DOI QR코드

DOI QR Code

A Study on Optimized Placement of Green-Gray Infrastructure for Effective Flood Mitigation

효과적인 도시 홍수 저감을 위한 그린-그레이 인프라 위치 설정에 관한 연구

  • Bae, Chae-Young (Suwon Research Institute) ;
  • Lee, Dong-Kun (Dept. of Landscape Architecture and Rural System Engineering, Seoul National University)
  • 배채영 (수원시정연구원 도시공간연구실) ;
  • 이동근 (서울대학교 조경.지역시스템공학부)
  • Received : 2022.11.22
  • Accepted : 2022.12.27
  • Published : 2022.12.30

Abstract

Urban flood management(UFM) strategy ought to consider the connections and interactions between existing and new infrastructures to manage stormwater and improve the capacity to treat water. It is also important to demonstrate strategies that can be implemented to reduce the flow at flooding sources and minimize flood risk at critical locations. Although the general theory of spatial impact is popular, modeling guidelines that can provide information for implementation in real-world plans are still lacking. Under such background, this study conducted a modeling research based on an actual target site to confirm the hypothesis that it is appropriate to install green infrastructure(GI) in the source area and to take structural protection measures in the impact area, as summarized in previous studies. The results of the study proved the hypothesis, but the results were different from the hypothesis depending on which hydrological performance indicators were targeted. This study will contribute to demonstrating the effectiveness of strategies that can be implemented to reduce the flow at flooding sources and minimize the risk of flooding in critical locations in terms of spatial planning and regeneration.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 도시생태 건강성 증진 기술개발사업의 지원을 받아 연구 되었습니다.(2019002760002)

References

  1. Abualfaraj, N., Cataldo, J., Elborolosy, Y., Fagan, D., Woerdeman, S., Carson, T., Montalto, F.A., 2018. Monitoring and modeling the long-term rainfall-runoff response of the Jacob K. Javits center green roof. Water (Switzerland) 10, 1-23. 
  2. Bae, C., Lee, D.K., 2020. Effects of low-impact development practices for flood events at the catchment scale in a highly developed urban area. Int. J. Disaster Risk Reduct. 44, 101412. 
  3. Dawson, D.A., Vercruysse, K., Wright, N., 2020. A spatial framework to explore needs and opportunities for interoperable urban flood management. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378. 
  4. De Vleeschauwer, K., Weustenraad, J., Nolf, C., Wolfs, V., De Meulder, B., Shannon, K., Willems, P., 2014. Green-blue water in the city: Quantification of impact of source control versus end-of-pipe solutions on sewer and river floods. Water Sci. Technol. 70, 1825-1837.  https://doi.org/10.2166/wst.2014.306
  5. Escuder-Bueno, I., Castillo-Rodriguez, J.T., Zechner, S., Jobstl, C., Perales-Momparler, S., Petaccia, G., 2012. A quantitative flood risk analysis methodology for urban areas with integration of social research data. Nat. Hazards Earth Syst. Sci. 12, 2843-2863.  https://doi.org/10.5194/nhess-12-2843-2012
  6. Fletcher, T.D., Shuster, W., Hunt, W.F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni- Davies, A., Bertrand-Krajewski, J.L., Mikkelsen, P.S., Rivard, G., Uhl, M., Dagenais, D., Viklander, M., 2015. SUDS, LID, BMPs, WSUD and more - The evolution and application of terminology surrounding urban drainage. Urban Water J. 12, 525-542.  https://doi.org/10.1080/1573062X.2014.916314
  7. Ghofrani, Z., Sposito, V., Faggian, R., 2017. A Comprehensive Review of Blue- Green Infrastructure Concepts. Int. J. Environ. Sustain. 6. 
  8. Hoang, L., Fenner, R.A., 2016. System interactions of stormwater management using sustainable urban drainage systems and green infrastructure, Urban Water Journal, 13:7, 739-758.  https://doi.org/10.1080/1573062x.2015.1036083
  9. Horton, B.Y.R.E., 1945. MORPHOLOGY 56, 275-370. 
  10. Intergovernmental Panel on Climate Change (IPCC), 2014. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K. Meyer, L.A., Eds.; IPCC: Geneva, Switzerland. 
  11. Korea Land and Geospatial Informatix Corporation, 2021, November 17. Inundation trace information [Data set]. https://www.data.go.kr/data/15048627/fileData.do?recommendDataYn=Y 
  12. Korea Meteorological Administration, 2010. 2010 Abnormal Climate Report.
  13. Merz, B., Kreibich, H., Schwarze, R., Thieken, A., 2010. Review article "assessment of economic flood damage." Nat. Hazards Earth Syst. Sci. 10, 1697-1724.  https://doi.org/10.5194/nhess-10-1697-2010
  14. Ministry of Environment, South Korea, 2019. Overview of the current status of the land cover map. Retrieved from https://egis.me.go.kr 
  15. O'Donnell, T., 2019. Contrasting land use policies for climate change adaptation: A case study of political and geo-legal realities for Australian coastal locations. Land use policy 88, 104145. 
  16. Petrucci, G., Rioust, E., Deroubaix, J.F., Tassin, B., 2013. Do stormwater source control policies deliver the right hydrologic outcomes? J. Hydrol. 485, 188-200.  https://doi.org/10.1016/j.jhydrol.2012.06.018
  17. Randall, M., Fensholt, R., Zhang, Y., Jensen, M.B., 2019. Geographic object based image analysis of world view-3 imagery for urban hydrologic modelling at the catchment scale. Water (Switzerland) 11. 
  18. Rodrigues, A.L.M., da Silva, D.D., de Menezes Filho, F.C.M., 2021. Methodology for Allocation of Best Management Practices Integrated with the Urban Landscape. Water Resour. Manag. 35, 1353-1371.  https://doi.org/10.1007/s11269-021-02791-w
  19. Rossman, L., 2010. Storm Water Management Model User's Manual Version 5.0, US EPA Office of Research and Development, Washington, DC, USA. 
  20. Saghafian, B., Jannaty, M.H., Ezami, N., 2015. Inverse hydrograph routing optimization model based on the kinematic wave approach. Eng. Optim. 47, 1031-1042.  https://doi.org/10.1080/0305215X.2014.941289
  21. Saghafian, B., Khosroshahi, M., 2005. Unit Response Approach for Priority Determination of Flood Source Areas. J. Hydrol. Eng. 10, 270-277.  https://doi.org/10.1061/(ASCE)1084-0699(2005)10:4(270)
  22. Seoul city, 2022, October 22. Seoul city green roof project information [Data set]. http://data.seoul.go.kr/dataList/OA-15635/F/1/datasetView.do 
  23. Tirpak, R.A., Winston, R.J., Simpson, I.M., Dorsey, J.D., Grimm, A.G., Pieschek, R.L., Petrovskis, E.A., Carpenter, D.D., 2021. Hydrologic impacts of retrofitted low impact development in a commercial parking lot. J. Hydrol. 592, 125773. 
  24. Vercruysse, K., Dawson, D.A., Glenis, V., Bertsch, R., Wright, N., Kilsby, C., 2019. Developing spatial prioritization criteria for integrated urban flood management based on a source-to-impact flood analysis. J. Hydrol. 578, 124038. 
  25. Woldesenbet, T.A., Elagib, N.A., Ribbe, L., Heinrich, J., 2017. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Science of The Total Environment 575, 724-741.  https://doi.org/10.1016/j.scitotenv.2016.09.124
  26. Yang, W., Zhang J., Assessing the performance of gray and green strategies for sustainable urban drainage system development: A multi-criteria decision-making analysis, Journal of Cleaner Production, Volume 293, 2021, 126191.