DOI QR코드

DOI QR Code

A Study on the Growth Temperature of Atomic Layer Deposition for Photocurrent of ZnO-Based Transparent Flexible Ultraviolet Photodetector

원자층 증착법의 성장온도에 따른 산화아연 기반 투명 유연 자외선 검출기의 광전류에 대한 연구

  • Choi, Jongyun (Department of Nano & Semiconductor Engineering, Korean Polytechnic University) ;
  • Lee, Gun-Woo (Department of IT Semiconductor Convergence Engineering, Korean Polytechnic University) ;
  • Na, Young-Chae (Department of IT Semiconductor Convergence Engineering, Korean Polytechnic University) ;
  • Kim, Jeong-Hyeon (Department of Nano & Semiconductor Engineering, Korean Polytechnic University) ;
  • Lee, Jae-Eun (Department of Nano & Semiconductor Engineering, Korean Polytechnic University) ;
  • Choi, Ji-Hyeok (Department of Nano & Semiconductor Engineering, Korean Polytechnic University) ;
  • Lee, Sung-Nam (Department of Nano & Semiconductor Engineering, Korean Polytechnic University)
  • 최종윤 (한국산업기술대학교 나노반도체공학과) ;
  • 이건우 (한국산업기술대학교 IT반도체융합공학과) ;
  • 나영채 (한국산업기술대학교 IT반도체융합공학과) ;
  • 김정현 (한국산업기술대학교 나노반도체공학과) ;
  • 이재은 (한국산업기술대학교 나노반도체공학과) ;
  • 최지혁 (한국산업기술대학교 나노반도체공학과) ;
  • 이성남 (한국산업기술대학교 나노반도체공학과)
  • Received : 2021.08.18
  • Accepted : 2021.09.15
  • Published : 2022.01.01

Abstract

ZnO-based transparent conductive films have been widely studied to achieve high performance optoelectronic devices such as next generation flexible and transparent display systems. In order to achieve a transparent flexible ZnO-based device, a low temperature growth technique using a flexible polymer substrate is required. In this work, high quality flexible ZnO films were grown on colorless polyimide substrate using atomic layer deposition (ALD). Transparent ZnO films grown from 80 to 200℃ were fabricated with a metal-semiconductor-metal structure photodetectors (PDs). As the growth temperature of ZnO film increases, the photocurrent of UV PDs increases, while the sensitivity of that decreases. In addition, it is found that the response times of the PDs become shorter as the growth temperature increases. Based on these results, we suggest that high-quality ZnO film can be grown below 200℃ in an atomic layer deposition system, and can be applied to transparent and flexible UV PDs with very fast response time and high photocurrent.

Keywords

Acknowledgement

본 연구는 교육과학기술부 한국연구재단에서 주관하는 중견연구 과제(NRF-2020R1A2C1009630)의 지원으로 수행된 연구 결과입니다.

References

  1. J. H. Mun, H. J. Lee, S. H. Lee, T. S. Yoon, S. H. Han, and D. H. Kim, ACS Appl. Nano Mater., 3, 10922 (2020). [DOI: https://doi.org/10.1021/acsanm.0c02181]
  2. S. J. Young, Y. H. Liu, M.D.N.I. Shiblee, K. Ahmed, L. T. Lai, L. Nagahara, T. Thundat, T. Yoshida, S. Arya, H. Furukawa, and A. Khosla, ACS Appl. Electron. Mater., 2, 3522 (2020). [DOI: https://doi.org/10.1021/acsaelm.0c00556]
  3. S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, Adv. Funct. Mater., 21, 4464 (2011). [DOI: https://doi.org/10.1002/adfm.201101319]
  4. K. Liu, M. Sakurai, and M. Aono, Sensors, 10, 8604 (2010). [DOI: https://doi.org/10.3390/s100908604]
  5. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth, 225, 110 (2001). [DOI: https://doi.org/10.1016/s0022-0248(01)00830-2]
  6. D. Lee, M. L. Seol, G. Motilal, B. Kim, D. I. Moon, J. W. Han, and M. Meyyappan, ACS Sens., 5, 1028 (2020). [DOI: https://doi.org/10.1021/acssensors.9b02544]
  7. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https://doi.org/10.1038/nature03090]
  8. Y. Duan, M. Cong, D. Jiang, W. Zhang, X. Yang, C. Shan, X. Zhou, M. Li, and Q. Li, Adv. Mater. Interfaces, 6, 1900470 (2019). [DOI: https://doi.org/10.1002/admi.201900470]
  9. J. Sun, D. A. Mourey, D. Zhao, and T. N. Jackson, J. Electron. Mater., 37, 755 (2007). [DOI: https://doi.org/10.1007/s11664-007-0362-7]
  10. H. K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. H. Jeong, and K. I. Kim, Appl. Phys. Lett., 86, 183503 (2005). [DOI: https://doi.org/10.1063/1.1923182]
  11. S. M. George, Chem. Rev., 110, 111 (2010). [DOI: https://doi.org/10.1021/cr900056b]
  12. S. H. Lee, S. B. Kim, Y. J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S. K. Kim, and S. W. Lee, ACS Photonics, 4, 2937 (2017). [DOI: https://doi.org/10.1021/acsphotonics.7b01054]
  13. G. B. Lee, S. H. Song, M. W. Lee, Y. J. Kim, B. H. Choi, Appl. Surf. Sci., 535, 147731 (2021). [DOI: https://doi.org/10.1016/j.apsusc.2020.147731]
  14. A. J. Karttunen, L. Sarnes, R. Townsend, J. Mikkonen, and M. Karppinen, Adv. Electron. Mater., 3, 1600459 (2017). [DOI: https://doi.org/10.1002/aelm.201600459]
  15. H. Li, D. Han, Z. Yi, J. Dong, S. Zhang, X. Zhang, and Y. Wang, IEEE Trans. Electron Devices, 66, 2965 (2019). [DOI: https://doi.org/10.1109/TED.2019.2915625]
  16. L. Petti, N. Munzenrieder, C. Vogt, H. Faber, L. Buthe, G. Cantarella, F. Bottacchi, T. D. Anthopoulos, and G. Troster, Appl. Phys. Rev., 3, 021303 (2016). [DOI: https://doi.org/10.1063/1.4953034]
  17. X. T. Hao, J. Ma, D. H. Zhang, Y. G. Yang, H. L. Ma, C. F. Cheng, and X. D. Liu, Mater. Sci. Eng. B, 90, 50 (2002). [DOI: https://doi.org/10.1016/S0921-5107(01)00828-5]
  18. Manju, M. Jain, S. Madas, P. Vashishtha, P. Rajput, G. Gupta, M. U. Kahaly, K. Ozdogan, A. Vij, and A. Thakur, Sci. Rep., 10, 17364 (2020). [DOI: https://doi.org/10.1038/s41598-020-74436-8]
  19. A. Rezk and I. Saadat, IEEE Electron Device Lett., 40, 240 (2019). [DOI: https://doi.org/10.1109/LED.2019.2890831]
  20. D. K. Kwon, S. J. Lee, and J. M. Myoung, Nanoscale, 8, 16677 (2016). [DOI: https://doi.org/10.1039/c6nr05256h]
  21. H. Li, J. Huang, Q. Zheng, Y. Zheng, Vacuum, 172, 109089 (2020). [DOI: https://doi.org/10.1016/j.vacuum.2019.109089]