DOI QR코드

DOI QR Code

Module-type Triboelectric Nanogenerator for Collecting Various Kinetic Energies

  • Sungho, Ji (School of Mechatronics Engineering, Korea University of Technology & Education) ;
  • Youngchul, Chang (School of Mechatronics Engineering, Korea University of Technology & Education) ;
  • Jinhyoung, Park (School of Mechatronics Engineering, Korea University of Technology & Education)
  • Received : 2022.10.26
  • Accepted : 2022.11.24
  • Published : 2022.11.30

Abstract

A triboelectric nanogenerator (TENG) can obtain electrical output due to the reciprocal motion between two objects (i.e., rubbing), in which repetitive contact is made. High reliability, stable output, and high reproducibility are important aspects of the electrical output obtained through a TENG as a sensor or generator, thus enabling its meaningful use. Therefore, many researchers fabricated TENGs into individual parts in the form of one module type to obtain high reproducibility and reliability. Since a TENG manufactured as a module type operates as a single device, it is possible to collect kinetic energy and convert it into electrical energy through the interaction between internally configured elements without the need for a separate structure. In addition, it is relatively easy to apply the size to the body, machine tools, and natural environment by simply adjusting the size suitable for use and surrounding environmental conditions. In this paper, the application cases of module-type TENGs are divided into four areas, and the research progress of module-type TENGs in each area is extensively reviewed.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [2018R1D1A1B07040446] and Korea Institute for Advancement of Technology(KIAT) grant funded by the Korea Government(MOTIE) (P0008458, The Competency Development Program for Industry Specialist).

References

  1. T. Abbasi and S. A. Abbasi, "Decarbonization of fossil fuels as a strategy to control global warming", Renew. Sustain. Energy. Rev., Vol. 15, No. 4, pp. 1828-1834, 2011. https://doi.org/10.1016/j.rser.2010.11.049
  2. A. Zecca and L. Chiari, "Fossil-fuel constraints on global warming", Energy Policy, Vol. 38, No. 1, pp. 1-3, 2010. https://doi.org/10.1016/j.enpol.2009.06.068
  3. G. Sathiyan, E. K. T. Sivakumar, R. Ganesamoorthy, R. Thangamuthu, and P. Sakthivel, "Review of carbazole based conjugated molecules for highly efficient organic solar cell application", Tetrahedron Lett., Vol. 57, No. 3, pp. 243-252, 2016. https://doi.org/10.1016/j.tetlet.2015.12.057
  4. C. Ma, 00D. Shen, T. Ng, W. Lo, M. F, and C. S. Lee, "2D perovskites with short interlayer distance for high-performance solar cell application", Adv. Mater., Vol. 30, No. 22, p. 18900710, 2018.
  5. S. Vargas, G. R. T. Esteves, P. M. Macaira, B. Q. Bastos, F. L. C. Oliveira and R. C. Souza, "Wind power generation: A review and a research agenda", J. Clean. Prod., Vol. 218, pp. 850-870, 2019. https://doi.org/10.1016/j.jclepro.2019.02.015
  6. H. Zhao, Q. wu, S. Hu, H. Xu, and C. N. Rasmussen, "Review of energy storage system for wind power integration support", Appl. Energy, Vol. 137, pp. 545-553, 2015. https://doi.org/10.1016/j.apenergy.2014.04.103
  7. D.-K. Lee and J. Eom, "Implemented of non-destructive intelligent fruit Brix (sugar content) automatic measurement system", J. Sens. Sci. Technol., Vol. 29, No. 6, pp.433-439, 2020. https://doi.org/10.46670/JSST.2020.29.6.433
  8. G. Bedi, G. K. Venayagamoorthy, R. Singh, R. R. Brooks, and K. C. Wang, "Review of Internet of things (IoT) in electric power and energy systems", IEEE Internet Things J., Vol. 5, No. 2, pp. 847-870, 2018. https://doi.org/10.1109/jiot.2018.2802704
  9. E. Hozdic, "Smart factory for industry 4.0: A review", Int. J. Mod. Manuf. Technol., Vol. 7, No. 1, pp. 28-35, 2015.
  10. A. Rana and K. K. Kim, "FPGA Implementation of an Artificial Intelligence Signal Recognition System", J. Sens. Sci. Technol., Vol. 31, No. 1, pp. 16-23, 2022. https://doi.org/10.46670/JSST.2022.31.1.16
  11. H. Kim, J. Y. Lee, H. Jung, Y. H. Kim, J. Y. Kwon, S. D. Ki, and M. J. Kim, "Development of Long-perimeter Intrusion Detection System Aided by deep Learning-based Distributed Fiber-optic Acoustic vibration Sensing Technology", J. Sens. Sci. Technol., Vol. 31, No. 1, pp. 24-30, 2022. https://doi.org/10.46670/JSST.2022.31.1.24
  12. S. Zhang and H. Zhang, "A review of wireless sensor networks and its applications", IEEE Int. Conf. on Autom. Logistics, pp. 386-389, 2012.
  13. S. B. Mahalakshmi and S. Datchanamoorthy, "Prediction of wireless sensor battery life", IEEE AUTOTESTCON, pp. 138-145, 2015.
  14. G. Zhu, B. Peng, J. Chen, Q. Jing and Z. L. Wang, "Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications", Nano Energy, Vol. 14, pp. 126-138, 2015. https://doi.org/10.1016/j.nanoen.2014.11.050
  15. L. Zhou, D. Liu, J. Wang, and Z. L. Wang, "Triboelectric nanogenerators: fundamental physics and potential applications", Friction, Vol. 8, No. 3, pp. 481-506, 2020. https://doi.org/10.1007/s40544-020-0390-3
  16. H. Cho, I. Kim, J. Park, and D. Kim, "A waterwheel hybrid generator with disk triboelectric nanogenerator and electromagnetic generator as a power source for an electrocoagulation system", Nano Energy, Vol. 95, p. 107048, 2022.
  17. X. Liang, T. Jiang, G. Liu, T. Xiao, L. Xu, W. Li, F. Xi, C. Zhang, and Z. L. Wang, "Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting", Adv. Funct. Mater., Vol. 29, No. 41, p. 1807241, 2019.
  18. X. Liang, T. Jiang, G. Liu, Y. Feng, C. Zhang, and Z. L. Wang, "Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy", Energy Environ. Sci., Vol. 13, No. 1, pp. 277-285, 2020. https://doi.org/10.1039/c9ee03258d
  19. Y. Wang, X. Yu, M. Yin, J. Wang, Q. Gao, Y. Yu, T. Cheng, and Z. L. Wang, "Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy", Nano Energy, Vol. 82, p. 105740, 2021.
  20. S. Niu, X. Wang, F. Yi, Y. S. Zhou, and Z. L. Wang, "A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics", Nat. Commun., Vol. 6, No. 1, pp. 1-8, 2015.
  21. X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu, and Z. L. Wang, "Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator", Sci. Adv., Vol. 3, No. 7, p. e1700694, 2017
  22. H. J. Hwang, Y. Jung, K. Choi, D. Kim, J. Park, and D. Choi, "Comb-structrued triboelectric nanogenerators for multi-directional energy scavenging from human movements", Sci. Technol. Adv. Mater., Vol. 20 No. 1, pp. 725-732, 2019. https://doi.org/10.1080/14686996.2019.1630856
  23. J. Shin, S. Ji, J. Yoon, and J. Park, "Module-type triboelectric nanogenerators capable of harvesting power from a variety of mechanical energy sources", Micromachines, Vol. 12, No. 9, pp.1043(1)-1043(11), 2021.
  24. C. Zhang, L. Zhou, P. Cheng, D. Liu, C. Zhang, X. Li, S. Li, J. Wang, and Z. L. Wang, "Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting", Adv. Energy Mater., Vol. 11, No. 11, p. 2003616, 2021.
  25. D. Bhatia, H. J. Hwang, N. D. Huynh, S. Lee, C. Lee, Y. Nam, J. Kim, and D. Choi, "Continuous scavenging of broadband vibrations via omnipotent tandem triboelectric nanogenerators with cascade impact structure", Sci. Rep., Vol. 9, NO. 1, pp. 1-9, 2019. https://doi.org/10.1038/s41598-018-37186-2
  26. C. Zhang, Y. Liu, B. Zhang, O. Yang, W. Yuan, L. He, X. Wei, J. Wang, and Z. L. Wang, "Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system", ACS Energy Lett., Vol. 6, No. 4, pp. 1490-1499, 2021.
  27. T. Guo, G. Liu, Y. Pang, B. Wu, F. Xi, J. Zhao, T. Bu, X. Fu, X. Li, C. Zhang, and Z. L. Wang, "Compressible hexagonal-structured triboelectric nanogenerators for harvesting tire rotation energy", Extreme Mech. Lett., Vol. 18, pp. 1-8, 2018. https://doi.org/10.1016/j.eml.2017.10.002
  28. S. Ji, J. Shin, J. Yoon, K. Lim, G. Sim, Y. Lee, D. H. Kim, H Cho and J. Park, "Three-dimensional skin-type triboelectric nanogenerator for detection of two-axis roboticarm collision", Nano Energy, Vol. 97, p. 107225, 2022.
  29. T. Du, X. Zuo, F. Dong, S. Li, A. E. Mtui, Y. Zou, P. Zhang, J. Zhao, Y. Zhang, P. Sun, and M. Xu, "A self-powered and highly accurate vibration sensor based on bouncing-ball triboelectric nanogenerator for intelligent ship machinery monitoring", Micromachines, Vol. 12, No. 2, pp. 218(1)-218(14), 2021.
  30. H. Yoon, D. Kim, W. Seung, U. Khan, T. Y. Kim, T. Kim, and S. Kim, "3D-printed biomimetic-villus structure with maximized surface area for triboelectric nanogenerator and dust filter", Nano Energy, Vol. 63, p. 103857, 2019.
  31. M. S. Kim, I. W. Tcho, and Y. K. Choi, "Strategy to enhance entropy of random numbers in a wind-driven triboelectric random number generator", Nano Energy, Vol. 89, p. 106359, 2021.