + φAX, e2)e1 + [g(G(X, e2) + PG(X,U), U)

− 2g(AX, e2)]e2 + µ(−G(X, ξ) + φAX)e2

]
−Hφ(α∇XU −A∇XU) + φ(α2∇XU −A2∇XU).

On the other hand, applying φA in (95), we have

HA2e1 −A3e1 = (2κ− 19

6
)Ae1 +HAφAe2 −AφA2e2.(98)

Letting X = e1 in (97) and taking the inner product with e1, using (98),
(96), we obtain from (20) that

1

3
a11 + (2κ− 19

6
)a11 = (2κ− 3

2
)a11.

That means a11 = 0.
By (95) and the symmetry of A, we can get

(99) g(AφAe1, Ae1) + g(AφAe2, Ae2) = 0.
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Letting X = e1 in (97) and taking the inner product with e2 implies a12 = 0
by (99).

Similarly, letting X = e2 in (97) and taking an inner product of the resulting
relation with e2, we get a22 = 0 by applying (24), (95) and (96). From these
and the product of (95) with e2 we follow

a213 + a214 + a223 + a224 =
19

6
− 2κ.

Thus, if κ > 19
12 the above relation is impossible. �

Lemma 4.4. For the case dimD = 2, the mean curvature H = α is constant.

Proof. First, from the pseudo-anti commuting condition φS+Sφ = 2κφ, using
(36)-(39), we derive

φSe1 + Se2 = 2κe2 ⇒ (
5

2
− 2κ)e2 +HAe2 −A2e2 = φA2e1 −HφAe1,(100)

φSe3 + Se4 = 2κe4 ⇒ (
5

2
− 2κ)e4 +HAe4 −A2e4 = φA2e3 −HφAe3.(101)

Case (a): If b 6= 0 in an open set of M , then µ] = bU .
Since TU = −aU and φU = 0 (see (35)), Equation (90) becomes

(102)

SG(X,U)> − αη(X)(Hα− α2 +
5

3
)U +

5

4
AX − 1

4
η(AX)U

+
1

3

[
− aTAX + (2b2 + a2)η(AX)U − bφTAX

]
+HA2X −A3X

= −G(X,SU)> + 2κG(X,U)> + g(AX,SU)U

+
(
2κ− η(SU)

)
AX − 2κη(AX)U +

1

4
φ∇XU

− 1

3

[
− 2aφ(∇XT )U − bφ(∇Xφ)TU − bφ2(∇XT )U

+ 2b2φ∇XU − aφT∇XU
]

−Hφ
(
α(−G(X, ξ) + φAX)−A(−G(X, ξ) + φAX)

)
+ φ

(
α2(−G(X, ξ) + φAX)−A2(−G(X, ξ) + φAX)

)
.

Substituting (75) into (102) with X = e3 yields

(103)

1√
3

[
(a+

1

4
+
a2

2
)e2 +

a− 1

2
be1

]
−
[
aTAe3 + bφTAe3

]
+ 3HA2e3 − 3A3e3

= (−19

2
+ b2 + 6κ)Ae3 +

[
baφAe3 + aφTφAe3

]
+ 3HφAφAe3 − 3φA2φAe3,
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which implies

a2a33 = −aba34(104)

by taking the inner product of (103) with e3.
Similarly, choosing X = e4 in (102) and applying the same method, we get

(105)

1√
3

[1− a2

2
e1 +

1− 3a

2
be2

]
−
[
aTAe4 + bφTAe4

]
+ 3HA2e4 − 3A3e4

= (−19

2
+ b2 + 6κ)Ae4 + [abφAe4 + aφTφAe4]

+ 3HφAφAe4 − 3φA2φAe4.

Moreover, the inner product of the above equation with e4 gives

b2a44 = −aba34.(106)

Letting X = e2 in (102) and taking the inner product with e2 and e1, respec-
tively, yields

(1 + a)2a22 = b(a− 1)a12,(107)

−(1− a)2a12 = b(a− 1)a22.(108)

Letting X = e1 in (102) and taking the inner product with e1 yields

(1− a)2a11 = b(1− a)a12.(109)

Since b 6= 0, according to (72), we can get

a12 =
1 + a

b
a22.

Hence substituting this into (107), we derive a22 = a12 = 0. By (109), we
further obtain a11 = 0. Taking the inner product of (103) with e4, we get

−2ba34 = (b+ a)a33.

Substituting this into (104) we derive

a(a− b)a33 = 0,

thus, if a 6= b, it is clear that a33 = 0. Further, by (104) and (106), we have
a34 = 0 and a44 = 0 (a 6= b). Hence we get H = α.

If a = b, we have a33 = −a34 = a44 from (104) and (106). Taking the inner
product of (100) with e2, we get

5

2
− 2κ =

∑
i

a2i1 +
∑
i

a2i2.

Taking the inner product of (101) with e4, we get

5

2
− 2κ =

∑
i

a23i +
∑
i

a24i −H(a33 + a44).
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Comparing the above two formulas and substituting a11 = a12 = a22 = 0 into
the resulting relation, we thus have

Ha33 = 2a233.

Let us suppose a33 6= 0. Thus H = 2a33 and α = 0 since a33 = a44.
Taking the inner product of (101) with e2, we find

Ha13 +Ha24 =
∑
i

a3iai1 +
∑
i

a4iai2.

Letting (81) add and subtract from the above formula respectively, we have
a13 = −a23 and a14 = −a24.

Again, taking the inner product of (100) with e3, we derive a23 = a14, then
a13 = a24. Taking advantage of the above relations and considering (42), we
immediately get a contradiction.

In conclusion, if b 6= 0 in an open set of M , the mean curvature H = α is
constant.

Case (b): If b ≡ 0, then µ] = 0, a = ±1. So Eqs. (70)-(73) become{
(1 + a)a12 = 0, a13 = 0,
(1 + a)a22 = 0, a23 = 1

2
√
3
.

Similar to the proof of Case (a), we can get a33 = 0 from (104). Taking
the inner product of (105) with e3, we get aba44 = −a2a34, further we derive
a34 = 0. Next we divide it into two cases.

Case (b)-(i). If a = 1, then a12 = a22 = 0. So Eq. (81) becomes

(110) a24(2α− a44) = 0

and Eq. (41) becomes

(111) − αa11 = 0.

Simultaneously, from (42) and (45) we can derive α(− 5
2
√
3

+ a14) + 2√
3
a11 = 0

and (a14 +
√
3
2 )α = 0. If α 6= 0, then from (42) and (45) we obtain a14 = 5

2
√
3

or −
√
3
2 , respectively, which is a contradiction. Thus α = 0 and a11 = 0 from

(42). Thus we derive H = a44.
If a24 6= 0, by virtue of (110), we know a44 = 2α = 0. That means H = 0.

If a24 = 0, similar to Case (b) of Lemma 3.4, we can also get a contradiction.
Case (b)-(ii). If a = −1, then we can derive a11 = 0 by (109) and a12 = 0

by (108). In this case Eq. (81) becomes

(112) a24(2α− a22 − a44) = 0

and Eq. (41) becomes

(113) − αa22 = 0.
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Therefore, if α 6= 0, we obtain a14 = 5
2
√
3

or −
√
3
2 from (42) and (45), which

is a contradiction. That means that α = 0 and H = a22 + a44. In addition, we
can get a14 = − 1

2
√
3

from (46).

If a24 6= 0 in an open subset, H = a22 + a44 = 2α = 0 by (112). If a24 = 0,
taking advantage of Lemma 4.2, putting X = Y = e1 in (94), we conclude

2

3
b
[
ba11 − aa12

]
− 2

3
a11 = −g(G(e1, HAe1 −A2e1)>, U)− 2

3
aa11,

then

(114) Ha14 =
∑
i

a1iai4 = a14a44.

Since a14 6= 0, we derive H = a44 and a22 = 0. Moreover, by a direct calcula-
tion, taking the inner product of (101) with e1 and utilizing (114), we obtain
H = a44 = 0.

In conclusion, if b ≡ 0, the mean curvature H = 0. It completes the proof
of Lemma 4.4 �

Combining Lemma 4.3 and Lemma 4.4, we complete the proof of Theorem
1.3.

5. Ricci soliton on Hopf hypersurface in NK S3 × S3

Recall that a Ricci soliton on Riemannian manifoldM is the metric g satisfies
the following equation

(115)
1

2
LV g(X,Y ) +Ric(X,Y ) = ρg(X,Y ), ∀X,Y ∈ TM,

where ρ is constant and V is called the potential vector field. If V is Killing,
i.e., LV g = 0, the Ricci soliton becomes an Einstein metric. We notice that for
a Ricci soliton, Cho proved the following result.

Lemma 5.1 ([8, Lemma 3.1]). For a Ricci soliton (g, V ) on a Riemannian
manifold, the following equation holds:

1

2
‖LV g‖2 = dr(V ) + 2div(ρV − SV ),

where r denotes the scalar curvature of g.

In this section we consider a Ricci soliton on a Hopf hypersurface of NK
S3 × S3 with potential Reeb vector field U . Then by virtue of (13), the Ricci
soliton formula (115) becomes

1

2
g((φA−Aφ)X,Y ) +Ric(X,Y ) = ρg(X,Y ).

From this, we have

(116)
1

2
(φA−Aφ)X + SX = ρX, ∀X ∈ TM.



1592 X. M. CHEN AND Y. F. YANG

Let e1 be an arbitrary local unit tangent vector field of M with g(e1, U) = 0.
Put

e2 = Je1, e3 =
√

3G(e1, ξ), e4 = Je3, e5 = U.

We can check easily that {ei}5i=1 is a local orthonormal frame of M from (3)-(6)
and get

trace(φA−Aφ) =
∑
i

g((φA−Aφ)ei, ei) = 0.

Thus it follow from (116) that

r = trace(S) = 5ρ = constant.

Moreover, since M is Hopf, i.e., AU = αU , taking X = U in (116) we obtain
SU = ρU . Therefore, in view of Lemma 5.1 with the potential vector field V
being U , we get LUg = 0. That means that M is an Einstein Hopf hypersur-
face. But Theorem 1.1 shows that the NK S3 × S3 admits no Einstein Hopf
hypersurface. We thus complete the proof of Theorem 1.4.

Acknowledgements. This research was supported by Science Foundation of
China University of Petroleum-Beijing (Nos. 2462020XKJS02, 2462020YXZZ
004). The first author expresses thanks to China Scholarship Council for sup-
porting him to visit University of Turin and expresses his gratitude to Professor
Luigi Vezzoni and Department of Mathematics for their hospitality. The au-
thors also would like to thank the referee for the valuable comments on this
paper.

References
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