
Bull. Korean Math. Soc. 59 (2022), No. 6, pp. 1557–1565

https://doi.org/10.4134/BKMS.b210891

pISSN: 1015-8634 / eISSN: 2234-3016

GLIFT CODES OVER CHAIN RING AND

NON-CHAIN RING Re,s

Elif Segah Oztas

Abstract. In this paper, Glift codes, generalized lifted polynomials, ma-

trices are introduced. The advantage of Glift code is “distance preserving”
over the ring R. Then optimal codes can be obtained over the rings by

using Glift codes and lifted polynomials. Zero divisors are classified to

satisfy “distance preserving” for codes over non-chain rings. Moreover,
Glift codes apply on MDS codes and MDS codes are obtained over the

ring R and the non-chain ring Re,s.

1. Introduction

Lifted polynomials were firstly introduced in [7]. In [7], lifted polynomials
defined over F16 to generate reversible codes. And a version of the lifted poly-
nomial (4k-lifted polynomial) solves the DNA reversibility problem introduced
in [7], by using double DNA bases over F16. Moreover, these codes generated by
lifted polynomials can satisfy that having optimal bound. Then, computational
complexity to find optimal codes is shorted by using lifted polynomials. For
example, let C be a code over F16 and its parameter is [n, k, d]. Computational
steps or loops to get the generator matrix are approximately 15nk. However, by
using lifted polynomials, computational steps to obtain lifted polynomials are
approximately 15y where y is the number of non-zero coefficients of the poly-
nomial. Lifted polynomials were extended to F256 in [8]. These polynomials
and a kind of version of them help to obtain optimal code and solve the DNA
reversibility problem by using DNA 4-bases. In literature, lifted polynomials
are defined in limited structures that are limited by the degree of base polyno-
mials ([7, 8]). For example, let g(x) ∈ F4[x] and deg g(x) = t. The degree of
the lifted form of the polynomial is also t. Definition of the lifted polynomial
is different from some kind of lift operation named lifted code etc. in literature
[4, 5]. In [1–3] they use a p-adic structure or finite fields for lift operation that
are different from the method presented here.
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In this study, the degree of the general lifted form of the polynomial has
extended as t ≤ n where n is the length of code. Glift codes are introduced
that are generated by lifted polynomials and lifted matrices. Glift codes pre-
serve the hamming distance over the ring after lifting operation because of the
property of the ring R (chain-ring or that has one maximal ideal). Then some
properties of codes are preserved as satisfying the Griesmer bound, become
MDS code, distance, dimension, free rows of generator matrix, etc. When Glift
codes are applied in the codes over a non-chain ring, the problem “distance
preserving” has appeared. A form of lifted polynomials and classification of
zero-divisors of the non-chain ring Re,s are introduced to solve “distance pre-
serving”. Moreover, Glift codes also preserve the property of MDS codes over
non-chain rings.

In Section 2, we give some background. In Section 3, the definitions of
generalized lifted polynomials, lifted matrices and Glift codes are introduced.
In Section 4, the special case of lifted polynomials, matrices are defined and
the zero divisors are classified to solve the problem “distance preserving” of
Glift codes over Re,s.

2. Background

In this section basic definition are given.
The following map is used for converting from polynomials to codewords (or

word or vector) over a ring R.
For each word (c0, c1, . . . , cn−1) ∈ Rn, the polynomial g(x) = c0+c1x+ · · ·+

cn−1x
n−1 is associated and ci ∈ R.

Φ : R[x]/(xn − 1)→ Rn

g(x) = c0 + c1x+ · · ·+ cn−1x
n−1 7→ g = (c0, c1, . . . , cn−1).

Let g(x) ∈ R[x]/(xn − 1) and deg g(x) = t. Spanning set for g(x) is

Sg = {g(x), xg(x), . . . , xn−t−1g(x)}

over R. 〈Sg〉 is a set that generated by Sg.

〈Sg〉 = {r0g(x) + r1xg(x) + · · ·+ rn−t−1x
n−t−1g(x)},

where ri ∈ R, 0 ≤ i ≤ n− t− 1.
The Hamming distance d(c′, c′′) = |{0 ≤ i ≤ n−1 : c′i 6= c′′i }| for c′, c′′ ∈ Rn.

Linear code over finite field F is a subvector space. In a ring R, a subset
C ⊂ Rn is a code with length of n. C is a linear code length of n over R if C
is an R-submodule over Rn. If the rank of code C is equal to free rank, it is
named as free R-submodule or free linear code over R.
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3. Generalization of lifted polynomials, lifted matrices and glift
codes

Let R be a ring (chain-ring or the ring that has one maximal ideal) that is
generated by using finite field F . Then characteristics are equal as char(R) =
char(F ). Let R be an extension of a ring R. Then char(R) = char(R).

Definition 1 (General lifted form of polynomials). Let g(x) = a0 +a1x+ · · ·+
atx

t ∈ R[x] be a base polynomial for lifted forms, deg g(x) = t and designed
length be n where t ≤ n. General lifted form of g(x) (or lifted polynomial of
g(x)) over R for length n is

gλ(x) =

n−1∑
i=0

{
bix

i, bi ∈ UR, ai ∈ UR,
bix

i, bi ∈ ZR, ai ∈ ZR,

where UR is a set of units in R, ZR is a set of zero and zero divisors in R and
gλ(x) = b0 + b1x+ · · ·+ bn−1x

n−1.

Definition 2. Let g(x) be a polynomial over a ring. Weight of unit term is
defined as Wu(g(x)) = number of coefficients that are unit. Weight of zero and
zero divisor term is defined as Wz(g(x)) = number of coefficients that are zero
or zero divisor. And Wu(g(x)) +Wz(g(x)) = deg g(x) + 1.

Example 3.1. Let g(x) = 1 + 3x+ 4x3 + 2x5 ∈ Z8[x]. Then, g(x) = 1 + 3x+
0x2 + 4x3 + 0x4 + 2x5. Wu(g(x)) = 2 and Wz(g(x)) = 4.

Number of lifted polynomials from R to R for one base polynomial g(x) is
Nλ = |UR|Wu(g(x)) · |ZR|Wz(g(x))+n−deg g(x)−1.

Example 3.2. Let g(x) = (1 + u) + x3 be a base polynomial for lifting from
R1 = F2[u]/〈u2〉 to R1 = F4[u, v]/〈u2, v2〉 and let 6 be designed length. Some
of lifted polynomials over R1 are as follows:

• gλ1 (x) = 1 + v + (1 + u)x3 + ux4

• gλ2 (x) = 1 + v + (1 + u)x3 + ux4 + uvx5

• gλ3 (x) = 1 + uvx+ (1 + u)(1 + v)x3 + +vx5

• gλ4 (x) = 1 + ux+ vx2 + x3 + uvx4 + vx5

Definition 3. Let gλ(x) be a lifted polynomial of g(x) fromR to R, deg g(x) =
t and length is n. Lifted spanning set of gλ(x) is

Sgλ = {gλ(x), xgλ(x), . . . , xn−t−1gλ(x)}.

A lot of lifted polynomials can be generated by using a base polynomial
according to Definition 1.

Then, the lifted spanning set can be extended as following definition.

Definition 4. Let Lg = {gλj (x) : 0 < j ≤ Nλ} be a family of lifted polynomials
of g(x) from R to R, deg g(x) = t and length is n. General lifted spanning set
is

GSgλ = {gh0
, xgh1

, x2gh2
, . . . , xn−t−1ghn−t−1

},



1560 E. S. OZTAS

where ghi ∈ Lg (hi ∈ {1, . . . , Nλ}).

Example 3.3. Let g(x) = 1 + u + x3 be a base polynomial for lifting from
R1 = F2[u]/〈u2〉 to R1 = F4[u, v]/〈u2, v2〉 and let 6 be designed length. Let
choose some of lifted polynomials over R1 as follows:

• gλ0 (x) = 1 + v + (1 + u)x3 + ux4

• gλ1 (x) = 1 + v + (1 + u)x3 + ux4 + uvx5

• gλ2 (x) = 1 + uvx+ (1 + u)(1 + v)x3 + +vx5

General lifted spanning set is

GSgλ = {g0, xg1, x2g2}.

Definition 5. Let G be a generator matrix of code C over R. Let components
of G be shown as (aij). Lifted generator matrix is Gλ = (bij)

(bij) =

{
bij ∈ UR, aij ∈ UR,
bij ∈ ZR, aij ∈ ZR,

over R.

Example 3.4. Let G =
[
1 0 u
0 1 u+1

]
be a generator matrix for lifting from R1 =

F2[u]/〈u2〉 to R1 = F4[x]/〈u2, v2〉. A lifted generator matrix over R1 is Gλ =[
v+1 u uv

u(v+1) (u+1)(v+1) 1

]
.

Definition 6. Let C be a code generated by Sgλ , GSgλ or Gλ over R. C =

〈Sgλ〉 (C = 〈GSλg 〉 or C = 〈Gλ〉) is called as Glift code.

Theorem 3.5. Let C be an [n, k, d] code over F and generated by generator
matrix G. Then C ′ = 〈Gλ〉 is an [n, k, d]R Glift code over R and C ′ is also a
linear free code over R.

Proof. If G is linearly independent, then the set Gλ is also linearly independent
and generates a free code according to Definition 5. �

Theorem 3.6. Let g(x) be a base polynomial for the lifted polynomials from
a finite field F to R and char(R) = char(F ). Let elements of Sg be linear
independent and |Sg| = k. Then C ′ = 〈Sgλ〉 and C ′′ = 〈GSgλ〉 are [n, k, d]R
Glift codes over R if C = 〈Sg〉 is an [n, k, d] linear code over F . Moreover, C ′

and C ′′ are free linear codes over R.

Proof. Note that d is created by coefficient of g(x) and all coefficients are
elements of F when C = 〈Sg〉 is an [n, k, d] linear code over F . Let gλ(x) = b0+
b1x+ · · ·+ bn−1x

n−1 be a lifted polynomial over R. According to Definition 1,
some coefficients of gλ(x) are zero divisors. An element that exists in maximal
ideal, can annihilate all zero divisors over R. The units of R are not affected
by these multiplication operators and do not become a zero. And elements of
Sg are linearly independent then the set Sgλ is also linearly independent and
generates a free linear code according to Definition 1. As a result, hamming
distance is preserved over R by using Glift code and lifted polynomials. �
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Theorem 3.5 and Theorem 3.6 satisfy the preserving the distance by using
Glift codes. Glift code is also suitable for lifting all linear code, the cyclic
codes and MDS codes because the structure of Glift code and these codes have
determined dimensions. Become MDS code is preserved over the ring because
Glift codes preserve the dimension and distance. Protecting “the become cyclic
code” is still an open problem.

Corollary 3.7. Let g(x) be a base polynomial for the lifted polynomials from
a finite field F to R, char(R) = char(F ) and g(x) | (xn − 1) over F . Then
C ′ = 〈Sgλ〉 and C ′′ = 〈GSgλ〉 are [n, k, d]R Glift codes over R and C = 〈g(x)〉
is an [n, k, d] cyclic code over F . Moreover, C ′ and C ′′ are free linear codes
over R.

Example 3.8. Let g(x) = 1 + x + x3 | x7 − 1 be a polynomial over F2 and
Sg = {g(x), xg(x), x2g(x), x3g(x)}. Then C = 〈S〉 is a [7, 4, 3]F2

cyclic code
over F2. Let lifted polynomial of g(x) be gλ = 1 + (1 + u)x + ux2 + x3 + ux5

and Sgλ = {gλ(x), xgλ(x), x2gλ(x), x3gλ(x)}. Then C = 〈Sgλ〉 is a [7, 4, 3]R1

Glift code and it is also a free linear code over R1 = F2[u]/〈u2〉. Moreover, C
satisfies the Griesmer bound over rings [9].

Corollary 3.9. Let C be an [n, k, d] MDS code over F and generated by gen-
erator matrix G. Then C ′ is an [n, k, d]R Glift code over R and C ′ = 〈Gλ〉.
Moreover, C ′ is also an MDS code over R because it is a free linear code.

4. Glift codes over non-chain ring Re,s

In [6], the non-cain ring Rk,s = F42k [u1, . . . , us]/〈u21 − u1, . . . , u2s − us〉 are
introduced, decomposed and the elements are generated by using idempotents.
Moreover a method to find the idempotents is introduced in [6]. In this section,
the ringRe,s = F2e [u1, . . . , us]/〈u21−u1, . . . , u2s−us〉 is considered. The method
for finding idempotents in Re,s is the same as that for finding them in Rk,s in
[6] because the rings have same characteristic.

The Glift codes are generated by lifted polynomials or lifted matrices as seen
in Section 3. In Glift codes that are lifted from a finite field to a chain ring,
determining the distance is satisfied by one maximal ideal of chain ring. In a
non-chain ring, this is not possible to determine the distance over the non-chain
ring by using Glift codes with a lifted polynomial. In this section, classifying
of zero divisors, z-lifted polynomials, and z-lifted matrices are introduced to
solve the problem of protecting the distance over Re,s.

Theorem 4.1. Let I = {Ii} be a set of 2s elements of Re,s, where Ii is
idempotent and 0 ≤ i ≤ 2s − 1. If

(i) I2i = Ii,
(ii) IiIj = 0 for i 6= j and 0 ≤ i, j ≤ 2s − 1,

(iii)
∑2s−1
i=0 Ii = 1,

then Re,s = I0F2e ⊕ I1F2e ⊕ · · · ⊕ I2s−1F2e .
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Theorem 4.2. Let E = {0, 1, . . . , 2s−1}. In Re,s, zero divisors of class T ⊂ E
is

Z(T ) = {
∑
i∈D

aiIi | ai ∈ F2e , D = E \ T, T 6= ∅} \ {0},

where Ii is an idempotent element of Re,s.

Proof. All elements of sets of Z(T ) can be annihilated as the following set

AnnRe,s(Z(T )) =
⋃

T ′∈P(T )\{∅}

Z(T ′),

where a T 6= ∅ and P shows the power set. Then the defined set Z(T ) includes
the zero divisors. �

Example 4.3. The idempotent set I for the ring R4,3 = F16[u1, u2, u3]/〈u21 −
u1, u

2
2 − u2, u23 − u3〉 is

I0 = u1u2u3,

I1 = (u1 + 1)u2u3,

I2 = u1(u2 + 1)u3,

I3 = u1u2(u3 + 1),

I4 = (u1 + 1)(u2 + 1)u3,

I5 = (u1 + 1)u2(u3 + 1),

I6 = u1(u2 + 1)(u3 + 1),

I7 = (u1 + 1)(u2 + 1)(u3 + 1),

given in Example 2 in [6]. Elements of R4,3 are defined as a0I0 + a1I1 + a2I2 +
a3I3 + a4I4 + a5I5 + a6I6 + a7I7 where ai ∈ F16 and 0 ≤ i ≤ 7. Some sets of
zero divisors are listed as follows:

class T Z(T )

T = {0}
Z({0}) = Z(T )

= {a1I1 + a2I2 + a3I3 + a4I4 + a5I5
+a6I6 + a7I7 | ai ∈ F16 and 0 ≤ i ≤ 7}

T = {0, 1} Z({0, 1}) = {a2I2 + a3I3 + a4I4 + a5I5
+a6I6 + a7I7 | ai ∈ F16 and 0 ≤ i ≤ 7}

T = {2} Z({2}) = {a0I0 + a1I1 + a3I3 + a4I4 + a5I5
+a6I6 + a7I7 | ai ∈ F16 and 0 ≤ i ≤ 7}

T = {0, 1, 3, 5, 7} Z(T ) = {a2I2 + a4I4 + a6I6 | ai ∈ F16 and 0 ≤ i ≤ 7}

Number of zero divisors of set Z(T ) = {a2I2 + a4I4 + a6I6} is 163− 1 where
T = {0, 1, 3, 5, 7}.

Definition 7. Let g(x) = a0 + a1x+ · · ·+ atx
t ∈ F2e [x] be a base polynomial

for lifted forms, deg g(x) = t and designed length be n where t ≤ n. A z-lifted
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form (z-lifted polynomial) of g(x) over Re,s for length n is

gZ(T )λ(x) =

n−1∑
i=0

{
bix

i, bi ∈ URe,s , ai 6= 0,

bix
i, bi ∈ Z(T ) or bi = 0, ai = 0,

where URe,s is a set of units in Re,s, and Z(T ) is a set of zero divisors of class

T in Re,s and gZ(T )λ(x) = b0 + b1x+ · · ·+ bn−1x
n−1.

Definition 8. Let G be a generator matrix of code C over F2e . Let components
of G be shown as (aij). A z-lifted generator matrix is GZ(T )λ = (bij):

(bij) =

{
bij ∈ URe,s , aij 6= 0,

bij ∈ Z(Ti) or bi = 0, aij = 0,

where URe,s is a set of units in Re,s, and Z(Ti) is a set of zero divisors of class
T in Re,s.

According to Definition 8, all zero in same row have to lift zero divisors that
are in same class of zero divisor Z(Ti).

Theorem 4.4. Let α = α0I0 +α1I1 + · · ·+α2s−1I2s−1 ∈ Re,s where αi ∈ F2e

and Ii (i ∈ {1, . . . , 2s − 1}) is an idempotent, and let gZ(T )λ be a z-lifted
polynomial of g(x) over Re,s where g(x) ∈ F2e [x]. Then C ′ = 〈GSgZ(T )λ〉 is an
[n, k, d]Re,s Glift code over Re,s if C = 〈Sg〉 is an [n, k, d] linear code over F2e .
Moreover, C ′ is a free linear code over R.

Proof. There is no one element of a maximal ideal that makes zero by multi-
plying all elements. Then all zero divisors are classified and the definition of
special lifted polynomial as a z-lifted polynomial is introduced in Definition 7.
d is preserved over the ring Re,s, because, according to Definition 7. Then all
annihilators for zero divisor among coefficients are separated and classified by
using Theorem 4.2. �

We have:

Corollary 4.5. C ′ = 〈GSgZ(T )λ〉 is an [n, k, d]Re,s Glift code and MDS code
over Re,s if C = 〈Sg〉 is an MDS [n, k, d] linear code over F2e .

Theorem 4.6. Let α = α0I0 +α1I1 + · · ·+α2s−1I2s−1 ∈ Re,s where αi ∈ F2e

and Ii (i ∈ {1, . . . , 2s − 1}) is an idempotent, and let GZ(T )λ be a z-lifted
generator matrix of G over Re,s where G is a generator matrix of a code C
over F2e . Then C ′ = 〈GZ(T )λ〉 (zeros of each row of GZ(T )λ can be included
in different Z(T ) class) is an [n, k, d]Re,s Glift code over Re,s if C = 〈G〉 is an
[n, k, d] linear code over F2e . Moreover, C ′ is a linear free code over Re,s.

Proof of Theorem 4.6 is similar as that of Theorem 4.4.
We have:

Corollary 4.7. C ′ = 〈GZ(T )λ〉 is an [n, k, d]Re,s Glift code and MDS code over
R if C = 〈Gλ〉 is an MDS [n, k, d] linear code over F2e .
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Example 4.8. Let G be a generator matrix of code C over F8:

G =

 1 0 0 1 w3 w4 w6 w4 w3

0 1 0 w3 w2 w w w2 w3

0 0 1 w3 w4 w6 w4 w3 1


Then C is a [9, 3, 7]F8 MDS code.

The idempotent set I for the ring R3,2 = F8[u1, u2]/〈u21 − u1, u22 − u2〉 is

I0 = u1u2,

I1 = (u1 + 1)u2,

I2 = u1(u2 + 1),

I3 = (u1 + 1)(u2 + 1).

Let Z(T1) = {a1I1 +a3I3 | a1, a3 ∈ F8} where T1 = {0, 2} and Z(T2) = {a0I0 +
a1I1 | a0, a1 ∈ F8} where T2 = {2, 3}. Let us choose

GZ(T )λ =

1 wI1 w4I1 + w2I3 1 w3 w4 w6 w4 w3

0 I0 + I1 + I2 + I3 I1 w3 w2 w w w2 w3

0 I0 + w5I1 1 w3 w4 A w4 w3 1


(where A = w6I0 +w4I1 + I2 + I3) where zero components of GZ(T )λ[1] that is
the first row of GZ(T )λ are chosen from Z(T1), other zero component are chosen
from Z(T2). These choosing operations are applied according to Definition 8.
An important point that is all zeros of a row should be chosen from the same
Z(T ). Then, C ′ = 〈GZ(T )λ〉 is a [9, 3, 7]R3,2 Glift code and MDS code over
non-chain ring R3,2.

5. Conclusion

In this study, generalized lifted polynomials, lifted matrices are introduced
over the rings. Also, Glift codes are introduced over R. Glift codes use lifted
polynomials and lifted matrices to generate free linear codes over R. Hamming
distance is preserved by Glift codes over R. Then, it helps to generate opti-
mal codes that satisfy Griesmer bound over the ring R. However, Glift codes
generated by lifted polynomials or lifted matrices can’t preserve the distance
over non-chain ring Re,s. Zero divisors of Re,s are classified and z-lifted poly-
nomials, z-lifted matrices are introduced to use in Glift codes. Then, “distance
preserving” is solved by Glift codes generated by z-lifted polynomials, z-lifted
matrices.
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