DOI QR코드

DOI QR Code

Pathogen-Imprinted Polymer Film Integrated probe/Ti3C2Tx MXenes Electrochemical Sensor for Highly Sensitive Determination of Listeria Monocytogenes

  • Xiaohua, Jiang (School of Materials & Enviromental Engineering, Shenzhen Polytechnic) ;
  • Zhiwen, Lv (School of Materials & Enviromental Engineering, Shenzhen Polytechnic) ;
  • Wenjie, Ding (School of Materials & Enviromental Engineering, Shenzhen Polytechnic) ;
  • Ying, Zhang (School of Materials & Enviromental Engineering, Shenzhen Polytechnic) ;
  • Feng, Lin (School of Materials & Enviromental Engineering, Shenzhen Polytechnic)
  • 투고 : 2022.04.08
  • 심사 : 2022.06.10
  • 발행 : 2022.11.30

초록

As one of the most hazardous and deadliest pathogens, Listeria monocytogenes (LM) posed various serious diseases to the human being, thus designing effective strategy for its detection is of great significance. In this work, by preparing Ti3C2Tx MXenes nanoribbon (Ti3C2TxR) as carrier and selecting thionine (Th) acted simultaneously as signal probe and functional monomer, a LM pathogen-imprinted polymers (PIP) integrated probe electrochemical sensor was design to monitor LM for the first time, that was carried out through the electropolymerization of Th on the Ti3C2TxR/GCE surface in the existence of LM. Upon eluting the templates from the LM imprinted cavities, the fabricated PIP/Ti3C2TxR/GCE sensor can rebound LM cells effectively. By recording the peak current of Th as the response signal, it can be weakened when LM cell was re-bound to the LM imprinted cavity on PIP/Ti3C2TxR/GCE, and the absolute values of peak current change increase with the increasement of LM concentrations. After optimizing three key parameters, a considerable low analytical limit (2 CFU mL-1) and wide linearity (10-108 CFU mL-1) for LM were achieved. In addition, the experiments demonstrated that the PIP/Ti3C2TxR sensor offers satisfactory selectivity, reproducibility and stability.

키워드

과제정보

Financial support from the Key project of Shenzhen Polytechnic (No.6020310004K) is gratefully acknowledged.

참고문헌

  1. N. F. D. Silva, M. M. P. S. Neves, J. M. C. S. Magalhaes, C. Freire, and C. Delerue-Matos, Trends Food Sci. Technol., 2020, 99, 621-633.
  2. J. Ding, J. Lei, X. Ma, J. Gong, and W. Qin, Anal. Chem., 2014, 86(19), 9412-9416. https://doi.org/10.1021/ac502335g
  3. X. Qi, Z. Wang, R. Lu, J. Liu, Y. Li, and Y. Chen, Food Chem., 2021, 338, 127837.
  4. S. Eissa and M. Zourob, Microchim. Acta, 2020, 187, 486.
  5. C. Cheng, Y. Peng, J. Bai, X. Zhang, Y. Liu, X. Fan, B. Ning, and Z. Gao, Sens. Actuators B Chem., 2014, 190, 900-906. https://doi.org/10.1016/j.snb.2013.09.041
  6. Q. Chen, J. Lin, C. Gan, Y. Wang, D. Wang, Y. Xiong, W. Lai, Y. Li, and M. Wang, Biosens. Bioelectron., 2015, 74, 504-511. https://doi.org/10.1016/j.bios.2015.06.007
  7. X. Jiang, W. Ding, Z. Lv, and C. Rao, Anal. Sci., 2021, 37(12), 1701-1706. https://doi.org/10.2116/analsci.21P113
  8. X. Niu, W. Zheng, C. Yin, W. Weng, G. Li, W. Sun, and Y. Men, J. Electroanal. Chem., 2017, 806, 116-122. https://doi.org/10.1016/j.jelechem.2017.10.049
  9. A. Liu, L. Shen, Z. Zeng, M. Sun, Y. Liu, S. Liu, C. Li, and X. Wang, Food Anal. Methods, 2018, 11, 215-223. https://doi.org/10.1007/s12161-017-0991-2
  10. N. F. D. Silva, M. M. P. S. Neves, J. M. C. S. Magalhaes, C. Freire, and C. Delerue-Matos, Talanta, 2020, 216, 120976.
  11. J. Riu and B. Giussani, TrAC - Trends Anal. Chem., 2020, 126, 115863.
  12. M. Sarabaegi and M. Roushani, Microchem. J., 2021, 168, 106388.
  13. M. Sarabaegi, M. Roushani, and H. Hosseini, Talanta, 2021, 223, 121700.
  14. M. Roushani and Z. Jalilian, Electroanalysis, 2018, 30(11), 2712-2718. https://doi.org/10.1002/elan.201800322
  15. M.T. Jafari, B. Rezaei, and H. Bahrami, Anal. Sci., 2018, 34(3), 297-303. https://doi.org/10.2116/analsci.34.297
  16. S. Chen, X. Chen, L. Zhang, J. Gao, and Q. Ma, ACS Appl. Mater. Interfaces, 2017, 9(6), 5430-5436. https://doi.org/10.1021/acsami.6b12455
  17. R. Wang, L. Wang, J. Yan, D. Luan, T. Sun, J. Wu, and X. Bian, Talanta, 2021, 226, 122135.
  18. K. Ghanbari and M. Roushani, Sens. Actuators B Chem., 2018, 258, 1066-1071. https://doi.org/10.1016/j.snb.2017.11.145
  19. Y. Cao, T. Feng, J. Xu, and C. Xue, Biosens. Bioelectron., 2019, 141, 111447.
  20. S. M. Mugo, W. Lu, and D. Dhanjai, Med. Devices Sens., 2020, 3(2), e10071.
  21. M. Roushani, M. Sarabaegi, and A. Rostamzad, J. Iran. Chem. Soc., 2020, 17, 2407-2413. https://doi.org/10.1007/s13738-020-01936-9
  22. S. Tokonami, Y. Nakadoi, M. Takahashi, M. Ikemizu, T. Kadoma, K. Saimatsu, L.Q. Dung, H. Shiigi, and T. Nagaoka, Anal. Chem., 2013, 85(10), 4925-4929. https://doi.org/10.1021/ac3034618
  23. M. Golabi, F. Kuralay, E. W. Jager, V. Beni, and A. P. Turner, Biosens. Bioelectron., 2017, 93, 87-93. https://doi.org/10.1016/j.bios.2016.09.088
  24. A. Sinha, Dhanjai, H. Zhao, Y. Huang, X. Lu, J. Chen, and R. Jain, TrAC - Trends Anal. Chem., 2018, 105, 424-435. https://doi.org/10.1016/j.trac.2018.05.021
  25. Y. Zhang, X. Jiang, J. Zhang, H. Zhang, and Y. Li, Biosens. Bioelectron., 2019, 130, 315-321. https://doi.org/10.1016/j.bios.2019.01.043
  26. X. Tu, F. Gao, X. Ma, J. Zou, Y. Yu, M. Li, F. Qu, X. Huang, and L. Lu, J. Hazard. Mater., 2020, 396, 122776.
  27. P. K. Kalambate, N. S. Gadhari, X. Li, Z. Rao, S. T. Navale, Y. Shen, V. R. Patil, and Y. Huang, TrAC - Trends Anal. Chem., 2019, 120, 115643.
  28. Y. Yi, Y. Ma, F. Ai, Y. Xia, H. Lin, and G. Zhu, Chem. Commun., 2021, 57(63), 7790-7793. https://doi.org/10.1039/D1CC02560K
  29. A. A. Pawar, A. Karthic, S. Lee, S. Pandit, and S. P. Jung, Environ. Eng. Res., 2022, 27(1), 200484.
  30. S. Son, B. Koo, H. Chai, H. V. H. Tran, S. Pandit, and S. P. Jung, J. Water Process Eng., 2021, 40, 101844.
  31. M. Zahid, N. Savla, S. Pandit, V. K. Thakur, S. P. Jung, P. K. Gupta, R. Prasad, and E. Marsili, Desalination, 2022, 521, 115381.
  32. H. Kang, E. Kim, and S. P. Jung, Int. J. Hydrog. Energy, 2017, 42(45), 27685-27692. https://doi.org/10.1016/j.ijhydene.2017.06.187
  33. Y. Xia, Y. Ma, Y. Wu, Y. Yi, H. Lin, and G. Zhu, Microchim. Acta, 2021, 188, 377.
  34. Y. Xia, Y. Zhao, F. Ai, Y. Yi, T. Liu, H. Lin, and G. Zhu, J. Hazard. Mater., 2022, 425, 127974.
  35. M. Sharifuzzaman, S. C. Barman, M. A. Zahed, S. Sharma, H. Yoon, J. S. Nah, H. Kim, and J. Y. Park, Small, 2020, 16(46), 2002517.
  36. Y. Yao, L. Lan, X. Liu, Y. Ying, and J. Ping, Biosens. Bioelectron., 2020, 148, 111799.
  37. Y. Yi, Y. Zhao, Z. Zhang, Y. Wu, and G. Zhu, Trends Environ. Anal. Chem., 2022, 33, e00152.
  38. X. Ma, X. Tu, F. Gao, Y. Xie, X. Huang, C. Fernandez, F. Qu, G. Liu, L. Lu, and Y. Yu, Sens. Actuators B Chem., 2020, 309, 127815.
  39. Y. Xia, J. Li, G. Zhu, and Y. Yi, Sens. Actuators B Chem., 2022, 355, 131247.
  40. Y. Xie, F. Gao, X. Tu, X. Ma, Q. Xu, R. Dai, X. Huang, Y. Yu, and L. Lu, J. Electrochem. Soc., 2019, 166(16), B1673.
  41. Q. Xu, J. Xu, H. Jia, Q. Tian, P. Liu, S. Chen, Y. Cai, X. Lu, X. Duan, and L. Lu, J. Electroanal. Chem., 2020, 860, 113869.
  42. T. L. Panasyuk, V. M. Mirsky, S. A. Piletsky, and O. S. Wolfbeis, Anal. Chem., 1999, 71(20), 4609-4613. https://doi.org/10.1021/ac9903196
  43. T. K. Ellis, M. Galerne, J. J. Armao IV, A. Osypenko, D. Martel, M. Maaloum, G. Fuks, O. Gavat, E. Moulin, and N. Giuseppone, Angew. Chem. Int. Ed., 2018, 57(48), 15749-15753. https://doi.org/10.1002/anie.201809756
  44. Y. Yi, D. Zhang, Y. Ma, X. Wu, and G. Zhu, Anal. Chem., 2019, 91, 2908-2915. https://doi.org/10.1021/acs.analchem.8b05047
  45. H. Han, H. Zheng, B. Li, H. Xiang, and Y. Zhangluo, Indian J. Chem. Technol., 2017, 56A(05), 501-507.
  46. Q. Huang, Z. Zhao, D. Nie, K. Jiang, W. Guo, K. Fan, Z. Zhang, J. Meng, Y. Wu, and Z. Han, Anal. chem., 2019, 91(6), 4116-4123. https://doi.org/10.1021/acs.analchem.8b05791
  47. Y. Dai and X. Kan, Chem. Commun., 2017, 53(86), 11755-11758. https://doi.org/10.1039/C7CC06329F
  48. X. He, S. Jin, L. Miao, Y. Cai, Y. Hou, H. Li, K. Zhang, Z. Yan, and J. Chen, Angew. Chem. Int. Ed., 2020, 59(38), 16705-16711. https://doi.org/10.1002/anie.202006783
  49. D. Wang, Q. Chen, H. Huo, S. Bai, G. Cai, W. Lai, and J. Lin, Food Control, 2017, 73, 555-561. https://doi.org/10.1016/j.foodcont.2016.09.003
  50. D. Davis, X. Guo, L. Musavi, C.-S. Lin, S.-H. Chen, and V. C. Wu, Ind. Biotechnol., 2013, 9(1), 31-36. https://doi.org/10.1089/ind.2012.0033
  51. Y. Lu, Y. Liu, Y. Zhao, W. Li, L. Qiu, and L. Li, J. Nanomater., 2016, 2016, 3895920.