DOI QR코드

DOI QR Code

Effect of Nitrogen Precursors in Non-precious Metal Catalysts on Activity for the Oxygen Reduction Reaction

비귀금속 촉매에서 사용되는 질소 전구체가 산소 환원 반응의 활성에 미치는 영향

  • Yoon, Ho Seok (School of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Jung, Won Suk (School of Food Biotechnology and Chemical Engineering, Hankyong National University)
  • 윤호석 (한경대학교 식품생명화학공학부) ;
  • 정원석 (한경대학교 식품생명화학공학부)
  • Received : 2021.06.28
  • Accepted : 2021.08.30
  • Published : 2022.02.01

Abstract

Iron and nitrogen coordinated carbon catalyst (Fe-N-C) is the most promising non-precious metal catalyst (NPMC) studied to alternate the Pt-group oxygen reduction reaction (ORR) catalyst. In this work, Fe/N/C type catalysts are prepared by four different nitrogen precursors; N, N, N', N'-tetramethylethylenediamine (TMEDA), 1,2-ethylenediamine (EDA), m-dicyanobenzene (DCB), dicyandiamide (DCDA) which can chelate a transition metal; In addition, the catalysts conducted the pyrolysis process at four different temperatures of 700, 800, 900, 1000 ℃ to investigate the ORR activities depend on pyrolysis temperature and to find an appropriate temperature. The characterizations of catalysts were investigated by scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS), X-ray diffraction (XRD), and element analysis (EA). The electrocatalytic activity was measured by ORR polarization, also the electron transfer number was calculated from the slope of the K-L plot. The FeNC-EDA-800 which were prepared at pyrolysis temperature of 800 ℃ with EDA showed better ORR activity than the other catalysts.

고가의 귀금속 촉매는 고분자 전해질 연료전지의 상업화에 걸림돌로 인식되어 저가의 비귀금속 촉매 연구가 활발하다. 본 연구에서는 Fe-N-C 촉매를 킬레이팅이 가능한 4가지 다른 질소 전구체 N,N,N',N'-detramethylethylenediamine(TMEDA), 1,2-ethylenediamine (EDA), m-dicyanobenzene (DCB), dicyandiamide (DCDA)를 이용하여 700, 800, 900, 1000 ℃에서 합성하였다. 촉매의 물리적 특성은 주사전자현미경, X선 회절분석기, 자동원소분석기를 이용하여 분석하였다. 이를 통해 촉매 표면 형태 및 원소의 분산도와 에너지 분산형 X-선 분광을 적용하여 Fe의 함량을 확인하였다. 또한 비금속 원소의 함량과 Fe의 담지 여부 등을 확인하였다. 전기화학적 특성은 순환 전압전류법과 선형주사전위법을 통해 촉매의 전기화학적 산소 환원에 대한 활성과 전자전달수 등을 분석하였다. 결과에 따르면 질소 전구체로 EDA를 사용하여 800 ℃의 소성온도에서 합성한 촉매가 가장 높은 산소 환원 활성을 보였다. 이 연구 결과는 고가의 귀금속을 대체하기 위한 노력에 도움이 될 것으로 예상된다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1C1C1004206).

References

  1. Jung, W. S., Lee, W. H., Oh, H. S. and Popov, B. N., "Highly Stable and Ordered Intermetallic PtCo Alloy Catalyst Supported on Graphitized Carbon Containing Co@CN for Oxygen Reduction Reaction," J. Mater. Chem. A 8(38), 19833-19842(2020). https://doi.org/10.1039/d0ta05182a
  2. Borup, R., Meyers, J., Pivovar, B., Kim, Y. S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J. E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K. I. and Iwashita, N., "Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation," Chem. Rev., 107(10), 3904-3951(2007). https://doi.org/10.1021/cr050182l
  3. Li, Z., Liang, X., Gao, Q., Zhang, H., Xiao, H., Xu, P., Zhang, T. and Liu, Z., "Fe, N Co-doped Carbonaceous Hollow Sphere With Self-grown Carbon Nanotubes as a High Performance Binary Electrocatalyst," Carbon, 154, 466-477(2019). https://doi.org/10.1016/j.carbon.2019.08.036
  4. Melody L. Baglione, "Development of System Analysis Methodologies and Tools for Modeling and Optimizing Vehicle System Efficiency," University of Michigan, PhD dissertation (2007).
  5. Eren, Y., Erdinc, O., Gorgun, H., Uzunoglu, M. and Vural, B., "A Fuzzy Logic Based Supervisory Controller for an FC/UC Hybrid Vehicular Power System," Int. J. Hydrogen Energy, 34(20), 8681-8694(2009). https://doi.org/10.1016/j.ijhydene.2009.08.033
  6. Lefevre, M., Proietti, E., Jaouen, F. and Dodelet, J. P., "Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells," Science, 324(5923), 71-74(2009). https://doi.org/10.1126/science.1170051
  7. Tu, Z. and Wang, C., "Boosting the Oxygen Reduction Reaction of a Nonprecious Metal Fe-Nx/C Electrocatalyst by Integrating Tube-terminated Edges into the Basal Plane of Fe- and N-codoped Carbon Bubbles," J. Alloys Compd., 843, 155809(2020). https://doi.org/10.1016/j.jallcom.2020.155809
  8. Jung, W. S. and Popov, B. N., "Effect of Pretreatment on Durability of Fct-structured Pt-based Alloy Catalyst for the Oxygen Reduction Reaction Under Operating Conditions in Polymer Electrolyte Membrane Fuel Cells," ACS Sustain. Chem. Eng., 5(11), 9809-9817(2017). https://doi.org/10.1021/acssuschemeng.7b01728
  9. Gewirth, A. A., Varnell, J. A. and Diascro, A. M., "Nonprecious Metal Catalysts for Oxygen Reduction in Heterogeneous Aqueous Systems," Chem. Rev., 118(5), 2313-2339(2018). https://doi.org/10.1021/acs.chemrev.7b00335
  10. Zhang, X., Mollamahale, Y. B., Lyu, D., Liang, L., Yu, F., Qing, M., Du, Y., Zhang, X., Tian, Z. Q. and Shen, P. K., "Molecularlevel Design of Fe-N-C Catalysts Derived from Fe-dual Pyridine Coordination Complexes for Highly Efficient Oxygen Reduction," J. Catal., 372, 245-257(2019). https://doi.org/10.1016/j.jcat.2019.03.003
  11. Li, J., Chen, S., Li, W., Wu, R., Ibraheem, S., Li, J., Ding, W., Li, L. and Wei, Z., "A Eutectic Salt-assisted Semi-closed Pyrolysis Route to Fabricate High-density Active-site Hierarchically Porous Fe/N/C Catalysts for the Oxygen Reduction Reaction," J. Mater. Chem. A, 6(32), 15504-15509(2018). https://doi.org/10.1039/c8ta05419c
  12. Batool, S. S., Gilani, S. R., Zainab, S. S., Tahir, M. N., Harrison, W. T. A., Haider, M. S., Syed, Q., Mazhar, S. and Shoaib, M., "Synthesis, Crystal Structure, Thermal Studies and Antimicrobial Activity of a Mononuclear Cu(II)-cinnamate Complex with N,N,N',N'-tetramethylethylenediamine as Co-ligand," Polyhedron, 178, 114346(2020). https://doi.org/10.1016/j.poly.2020.114346
  13. Sung Lee, J., Soo Kim, H., Su Lee, J., Park, N. K., Jin Lee, T. and Kang, M., "Synthesis of α-Al2O3 at Mild Temperatures by Controlling Aluminum Precursor, pH, and Ethylenediamine Chelating Additive," Ceram. Int., 38(8), 6685-6691(2012). https://doi.org/10.1016/j.ceramint.2012.05.057
  14. Garcia, A., Retuerto, M., Dominguez, C., Pascual, L., Ferrer, P., Gianolio, D., Serrano, A., Assmann, P., Sanchez, D. G., Pena, M. A. and Rojas, S., "Fe Doped Porous Triazine as Efficient Electrocatalysts for the Oxygen Reduction Reaction in Acid Electrolyte," Appl. Catal. B Environ., 264, 118507(2020). https://doi.org/10.1016/j.apcatb.2019.118507
  15. Kose, M., Hepokur, C., Karakas, D., McKee, V. and Kurtoglu, M., "Structural, Computational and Cytotoxic Studies of Square Planar Copper(ii) Complexes Derived from Dicyandiamide," Polyhedron, 117, 652-660(2016). https://doi.org/10.1016/j.poly.2016.07.007
  16. Ahmed, M. S., Begum, H. and Kim, Y. B., "Iron Nanoparticles Implanted Metal-organic-frameworks Based Fe-N-C Catalysts for High-performance Oxygen Reduction Reaction," J. Power Sources, 451, 227733(2020). https://doi.org/10.1016/j.jpowsour.2020.227733
  17. Fofana, D., Natarajan, S. K., Hamelin, J. and Benard, P., "Low Platinum, High Limiting Current Density of the PEMFC (proton exchange membrane fuel cell) Based on Multilayer Cathode Catalyst Approach," Energy, 64, 398-403(2014). https://doi.org/10.1016/j.energy.2013.10.021
  18. Mao, Z. X., Wang, M. J., Liu, L., Peng, L., Chen, S., Li, L., Li, J. and Wei, Z., "ZnCl2 Salt Facilitated Preparation of FeNC: Enhancing the Content of Active Species and Their Exposure for Highly-efficient Oxygen Reduction Reaction," Chinese J. Catal., 41(5), 799-806(2020). https://doi.org/10.1016/s1872-2067(19)63405-4
  19. Zhong, G., Xu, S., Liu, L., Zheng, C. Z., Dou, J., Wang, F., Fu, X., Liao, W. and Wang, H., "Effect of Experimental Operations on the Limiting Current Density of Oxygen Reduction Reaction Evaluated by Rotating-disk Electrode," ChemElectroChem, 7(5), 1107-1114(2020). https://doi.org/10.1002/celc.201902085
  20. Matter, P. H., Zhang, L. and Ozkan, U. S., "The Role of Nano-structure in Nitrogen-containing Carbon Catalysts for the Oxygen Reduction Reaction," J. Catal., 239(1), 83-96(2006). https://doi.org/10.1016/j.jcat.2006.01.022
  21. Huang, Y., Liu, K., Kan, S., Liu, P., Hao, R., Liu, W., Wu, Y., Liu, H., Liu, M. and Liu, K., "Highly Dispersed Fe-Nx Active Sites on Graphitic-N Dominated Porous Carbon for Synergetic Catalysis of Oxygen Reduction Reaction," Carbon, 171, 1-9(2021). https://doi.org/10.1016/j.carbon.2020.09.010
  22. Zhang, X., Wang, Y., Wang, K., Huang, Y., Lyu, D., Yu, F., Wang, S., Tian, Z. Q., Shen, P. K. and Jiang, S. P., "Active Sites Engineering via Tuning Configuration Between Graphitic-N and Thiophenic-S Dopants in One-step Synthesized Graphene Nanosheets for Efficient Water-cycled Electrocatalysis," Chem. Eng. J., 416, 129096(2021). https://doi.org/10.1016/j.cej.2021.129096
  23. Zhou, S., Qin, J., Zhao, X. and Yang, J., "3D Hierarchically Macro-/mesoporous Graphene Frameworks Enriched with Pyridinicnitrogen-cobalt Active Sites as Efficient Reversible Oxygen Electro-catalysts for Rechargeable Zinc-air Batteries," Chinese J. Catal., 42(4), 571-582(2021). https://doi.org/10.1016/S1872-2067(20)63642-7
  24. Sun, M., Wu, X., Deng, X., Zhang, W., Xie, Z., Huang, Q. and Huang, B., "Synthesis of Pyridinic-N Doped Carbon Nanofibers and Its Electro-catalytic Activity for Oxygen Reduction Reaction," Mater. Lett., 220, 313-316(2018). https://doi.org/10.1016/j.matlet.2018.03.050
  25. Sun, R. M., Yao, Y. Q., Wang, A. J., Fang, K. M., Zhang, L. and Feng, J. J., "One-step Pyrolysis Synthesis of Nitrogen, Manganese-codoped Porous Carbon Encapsulated Cobalt-iron Nanoparticles with Superior Catalytic Activity for Oxygen Reduction Reaction," J. Colloid Interface Sci., 592, 405-415(2021). https://doi.org/10.1016/j.jcis.2021.02.071
  26. Leng, L., Xu, S., Liu, R., Yu, T., Zhuo, X., Leng, S., Xiong, Q. and Huang, H., "Nitrogen Containing Functional Groups of Biochar: An Overview," Bioresour. Technol., 298, 122286(2019).
  27. Palm, I., Kibena-Poldsepp, E., Maeorg, U., Kozlova, J., Kaarik, M., Kikas, A., Leis, J., Kisand, V., Tamm, A. and Tammeveski, K., "Silicon Carbide-derived Carbon Electrocatalysts Dual Doped with Nitrogen and Phosphorus for the Oxygen Reduction Reaction in an Alkaline Medium," Electrochem. Commun., 125, (2021).
  28. Huang, X., Wu, X., Niu, Y., Dai, C., Xu, M. and Hu, W., "Effect of Nanoparticle Composition on Oxygen Reduction Reaction Activity of Fe/N-C Catalysts: A Comparative Study," Catal. Sci. Technol., 9(3), 711-717(2019). https://doi.org/10.1039/c8cy02385a
  29. Gazulla, M. F., Rodrigo, M., Blasco, E. and Orduna, M., "Nitrogen Determination by SEM-EDS and Elemental Analysis," X-Ray Spectrom., 42(5), 394-401(2013). https://doi.org/10.1002/xrs.2490
  30. Jung, W. S. and Popov, B. N., "Hybrid Cathode Catalyst with Synergistic Effect Between Carbon Composite Catalyst and Pt for Ultra-low Pt Loading in PEMFCs," Catal. Today, 295, 65-74 (2017). https://doi.org/10.1016/j.cattod.2017.06.019
  31. Jung, W. S., Kim, Y., Noh, Y., Han, H., Park, S., Lee, J. and Kim, W. B., "Comparative Investigation of Nitrogen Species in Transition Metals Incorporated Carbon Catalysts for the Oxygen Reduction Reaction," Chem. Phys. Lett., 708, 42-47(2018). https://doi.org/10.1016/j.cplett.2018.07.066
  32. Subramanian, N. P., Li, X., Nallathambi, V., Kumaraguru, S. P., Colon-Mercado, H., Wu, G., Lee, J. W. and Popov, B. N., "Nitrogen-modified Carbon-based Catalysts for Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells," J. Power Sources, 188(1), 38-44(2009). https://doi.org/10.1016/j.jpowsour.2008.11.087
  33. Li, X., Popov, B. N., Kawahara, T. and Yanagi, H., "Non-precious Metal Catalysts Synthesized from Precursors of Carbon, Nitrogen, and Transition Metal for Oxygen Reduction in Alkaline Fuel Cells," J. Power Sources, 196(4), 1717-1722(2011). https://doi.org/10.1016/j.jpowsour.2010.10.018
  34. Carrillo-Rodriguez, J. C., Garay-Tapia, A. M., Escobar-Morales, B., Escorcia-Garcia, J., Ochoa-Lara, M. T., Rodriguez-Varela, F. J. and Alonso-Lemus, I. L., "Insight Into the Performance and Stability of N-doped Ordered Mesoporous Carbon Hollow Spheres for the ORR: Influence of the Nitrogen Species on Their Catalytic Activity After ADT," Int. J. Hydrogen Energy, 46(51), 26087-26100(2021). https://doi.org/10.1016/j.ijhydene.2021.01.047
  35. Zhao, H., Zhang, Y., Li, L., Geng, X., Yang, H., Zhou, W., Sun, C. and An, B., "Synthesis of An Ordered Porous Carbon with the Dual Nitrogen-doped Interfaces and its ORR Catalysis Performance," Chinese Chem. Lett., 32(1), 140-145(2021). https://doi.org/10.1016/j.cclet.2020.11.035
  36. Lo Vecchio, C., Arico, A. S., Monforte, G. and Baglio, V., "EDTA-derived Co-N-C and Fe-N-C Electro-catalysts for the Oxygen Reduction Reaction in Acid Environment," Renew. Energy, 120, 342-349(2018). https://doi.org/10.1016/j.renene.2017.12.084
  37. Mehmood, A., Ali, B., Gong, M., Kim, G. M., Kim, J. Y., Bae, J. H., Kucernak, A., Kang, Y. M. and Nam, K. W., "Development of a Highly Active Fe-N-C Catalyst with the Preferential Formation of Atomic Iron Sites for Oxygen Reduction in Alkaline and Acidic Electrolytes," J. Colloid Interface Sci., 596, 148-157(2021). https://doi.org/10.1016/j.jcis.2021.03.081
  38. Wu, Z., Li, W., Xia, Y., Webley, P. and Zhao, D., "Ordered Mesoporous Graphitized Pyrolytic Carbon Materials: Synthesis, Graphitization, and Electrochemical Properties," J. Mater. Chem., 22(18), 8835-8845(2012). https://doi.org/10.1039/c2jm30192j