DOI QR코드

DOI QR Code

Rate Capability of LiFePO4 Cathodes and the Shape Engineering of Their Anisotropic Crystallites

  • Alexander, Bobyl (Division of Solid State Physics, Ioffe Institute) ;
  • Sang-Сheol, Nam (Resarch Institute of Industrial Science and Technology RIST, POSCO Global R&D center) ;
  • Jung-Hoon, Song (Resarch Institute of Industrial Science and Technology RIST, POSCO Global R&D center) ;
  • Alexander, Ivanishchev (Resarch Institute of Industrial Science and Technology RIST, POSCO Global R&D center) ;
  • Arseni, Ushakov (Institute of Chemistry, Saratov State University)
  • 투고 : 2022.03.29
  • 심사 : 2022.06.13
  • 발행 : 2022.11.30

초록

For cuboid and ellipsoid crystallites of LiFePO4 powders, by X-ray diffraction (XRD) and microscopic (TEM) studies, it is possible to determine the anisotropic parameters of the crystallite size distribution functions. These parameters were used to describe the cathode rate capability within the model of averaging the diffusion coefficient D over the length of the crystallite columns along the [010] direction. A LiFePO4 powder was chosen for testing the developed model, consisting of big cuboid and small ellipsoid crystallites (close to them). When analyzing the parts of big and small rate capabilities, the fitting values D = 2.1 and 0.3 nm2/s were obtained for cuboids and ellipsoids, respectively. When analyzing the results of cyclic voltammetry using the Randles-Sevcik equation and the total area of projections of electrode crystallites on their (010) plane, slightly different values were obtained, D = 0.9 ± 0.15 and 0.5 ± 0.15 nm2/s, respectively. We believe that these inconsistencies can be considered quite acceptable, since both methods of determining D have obvious sources of error. However, the developed method has a clearly lower systematic error due to the ability to actually take into account the shape and statistics of crystallites, and it is also useful for improving the accuracy of the Randles-Sevcik equation. It has also been demonstrated that the shape engineering of crystallites, among other tasks, can increase the cathode capacity by 15% by increasing their size correlation coefficients.

키워드

과제정보

XRD studies were performed in Resource Center of St. Petersburg State University. SEM studies were partly performed in Collective Use Center "Materials Science and Diagnostics in Advanced Technologies", TEM in the Omsk Center for Collective Use. Half of the work done at the Ioffe Institute. AV Ushakov and AV Ivanishchev participate in RSF 21-73-10091 and RFBR 20-03-00381 grants, respectively.

참고문헌

  1. W. Peukert, Elektrotechnische Zeitschrift, 1897, 20, 20-21. 
  2. N. F. Compagnone, J. Power Sources, 1991, 35(2), 97-111.  https://doi.org/10.1016/0378-7753(91)80027-U
  3. N. E. Galushkin, N. N. Yazvinskaya, and D. N. Galushkin, J. Electrochem. Soc., 2020, 167, 013535. 
  4. D. H. Jeon, J.-H. Song, J.-P. Hong, and S. H. Lee, J. Ind. Eng. Chem., 2019, 76, 524-531.  https://doi.org/10.1016/j.jiec.2019.04.020
  5. J. Kim, S. Park, S. Hwang, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2022, 13(1), 19-31.  https://doi.org/10.33961/jecst.2021.00836
  6. A. V. Ivanishchev, I. A. Ivanishcheva, S.-C. Nam, and J. Mun, Rus. J. Electrochem., 2021, 57(7), 706-720.  https://doi.org/10.1134/S1023193521070053
  7. F. Jiang and P. Peng, Sci. Rep., 2016, 6, 32639. 
  8. R. Tian, S. Park, P. King, G. Cunningham, J. Coelho, V. Nicolosi, and J. Coleman, Nat. Commun., 2019, 10, 1933. 
  9. C. Heubner, M. Schneider, and A. Michaelis, Adv. Energy Mater., 2020, 10(2), 1902523. 
  10. J.-S. Lee, K. Heo, H.-S. Kim, M.-Y. Kim, J. Kim, S.-W. Kang, and J. Lim, J. Alloys Compd., 2019, 781, 553-559.  https://doi.org/10.1016/j.jallcom.2018.12.025
  11. Z. Ahsan, B. Ding, Z. Cai, C. Wen, W. Yang, Y. Ma, S. Zhang, G. Song, and M. Javed, J. Electrochem. En. Conv. Stor., 2021, 18(1), 010801. 
  12. J. Choi, N. Voronina, Y. Sun, and S. Myung, Adv. Energy Mater., 2020, 10(42), 2002027. 
  13. I.-S. Seo, G.C. Hwang, J.-K. Kim, and Y. Kim, Electrochim. Acta, 2016, 193, 160-165.  https://doi.org/10.1016/j.electacta.2016.02.026
  14. X. Huang, Y. Yao, F. Liang, and Y. Dai, J. Alloys Compd., 2018, 743, 763-772.  https://doi.org/10.1016/j.jallcom.2018.02.048
  15. Z. Ma, G. Shao, Y. Fan, G. Wang, J. Song, and T. Liu, ACS Appl. Mater. Interfaces, 2014, 6(12), 9236-9244.  https://doi.org/10.1021/am501373h
  16. Y. Zhang, J. A. Alarco, J. Y. Nerkar, A. S. Best, G. A. Snook, and P. C. Talbot, J. Electrochem. Soc., 2019, 166(16), A4128-A4135.  https://doi.org/10.1149/2.0621916jes
  17. A. Bobyl and I. Kasatkin, RSC Adv., 2021, 11, 13799-13805.  https://doi.org/10.1039/D1RA02102H
  18. C. E. Kril and R. Birringer, Philos. Mag. A, 1998, 77(3), 621-640.  https://doi.org/10.1080/014186198254281
  19. R. J. Matyi, L. H. Schwartz, and J. B. Butt, Catal. Rev. Sci. Eng., 1987, 29(1), 41-99.  https://doi.org/10.1080/01614948708067547
  20. T. B. Zunic and J. Dohrup, Powder Diffr., 1999, 14(3), 203-207.  https://doi.org/10.1017/S0885715600010538
  21. T. Lahrs, Quality driven: Phostech's advanced LiFePO4 cathode, International power supply conference and exhibition, French Riviera, 2009, 1-27. 
  22. H. Al-Shammari and S. Farhad, Energies, 2022, 15(2), 410. 
  23. K. Heo, J. Im, J.-S. Lee, J. Jo, S. Kim, J. Kim, and J. Lim, J. Electrochem. Sci. Technol., 2020, 11(3), 282-290.  https://doi.org/10.33961/jecst.2019.00661
  24. L. Wen, X. Wang, X. Liu, J. Sun, L. An, X. Ren, Z. Li, G. Liang, S. Jiang, Ionics, 2019, 25, 5269-5276.  https://doi.org/10.1007/s11581-019-03086-2
  25. N. C. Popa, J. Appl. Cryst., 1998, 31, 176-180.  https://doi.org/10.1107/S0021889897009795
  26. N. C. Popa and G. A. Lungu, J. Appl. Cryst., 2013, 46, 391-395.  https://doi.org/10.1107/S0021889812051928
  27. L. Lutterotti, S. Matthies, and H. R. Wenk, Newslett. CPD, 1999, 21, 14-15. 
  28. P. Boullay, L. Lutterotti, D. Chateignera, and L. Sicard, Acta Cryst., 2014, A70, 448-456. 
  29. A. Nalbach-Leniewska, Series Statistics, 1979, 10(3), 381-387.  https://doi.org/10.1080/02331887908801494
  30. G. Tarmast, Multivariate log - Normal distribution, 53rd ISI World Statistics Congress, Seoul, 2001. https://2001.isiproceedings.org/ 
  31. F. Scholz (Ed.), Electroanalytical methods: Guide to experiments and applications, Springer, Berlin, 2010. 
  32. M. F. Triola, Elementary statistics technology update, 11th ed., Pearson Education, 2012. 
  33. V. F. Lvovich, Distributed impedance models, Impedance spectroscopy: Applications to electrochemical and dielectric phenomena, John Wiley & Sons, 2012. 
  34. K. Yang and M. Tang, J. Mater. Chem. A, 2020, 8(6), 3060-3070.  https://doi.org/10.1039/c9ta11697d
  35. J. Baek, K. Kim, and W. Shin, J. Electrochem. Sci. Technol., 2018, 9(2), 85-92.  https://doi.org/10.5229/JECST.2018.9.2.85
  36. H. W. Kim, P. Manikandan, Y. J. Lim, J. H. Kim, S.-C. Nam, and Y. Kim, J. Mater. Chem. A, 2016, 4(43), 17025-17032.  https://doi.org/10.1039/C6TA07268B
  37. I. N. Beckman, Higher mathematics: The mathematical apparatus of diffusion, Yurayt Publishing House, Moscow, 2017. 
  38. A. S. Hammood, Corrosion mechanism of cupronickel alloys, Lambert Academic Publishing, German, 2014. 
  39. H. A. Wiltsche and P. Berghofer (Eds.), Phenomenological approaches to physics, Springer, Cham, 2020. 
  40. M. Tran, N. Ertugrul, and T. Miller, World Appl. Sci. J., 2017, 35(8), 1561-1567. 
  41. M. Farag, M. Fleckenstein, and S. Habibi, J. Power Sources, 2017, 342, 351-362. 
  42. R. Malik, D. Burch, M. Bazant, and G. Ceder, Nano Lett., 2010, 10(10), 4123-4127.  https://doi.org/10.1021/nl1023595
  43. D. A. Cogswell and M. Z. Bazant, Electrochem. Commun., 2018, 95, 33-37.  https://doi.org/10.1016/j.elecom.2018.08.015
  44. A. V. Churikov, A. V. Ivanishchev, A. V. Ushakov, and V. O. Romanova, J. Solid State Electrochem., 2014, 18, 1425-1441.  https://doi.org/10.1007/s10008-013-2358-y
  45. T. Kim, W. Choi1, H.-C. Shin, J.-Y. Choi, J.M. Kim, M.-S. Park, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 14-25.  https://doi.org/10.33961/jecst.2019.00619
  46. J. Li, B. L. Armstrong, J. Kiggans, C. Daniel, and D. L. Wood, J. Electrochem. Soc., 2013, 160(2), A201. 
  47. S. Ju, H. Peng, G. Li, and K. Chen, Mater. Lett., 2012, 74, 22-25.  https://doi.org/10.1016/j.matlet.2012.01.058
  48. M. Chen, Q. Ma, C. Wang, X. Sun, L. Wang, and C. Zhang, J. Power Sources, 2014, 263, 268-275.  https://doi.org/10.1016/j.jpowsour.2014.04.042
  49. F. Wang, Z. Fang, and Y. Zhang, J. Electroanal. Chem., 2016, 775, 110-115.  https://doi.org/10.1016/j.jelechem.2016.05.041
  50. R. R. Kapaev, S. A. Novikova, T. L. Kulova, A. M. Skundin, and A. B. Yaroslavtsev, Nanotechnol. Russia, 2016, 11, 757-760. 
  51. J. Seher and M. Froba, ACS Omega, 2021, 6, 24062-24069. https://doi.org/10.1021/acsomega.1c03432