DOI QR코드

DOI QR Code

A New Approach Using the SYBR Green-Based Real-Time PCR Method for Detection of Soft Rot Pectobacterium odoriferum Associated with Kimchi Cabbage

  • Yong Ju, Jin (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Dawon, Jo (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Soon-Wo, Kwon (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Samnyu, Jee (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Jeong-Seon, Kim (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jegadeesh, Raman (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Soo-Jin, Kim (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2022.09.29
  • Accepted : 2022.11.06
  • Published : 2022.12.01

Abstract

Pectobacterium odoriferum is the primary causative agent in Kimchi cabbage soft-rot diseases. The pathogenic bacteria Pectobacterium genera are responsible for significant yield losses in crops. However, P. odoriferum shares a vast range of hosts with P. carotovorum, P. versatile, and P. brasiliense, and has similar biochemical, phenotypic, and genetic characteristics to these species. Therefore, it is essential to develop a P. odoriferumspecific diagnostic method for soft-rot disease because of the complicated diagnostic process and management as described above. Therefore, in this study, to select P. odoriferum-specific genes, species-specific genes were selected using the data of the P. odoriferum JK2.1 whole genome and similar bacterial species registered with NCBI. Thereafter, the specificity of the selected gene was tested through blast analysis. We identified novel species-specific genes to detect and quantify targeted P. odoriferum and designed specific primer sets targeting HAD family hydrolases. It was confirmed that the selected primer set formed a specific amplicon of 360 bp only in the DNA of P. odoriferum using 29 Pectobacterium species and related species. Furthermore, the population density of P. odoriferum can be estimated without genomic DNA extraction through SYBR Green-based real-time quantitative PCR using a primer set in plants. As a result, the newly developed diagnostic method enables rapid and accurate diagnosis and continuous monitoring of soft-rot disease in Kimchi cabbage without additional procedures from the plant tissue.

Keywords

Acknowledgement

This work was carried out with the support of the National Institute of Agricultural Sciences (Project No. PJ01679902), Rural Development Administration, Republic of Korea.

References

  1. Bhat, K. A., Masood, S. D., Bhat, N. A., Bhat, M. A., Razvi, S. M., Mir, M. R., Akhtar S. and Habib, M. 2010. Current status of post harvest soft rot in vegetables: a review. Asian J. Plant Sci. 9:200-208. https://doi.org/10.3923/ajps.2010.200.208
  2. Bustin, S. A. 2008. Molecular medicine, gene-expression profiling and molecular diagnostics: putting the cart before the horse. Biomarkers Med. 2: 201-207. https://doi.org/10.2217/17520363.2.3.201
  3. Charkowski, A. O. 2018. The changing face of bacterial soft-rot diseases. Annu. Rev. Phytopathol. 56:269-288. https://doi.org/10.1146/annurev-phyto-080417-045906
  4. Chen, J., Zhang, L., Paoli, G. C., Shi, C., Tu, S.-I. and Shi, X. 2010. A real-time PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis. Int. J. Food Microbiol. 137:168-174. https://doi.org/10.1016/j.ijfoodmicro.2009.12.004
  5. Czajkowski, R., Perombelon, M., Jafra, S., Lojkowska, E., Potrykus, M., Van der Wolf, J. and Sledz, W. 2015. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review. Ann. Appl. Biol. 166:18-38. https://doi.org/10.1111/aab.12166
  6. Gallois, A., Samson, R., Ageron, E. and Grimont, P. A. D. 1992. Erwinia carotovora subsp. odorifera subsp. nov., associated with odorous soft rot of chicory (Cichorium intybus L.). Int. J. Syst. Evol. Microbiol. 42:582-588.
  7. Gao, B., Wang, R. Y., Chen, S. L., Ma, J. and Li, X. H. 2016. First report of Pectobacterium carotovorum subsp. carotovorum and P. carotovorum subsp. odoriferum causing bacterial soft rot of sweetpotato in China. Plant Dis. 100:1776.
  8. Glasner, J. D., Marquez-Villavicencio, M., Kim, H.-S., Jahn, C. E., Ma, B., Biehl, B. S., Rissman, A. I., Mole, B., Yi, X., Yang, C.-H., Dangl, J. L., Grant, S. R., Perna, N. T. and Charkowski, A. O. 2008. Niche-specificity and the variable fraction of the Pectobacterium pan-genome. Mol. Plant-Microbe Interact. 21:1549-1560. https://doi.org/10.1094/MPMI-21-12-1549
  9. Jee, S., Choi, J.-G., Lee, Y.-G., Kwon, M., Hwang, I. and Heu, S. 2020. Distribution of Pectobacterium species isolated in South Korea and comparison of temperature effects on pathogenicity. Plant Pathol. J. 36:346-354. https://doi.org/10.5423/PPJ.OA.09.2019.0235
  10. Kang, B. K., Cho, M. S. and Park, D. S. 2016. Red pepper powder is a crucial factor that influences the ontogeny of Weissella cibaria during Kimchi fermentation. Sci. Rep. 6:28232.
  11. Kettani-Halabi, M., Terta, M., Amdan, M., El Fahime, E. M., Bouteau, F. and Ennaji, M. M. 2013. An easy, simple inexpensive test for the specific detection of Pectobacterium carotovorum subsp. carotovorum based on sequence analysis of the pmrA gene. BMC Microbiol. 13:176.
  12. Kim, B.-S. and Yeoung, Y.-R. 2004. Suppression of bacterial soft rot on Chinease cabbage by calcium fertilizer treatment. Res. Plant Dis. 10:82-85. https://doi.org/10.5423/RPD.2004.10.1.082
  13. Koonin, E. V. and Tatusov, R. L. 1994. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity: application of an iterative approach to database search. J. Mol. Biol. 244:125-132. https://doi.org/10.1006/jmbi.1994.1711
  14. Lang, J. M., Hamilton, J. P., Diaz, M. G. Q., Van Sluys, M. A., Burgos, M. R. G., Vera Cruz, C. M., Buell, C. R., Tisserat, N. A. and Leach, J. E. 2010. Genomics-based diagnostic marker development for Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. Plant Dis. 94:311-319. https://doi.org/10.1094/pdis-94-3-0311
  15. Lee, D. H., Kim, J.-B., Lim, J.-A, Han, S.-W. and Heu, S. 2014. Genetic diversity of Pectobacterium carotovorum subsp. brasiliensis isolated in Korea. Plant Pathol. J. 30:117-124. https://doi.org/10.5423/PPJ.OA.12.2013.0117
  16. Lee, S. G., Kim, S. K., Lee, H. J., Choi, C. S. and Park, S. T. 2016. Impacts of climate change on the growth, morphological and physiological responses, and yield of Kimchi cabbage leaves. Hortic. Environ. Biotechnol. 57:470-477. https://doi.org/10.1007/s13580-016-1163-9
  17. Li, X., Fu, L., Chen, C., Sun, W., Tian, Y. and Xie, H. 2020. Characteristics and rapid diagnosis of Pectobacterium carotovorum ssp. associated with bacterial soft rot of vegetables in China. Plant Dis. 104:1158-1166. https://doi.org/10.1094/pdis-05-19-1033-re
  18. Ma, B., Hibbing, M. E., Kim, H.-S., Reedy, R. M., Yedidia, I., Breuer, J., Breuer, J., Glasner, J. D., Perna, N. T., Kelman, A. and Charkowski, A. O. 2007. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97:1150-1163. https://doi.org/10.1094/PHYTO-97-9-1150
  19. Moussa, H. B., Pedron, J., Bertrand, C., Hecquet, A. and Barny, M.-A. 2021. Pectobacterium quasiaquaticum sp. nov., isolated from waterways. Int. J. Syst. Evol. Microbiol. 71:005042.
  20. Muzhinji, N., Dube, J. P., de Haan, E. G., Woodhall, J. W. and van der Waals, J. E. 2020. Development of a TaqMan PCR assay for specific detection and quantification of Pectobacterium brasiliense in potato tubers and soil. Eur. J. Plant Pathol. 158:521-532. https://doi.org/10.1007/s10658-020-02097-4
  21. Nabhan, S., Wydra, K., Linde, M. and Debener, T. 2012. The use of two complementary DNA assays, AFLP and MLSA, for epidemic and phylogenetic studies of pectolytic enterobacterial strains with focus on the heterogeneous species Pectobacterium carotovorum. Plant Pathol. 61:498-508. https://doi.org/10.1111/j.1365-3059.2011.02546.x
  22. Naum, M., Brown, E. W. and Mason-Gamer, R. J. 2008. Is 16S rDNA a reliable phylogenetic marker to characterize relationships below the family level in the Enterobacteriaceae? J. Mol. Evol. 66:630-642. https://doi.org/10.1007/s00239-008-9115-3
  23. Oskiera, M., Kaluzna, M., Kowalska, B. and Smolinska, U. 2017. Pectobacterium carotovorum subsp. odoriferum on cabbage and Chinese cabbage: identification, characterization and taxonomic relatedness of bacterial soft rot causal agents. J. Plant Pathol. 99:149-160.
  24. Park, D. H., Kim, J. S., Lee, H. G., Hahm, Y. and Lim, C. K. 1999. Black leg of potato plants by Erwinia carotovora subsp. atroseptica. Plant Dis. Agric. 5:64-66.
  25. Pasanen, M., Waleron, M., Schott, T., Cleenwerck, I., Misztak, A., Waleron, K., Pritchard, L., Bakr, R., Degefu, Y., van der Wolf, J., Vandamme, P. and Pirhonen, M. 2020. Pectobacterium parvum sp. nov., having a Salmonella SPI-1-like Type III secretion system and low virulence. Int. J. Syst. Evol. Microbiol. 70:2440-2448. https://doi.org/10.1099/ijsem.0.004057
  26. Perombelon, M. C. M. and Kelman, A. 1980. Ecology of the soft rot Erwinias. Annu. Rev. Phytopathol. 18:361-387. https://doi.org/10.1146/annurev.py.18.090180.002045
  27. Portier, P., Pedron, J., Taghouti, G., Dutrieux, C. and Barny, M.-A. 2020. Updated taxonomy of Pectobacterium genus in the CIRM-CFBP bacterial collection: when newly described species reveal "old" endemic population. Microorganisms 8:1441.
  28. Portier, P., Pedron, J., Taghouti, G., Fischer-Le Saux, M., Caullireau, E., Bertrand, C., Laurent, A., Chawki, K., Oulgazi, S., Moumni, M., Andrivon, D., Dutrieux, C., Faure, D., Helias, V. and Barny, M.-A. 2019. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 69:3207-3216. https://doi.org/10.1099/ijsem.0.003611
  29. Roh, E., Lee, S., Lee, Y., Ra, D., Choi, J., Moon, E. and Heu, S. 2009. Diverse antibacterial activity of Pectobacterium carotovorum subsp. carotovorum isolated in Korea. J. Microbiol. Biotechnol. 19: 42-50.
  30. Seo, S.-T., Koo, J.-H., Hur, J.-H. and Lim, C.-K. 2004. Characterization of Korean Erwinia carotovora strains from potato and Chinese cabbage. Plant Pathol. J. 20:283-288. https://doi.org/10.5423/PPJ.2004.20.4.283
  31. Staley, J. T. 2006. The bacterial species dilemma and the genomic-phylogenetic species concept. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361:1899-1909. https://doi.org/10.1098/rstb.2006.1914
  32. Suarez, M. B., Diego, M., Feria, F. J., Martin-Robles, M. J., Moreno, S. and Palomo, J. L. 2022. New PCR-based assay for the identification of Pectobacterium carotovorum causing potato soft rot. Plant Dis. 106:676-684. https://doi.org/10.1094/PDIS-08-21-1676-RE
  33. Waleron, M., Waleron, K. and Lojkowska, E. 2014. Charaterization of Pectobacterium carotovorum subsp. odoriferum causing soft rot of stored vegetables. Eur. J. Plant Pathol. 139:457-469. https://doi.org/10.1007/s10658-014-0403-z
  34. Whelan, J. A., Russel, N. B. and Whelan, M. A. 2003. A method for the absolute quantification of cDNA using real-time PCR. J. Immunol. Methods 278:261-269. https://doi.org/10.1016/S0022-1759(03)00223-0
  35. Zhang, Y., Fan, Q. and Loria, R. 2016. A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst. Appl. Microbiol. 39:252-259. https://doi.org/10.1016/j.syapm.2016.04.001