DOI QR코드

DOI QR Code

Calculating Data and Artificial Neural Network Capability

데이터와 인공신경망 능력 계산

  • Yi, Dokkyun (Seongsan Liberal Arts College, Daegu University) ;
  • Park, Jieun (Seongsan Liberal Arts College, Daegu University)
  • 이덕균 ;
  • 박지은
  • Received : 2021.11.01
  • Accepted : 2021.12.20
  • Published : 2022.01.31

Abstract

Recently, various uses of artificial intelligence have been made possible through the deep artificial neural network structure of machine learning, demonstrating human-like capabilities. Unfortunately, the deep structure of the artificial neural network has not yet been accurately interpreted. This part is acting as anxiety and rejection of artificial intelligence. Among these problems, we solve the capability part of artificial neural networks. Calculate the size of the artificial neural network structure and calculate the size of data that the artificial neural network can process. The calculation method uses the group method used in mathematics to calculate the size of data and artificial neural networks using an order that can know the structure and size of the group. Through this, it is possible to know the capabilities of artificial neural networks, and to relieve anxiety about artificial intelligence. The size of the data and the deep artificial neural network are calculated and verified through numerical experiments.

최근 인공지능의 다양한 활용은 기계학습의 딥 인공신경망 구조를 통해 가능해졌으며 인간과 같은 능력을 보여주고 있다. 불행하게도 딥 구조의 인공신경망은 아직 정확한 해석이 이루어지고 있지 못하고 있다. 이러한 부분은 인공지능에 대한 불안감과 거부감으로 작용하고 있다. 우리는 이러한 문제 중에서 인공신경망의 능력 부분을 해결한다. 인공신경망 구조의 크기를 계산하고, 그 인공신경망이 처리할 수 있는 데이터의 크기를 계산해 본다. 계산의 방법은 수학에서 쓰이는 군의 방법을 사용하여 데이터와 인공신경망의 크기를 군의 구조와 크기를 알 수 있는 Order를 이용하여 계산한다. 이를 통하여 인공신경망의 능력을 알 수 있으며, 인공지능에 대한 불안감을 해소할 수 있다. 수치적 실험을 통하여 데이터의 크기와 딥 인공신경망을 계산하고 이를 검증한다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF-2017R1E1A1A03070311)

References

  1. K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: NV, pp. 770-778, 2016.
  2. I. Goodfellow, Y. Bengio, and A. Courville, "Regularization for deep learning," in Deep Learning, Cambridge : MIT Press, 2016.
  3. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-CAM: Visual explanations from deep networks via gradient-based localization," in Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 618-626, 2017.
  4. M. W. Huang, C. W. Chen, W. C. Lin, S. W. Ke, and C. F. Tsai, "Svm and svm ensembles in breast cancer prediction," PLoS ONE, vol. 12, no. 1, pp. 1-14, Jan. 2017.
  5. A. Ng. The most frequently themes(AItimes) [Internet]. Available: http://www.aitimes.com/news/articleView.html?idxno=131542.
  6. B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro, "Exploring Generalization in Deep Learning," in the 31st Conference on Neural Information Processing Systems (NIPS), Long Beach: CA, 2017.
  7. Machine Learning Mastery. A Gentle Introduction to the Rectified Linear Unit (ReLU) [Internet]. Available: https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/?nowprocket=1.
  8. D. X. Zhou, "Deep distributed convolutional neural networks: Universality," Analysis and Applications, vol. 16, no. 6, pp. 895-919, 2018. https://doi.org/10.1142/s0219530518500124
  9. L. Serge, Algebra, New York, NY: Springer-Verlag, 2002.
  10. A. Krizhevsky, H. Suskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," Communications of the ACM, vol. 60, no. 6, pp. 84-90, Jun. 2017. https://doi.org/10.1145/3065386
  11. C. M. Bishop, Pattern Recognition and Machine Learning, New York, NY: Springer-Verlag, 2006.
  12. M. Kirby, Geometric Data Analysis, New York, NY: Wiley-Interscience, 2001.
  13. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998. https://doi.org/10.1109/5.726791
  14. G. Montavon, S. Bach, A. Binder, W. Samek, and K. Muller, "Explaining nonlinear classification decisions with deep taylor decomposition," Pattern Recognition, vol. 65, pp. 211-222, May. 2017. https://doi.org/10.1016/j.patcog.2016.11.008
  15. M. J. Kochenderfer and T. A. Wheeler, Algorithms for Optimization, Cambridge: The MIT Press, 2019.
  16. H. Zulkifli, Understanding Learning Rates and How It Improves Performance in Deep Learning. Towards Data Science [Internet]. Available: https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10.
  17. S. Lau. Learning Rate Schedules and Adaptive Learning Rate Methods for Deep Learning. Towards Data Science [Internet]. Available: https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1.
  18. G. Aurelien, Hands-On Machine Learning with Scikit-Learn and TensorFlow, O'Reilly Media Inc, 2017.