THE CLASS OF WEAK w-PROJECTIVE MODULES IS A PRECOVER

Hwankoo Kim, Lei Qiao, and Fanggui Wang

Abstract

Let R be a commutative ring with identity. Denote by w \mathcal{P}_{w} the class of weak w-projective R-modules and by $\mathrm{w} \mathcal{P}_{w}{ }^{\perp}$ the right orthogonal complement of $\mathrm{w} \mathcal{P}_{w}$. It is shown that ($\mathrm{w} \mathcal{P}_{w}, \mathrm{w} \mathcal{P}_{w}{ }^{\perp}$) is a hereditary and complete cotorsion theory, and so every R-module has a special weak w-projective precover. We also give some necessary and sufficient conditions for weak w-projective modules to be w-projective. Finally it is shown that when we discuss the existence of a weak w-projective cover of a module, it is enough to consider the w-envelope of the module.

1. Introduction

Throughout this paper R is always a commutative ring with identity. We first review some related concepts of w-modules. A finitely generated ideal J of R is called a $G V$-ideal if the homomorphism $R \rightarrow \operatorname{Hom}_{R}(J, R)$ induced by the inclusion map $J \hookrightarrow R$ is an isomorphism. Denote by GV (R) the set of GV-ideals of R. For any R-module N, set

$$
\operatorname{tor}_{\mathrm{GV}(R)}(N)=\{x \in N \mid \text { there exists } J \in \mathrm{GV}(R) \text { such that } J x=0\}
$$

which is a submodule of N, called the total $G V$-torsion submodule of N. If $\operatorname{tor}_{\mathrm{GV}(R)}(N)=N$, then N is called a $G V$-torsion module; if $\operatorname{tor}_{\mathrm{GV}(R)}(N)=0$, then N is called a $G V$-torsion-free module. A GV-torsion-free module N is called a w-module if $\operatorname{Ext}_{R}^{1}(R / J, N)=0$ for any $J \in \operatorname{GV}(R)$. Denote by \mathcal{W} the class of w-modules. The set of maximal w-ideals of R is denoted by w - $\operatorname{Max}(R)$. By [10, Theorem 6.2.15], an R-module T is a GV-torsion module if and only if $T_{\mathfrak{m}}=0$ for any $\mathfrak{m} \in w-\operatorname{Max}(R)$.

We also need the concept of strong w-modules. An R-module N is called a strong w-module if $\operatorname{Ext}_{R}^{k}(T, N)=0$ for any GV-torsion module T and any $k \geqslant 1$. For a discussion of strong w-modules, please refer to [12]. Denote by \mathcal{W}_{∞} the class of strong w-modules.

[^0]Since the w-operation on an integral domain can establish the concept of w modules, which allows the w-operation to work in the category of modules, in 1997 the concepts of w-projective modules and w-flat modules over an integral domain were first introduced [8]. In [4] the definition of w-flat modules was extended to any commutative ring as follows. A module M is called a w-flat module if the functor $M \otimes$ - preserves a w-exact sequence into a w-exact sequence. In [11] the concepts of the w-flat dimension (w - fd) of a module and the w-weak global dimension (w-w.gl.dim) of a ring have been successively introduced. Using the w-weak global dimension of a ring, a Prüfer v-multiplication domain (PVMD for short) can be characterized homologically as an integral domain of w-w.gl.dim $(R) \leqslant 1$.

In 2015, the concept of w-projective modules was also extended to any commutative ring [9]. Let M be an R-module. Set $L(M):=\left(M / \operatorname{tor}_{G V(R)}(M)\right)_{w}$. Then M is called a w-projective module if $\operatorname{Ext}_{R}^{1}(L(M), N)$ is a GV-torsion module for any w-module N. Denoted by \mathcal{P}_{w} the class of w-projective modules. One can use the w-projective modules to introduce the w-projective ideals. One hopes that some rings that used to be described by ideals can be described by the w-projective modules. For example, in [11] it is proved that an integral domain R is a PVMD if and only if every finitely generated submodule of a projective module is w-projective. As we all know, an integral domain R is a Dedekind domain if and only if each nonzero ideal is invertible; R is a Krull domain if and only if each nonzero ideal is w-invertible. Therefore, in the above sense, Krull domains can actually be considered as w-Dedekind domains. But a Dedekind domain is exactly an integral domain with global dimension at most 1 , in other words, every submodule of a projective module is projective. In [14], the authors can only prove that an integral domain R is a Krull domain if and only if every submodule of a finitely generated projective module is w projective. That is to say, the concept of w-projective modules cannot be used to obtain a complete characterization of the Krull domains corresponding to the Dedekind domains.

In order to give a complete homological characterization of Krull domains, the concept of weak w-projective modules is introduced in [12] with the aid of w-projective modules. Denote by ${ }_{R} \mathfrak{M}$ the category of all R-modules. Set

$$
\mathcal{P}_{w}^{\dagger \infty}=\left\{\begin{array}{l|l}
N \in \mathfrak{M} & \begin{array}{l}
N \text { is GV-torsion-free and } \\
\operatorname{Ext}_{R}^{k}(M, N)=0 \text { for any } M \in \mathcal{P}_{w} \text { and any } k \geqslant 1
\end{array}
\end{array} .\right.
$$

An R-module M is called a weak w-projective module if $\operatorname{Ext}_{R}^{1}(M, N)=0$ for any $N \in \mathcal{P}_{w}{ }^{\dagger}$. Denote by ${ }^{\boldsymbol{w}} \mathcal{P}_{w}$ the class of weak w-projective modules. In [12] the authors pointed out: Every w-projective module must be weak w projective. Conversely, every weak w-projective module of finite type and any weak w-projective ideal of an integral domain are all w-projective. At the same time, in [12] it is also given an example of a weak w-projective module over a UFD, which is not w-projective. In [12] it is also introduced the concept of the w-projective dimension (w-pd) of a module and the global w-projective
dimension (w-gl.dim) of a ring. With the help of the concepts of weak w projective modules and the global w-projective dimension of a ring, in [12] the authors give a homological characterization of Krull domains: An integral domain R is a Krull domain if and only if every submodule of a projective module is weak w-projective, equivalently, w-gl. $\operatorname{dim}(R) \leq 1$.

Let \mathcal{A} be a class of modules, M be an R-module, $A \in \mathcal{A}$, and $\varphi: A \rightarrow M$ be a homomorphism. Then (A, φ) is called an \mathcal{A}-precover of M if for any $A^{\prime} \in \mathcal{A}$ and any homomorphism $f: A^{\prime} \rightarrow M$, the following diagram

is commutative, equivalently, for any $A^{\prime} \in \mathcal{A}, \operatorname{Hom}_{R}\left(A^{\prime}, A\right) \xrightarrow{\varphi_{*}} \operatorname{Hom}_{R}\left(A^{\prime}, M\right) \rightarrow$ 0 is an exact sequence. Let (A, φ) be an \mathcal{A}-precover of a module M. When $A^{\prime}=A, f=\varphi$, and the above diagram is commutative, it is said that (A, φ) is an \mathcal{A}-cover of M if h is an isomorphism. If any R-module M has \mathcal{A}-precover (resp., cover), then we say that \mathcal{A} is a precover (resp, cover) class.

Let \mathcal{S} be a class of modules. Set

$$
{ }^{\perp} \mathcal{S}:=\left\{A \in \mathfrak{M} \mid \operatorname{Ext}_{R}^{1}(A, C)=0 \text { for any } C \in \mathcal{S}\right\}
$$

and

$$
\mathcal{S}^{\perp}:=\left\{B \in \mathfrak{M} \mid \operatorname{Ext}_{R}^{1}(C, B)=0 \text { for any } C \in \mathcal{S}\right\}
$$

are called the left orthogonal complement and the right orthogonal complement of \mathcal{S}, respectively [3]. Then obviously one has $\mathrm{w} \mathcal{P}_{w}={ }^{\perp}\left(\mathcal{P}_{w}^{\dagger \infty}\right)$. In [1], the authors introduced and studied the right orthogonal complement of the class of w-flat modules. Also set

$$
\perp_{\infty} \mathcal{S}:=\left\{A \in \mathfrak{M} \mid \operatorname{Ext}_{R}^{k}(A, C)=0 \text { for any } C \in \mathcal{S} \text { and any } k \geqslant 1\right\}
$$

and

$$
\mathcal{S}^{\perp \infty}:=\left\{B \in \mathfrak{M} \mid \operatorname{Ext}_{R}^{k}(C, B)=0 \text { for any } C \in \mathcal{S} \text { and any } k \geqslant 1\right\}
$$

In recent years, the cotorsion theory has received great attention from researchers. Let \mathcal{A}, \mathcal{B} be two classes of modules. Then $(\mathcal{A}, \mathcal{B})$ is called a cotorsion theory if $\mathcal{B}=\mathcal{A}^{\perp}$ and $\mathcal{A}={ }^{\perp} \mathcal{B}$. In addition, $(\mathcal{A}, \mathcal{B})$ is called a hereditary cotorsion theory if whenever $0 \rightarrow A_{1} \rightarrow A \rightarrow A_{2} \rightarrow 0$ is exact with $A, A_{2} \in \mathcal{A}$, one has $A_{1} \in \mathcal{A}$. And $(\mathcal{A}, \mathcal{B})$ is called a complete cotorsion theory if for any R-module M, there is an exact sequence $0 \rightarrow K \rightarrow A \rightarrow M \rightarrow 0$ with $A \in \mathcal{A}$ and $K \in \mathcal{B}$. When a formulated pair $(\mathcal{A}, \mathcal{B})$ of modules becomes a cotorsion pair, the classical homology method can be used very smoothly to characterize rings and modules. For the projective modules, a well-known theorem of Kaplansky states that a projective module over an arbitrary ring is a direct sum of countably generated projective modules. In 2020, Wang and Qiao established the w-version of Kaplansky's theorem [13]: If M is a w-projective w-module, then M has a w-projective w - \aleph_{0}-continuous ascending chain (see the definition
later). Using this result, this article obtains the main result: $\left(\mathrm{w} \mathcal{P}_{w}, \mathrm{w} \mathcal{P}_{w}{ }^{\perp}\right)$ is a hereditary and complete cotorsion theory, and so every module has a special weak w-projective precover.

2. Basic results

Denoted by $\mathcal{F T}$ the class of GV-torsion-free modules. Let \mathcal{S} be a class of modules. Define:

$$
\begin{aligned}
\mathcal{S}^{\dagger} & :=\mathcal{S}^{\perp} \cap \mathcal{F} \mathcal{T} \\
& =\left\{N \in \mathfrak{M} \mid N \text { is GV-torsion-free and } \operatorname{Ext}_{R}^{1}(M, N)=0 \text { for any } M \in \mathcal{S}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathcal{S}^{\dagger \infty}:=\mathcal{S}^{\perp_{\infty}} \cap \mathcal{F} \mathcal{T} \\
& =\left\{\begin{array}{l|l}
N \in \mathfrak{M} & \begin{array}{l}
N \text { is GV-torsion-free and } \\
\operatorname{Ext}_{R}^{k}(M, N)=0 \text { for any } M \in \mathcal{S} \text { and any } k \geqslant 1
\end{array}
\end{array}\right\} .
\end{aligned}
$$

Set

$$
\operatorname{GV}(R)^{*}:=\{R / J \mid J \in \operatorname{GV}(R)\} .
$$

Obviously $\operatorname{GV}(R)^{*}$ is a set of modules.
Proposition 2.1. Let $\mathcal{S}, \mathcal{S}_{1}$ be classes of modules. Then:
(1) $\mathcal{S} \subseteq{ }^{\perp}\left(\mathcal{S}^{\dagger \infty}\right) \subseteq{ }^{\perp}\left(\mathcal{S}^{\dagger}\right)$.
(2) If $\mathcal{S} \subseteq \mathcal{S}_{1}$, then $\mathcal{S}_{1}^{\dagger} \subseteq \mathcal{S}^{\dagger}$ and $\mathcal{S}_{1}^{\dagger \infty} \subseteq \mathcal{S}^{\dagger}$.
(3) $\left(\mathcal{S} \cup \mathcal{S}_{1}\right)^{\dagger}=\mathcal{S}^{\dagger} \cap \mathcal{S}_{1}^{\dagger}$.

Proof. These are obvious.
For $k \geqslant 1$, set
$\mathcal{W}_{k}:=\left\{N \in \mathcal{F} \mathcal{T} \mid \operatorname{Ext}_{R}^{i}(R / J, N)=0\right.$ for any $J \in \operatorname{GV}(R)$ and any $\left.1 \leqslant i \leqslant k\right\}$.
By convention, we set $\mathcal{W}_{0}:=\mathcal{F} \mathcal{T}$. A module N is called a w_{k}-module if $N \in \mathcal{W}_{k}$. It is known that a GV-torsion-free module N is a w-module if and only if $\operatorname{Ext}_{R}^{1}(C, N)=0$ for any GV-torsion-module C ([10, Theorem 6.2.7]).

Lemma 2.2. (1) If $1 \leqslant i \leqslant k$, then $\mathcal{W}_{k} \subseteq \mathcal{W}_{i}$.
(2) \mathcal{W}_{k} is closed under extensions.
(3) Let $N \in \mathcal{W}_{k}$. Then $N \in \mathcal{W}_{k+1}$ if and only if $\operatorname{Ext}_{R}^{k+1}(M, N)=0$ for any $G V$-torsion module M.

Proof. (1) and (2) are trivial. We will prove only (3). It is enough to show the necessity. Assume that $N \in \mathcal{W}_{k+1}$. If $k=0$, then $N \in \mathcal{W}_{1}=\mathcal{W}$. Thus by [10, Theorem 6.2.7], $\operatorname{Ext}_{R}^{1}(M, N)=0$ for any GV-torsion module M. Consider the case $k=1$. Let M be a GV-torsion module. Then for any $x \in M$, there exists $I_{x} \in \mathrm{GV}(R)$ such that $I_{x} x=0$. Set $F:=\bigoplus_{x \in M} R / I_{x}$. Then F is a GVtorsion module. Let e_{x} denote the element in F that takes the value $1+I_{x}$ at the component x, and the other components take the value 0 . Define $h: F \rightarrow M$
by $h\left(e_{x}\right)=x$. Then h is an epimorphism. Set $A:=\operatorname{Ker}(h)$. Then it follows from the exact sequence $0=\operatorname{Ext}_{R}^{1}(A, N) \rightarrow \operatorname{Ext}_{R}^{2}(M, N) \rightarrow \operatorname{Ext}_{R}^{2}(F, N)=0$ that $\operatorname{Ext}_{R}^{2}(M, N)=0$. Now the assertion follows by induction.
Proposition 2.3. The following are equivalent for a GV-torsion-free module N.
(1) $N \in \mathcal{W}_{\infty}$.
(2) $\operatorname{Ext}_{R}^{i}(R / J, N)=0$ for any $J \in \operatorname{GV}(R)$ and any $i \geqslant 1$.

Proof. (1) $\Rightarrow(2)$ This is trivial.
$(2) \Rightarrow(1)$ Let $k \geqslant 1$ and set

$$
\mathcal{W}_{k}^{\prime}:=\left\{\begin{array}{l|l}
N \in \mathcal{F} \mathcal{T} & \begin{array}{l}
\operatorname{Ext}_{R}^{i}(M, N)=0 \text { for any GV-torsion module } M \\
\text { and any } 1 \leqslant i \leqslant k
\end{array}
\end{array}\right\} .
$$

By Lemma 2.2, $\mathcal{W}_{k}^{\prime}=\mathcal{W}_{k}$. Thus $N \in \bigcap_{k=1}^{\infty} \mathcal{W}_{k}^{\prime}=\mathcal{W}_{\infty}$.
Let M and N be R-modules. A homomorphism $f: M \rightarrow N$ is called a w monomorphism (resp., a w-epimorphism, a w-isomorphism) if $f_{\mathfrak{m}}: M_{\mathfrak{m}} \rightarrow N_{\mathfrak{m}}$ is a monomorphism (resp., an epimorphism, an isomorphism) for any maximal w-ideal \mathfrak{m} of R. And M is said to be w-isomorphic to N provided that there exist an R-module L and two w-isomorphisms $f: L \rightarrow M$ and $g: L \rightarrow N$.
Theorem 2.4. Let \mathcal{S} be a class of modules such that $\mathcal{S} \subseteq \mathcal{F} \mathcal{T}$. Set $\mathcal{A}:={ }^{\perp} \mathcal{S}$. Then the following are equivalent.
(1) \mathcal{A} is closed under w-isomorphisms.
(2) $\operatorname{GV}(R) \cup \mathrm{GV}(R)^{*} \subseteq \mathcal{A}$.
(3) $\mathcal{S} \subseteq \mathcal{W}_{2}$.

Proof. (1) $\Rightarrow(2)$ Let $J \in \operatorname{GV}(R)$. Since $R \in \mathcal{A}$ and J and R are w-isomorphic, it follows that $J \in \mathcal{A}$. Also since R / J and 0 are w-isomorphic, it follows that $R / J \in \mathcal{A}$.
$(2) \Rightarrow(3)$ Let $N \in \mathcal{S}$. Then $\operatorname{Ext}_{R}^{1}(R / J, N)=0$ and $\operatorname{Ext}_{R}^{1}(J, N)=0$ for any $J \in \operatorname{GV}(R)$. Thus N is a w_{2}-module. Therefore $\mathcal{S} \subseteq \mathcal{W}_{2}$.
$(3) \Rightarrow(1)$ Let $f: M \rightarrow M^{\prime}$ be a w-isomorphism. By [10, Proposition 6.3.4], there exist a module B and exact sequences $0 \rightarrow A \rightarrow M \rightarrow B \rightarrow 0$ and $0 \rightarrow B \rightarrow M^{\prime} \rightarrow C \rightarrow 0$, where A and C are GV-torsion modules. If $M \in \mathcal{A}$, then for any $N \in \mathcal{S}$ it follows from the exact sequence $0=\operatorname{Hom}_{R}(A, N) \rightarrow$ $\operatorname{Ext}_{R}^{1}(B, N) \rightarrow \operatorname{Ext}_{R}^{1}(M, N)=0$ that $\operatorname{Ext}_{R}^{1}(B, N)=0$. Again by the exact sequence $0=\operatorname{Ext}_{R}^{1}(C, N) \rightarrow \operatorname{Ext}_{R}^{1}\left(M^{\prime}, N\right) \rightarrow \operatorname{Ext}_{R}^{1}(B, N)=0$ it follows that $\operatorname{Ext}_{R}^{1}\left(M^{\prime}, N\right)=0$, that is, $M^{\prime} \in \mathcal{A}$.

On the other hand, assume that $M^{\prime} \in \mathcal{A}$. By Lemma 2.2, $\operatorname{Ext}_{R}^{2}(C, N)=0$. By the exact sequence $0=\operatorname{Ext}_{R}^{1}\left(M^{\prime}, N\right) \rightarrow \operatorname{Ext}_{R}^{1}(B, N) \rightarrow \operatorname{Ext}_{R}^{2}(C, N)=0$ it follows that $\operatorname{Ext}_{R}^{1}(B, N)=0$. Also by the exact sequence $0=\operatorname{Ext}_{R}^{1}(B, N) \rightarrow$ $\operatorname{Ext}_{R}^{1}(M, N) \rightarrow \operatorname{Ext}_{R}^{1}(A, N)=0$, it follows that $\operatorname{Ext}_{R}^{1}(M, N)=0$, i.e., $M \in \mathcal{A}$. Therefore \mathcal{A} is closed under w-isomorphisms.

Corollary 2.5. Let \mathcal{S} be a class of modules. Set $\mathcal{A}:={ }^{\perp} \mathcal{S}$. If $\mathcal{S} \subseteq \mathcal{W}_{\infty}$, then \mathcal{A} is closed under w-isomorphisms.

Proof. This follows directly from Theorem 2.4 and the fact that $\mathcal{W}_{\infty} \subseteq \mathcal{W}_{2}$.
Example 2.6. (1) It is easy to see that $\left(\operatorname{GV}(R)^{*}\right)^{\dagger}=\mathcal{W}$.
(2) By Proposition 2.3, $\left(\mathrm{GV}(R)^{*}\right)^{\dagger}=\mathcal{W}_{\infty}$.
(3) By Theorem 2.4, $\left(\mathrm{GV}(R)^{*} \cup \mathrm{GV}(R)\right)^{\dagger}=\mathcal{W}_{2}$.

Proposition 2.7. Let \mathcal{S} be a class of modules satisfying $\operatorname{GV}(R)^{*} \subseteq \mathcal{S}$. Then:
(1) $\mathcal{S}^{\dagger} \subseteq \mathcal{W}$ and $\mathcal{S}^{\dagger} \subseteq \subseteq \mathcal{W}_{\infty}$.
(2) If $\overline{\mathrm{GV}}(R) \subseteq \mathcal{S}$, then $\mathcal{S}^{\dagger} \subseteq \mathcal{W}_{2}$.

Proof. This follows immediately from Example 2.6.

3. The class of weak w-projective modules is a precover

Let \mathcal{A} be a class of modules and M be an R-module. If there is a continuous ascending chain of submodules of M :

$$
\begin{equation*}
0=M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M_{\alpha} \subseteq M_{\alpha+1} \subseteq \cdots \subseteq M_{\lambda}=M \tag{3.1}
\end{equation*}
$$

such that $M_{\alpha+1} / M_{\alpha} \in \mathcal{A}$ for any $\alpha<\lambda$, then M is called an \mathcal{A}-filtered module. A continuous ascending chain (3.1) is called an \mathcal{A}-filtration of M.

In order to determine when $\left(\mathcal{S}, \mathcal{S}^{\perp}\right)$ is a complete cotorsion theory, the following lemma is very effective and will be used later.

Lemma 3.1 (Eklof-Trlifaj). Let \mathcal{S} be a set of modules. Then:
(1) Let N be an R-module. Then there exists a short exact sequence $0 \rightarrow$ $N \rightarrow Q \rightarrow A \rightarrow 0$, where $Q \in \mathcal{S}^{\perp}$ and A is an \mathcal{S}-filtered module, and thus $A \in{ }^{\perp}\left(\mathcal{S}^{\perp}\right)$.
(2) $\left({ }^{\perp}\left(\mathcal{S}^{\perp}\right), \mathcal{S}^{\perp}\right)$ is a complete cotorsion theory.

Proof. See [2] or [7, Theorem 2.2].
In order to make Lemma 3.1 apply to the context of a class of related modules, we make corresponding modifications to it, but note that the idea belongs to Eklof-Trlifaj essentially.

Lemma 3.2. Let $\mathcal{S}=\operatorname{GV}(R)^{*} \cup \mathcal{S}_{1}$ be a set of modules, where $\mathcal{S}_{1} \subseteq \mathcal{F} \mathcal{T}$.
(1) Let N be a $G V$-torsion-free module. Then there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow N \rightarrow Q \rightarrow A \rightarrow 0 \tag{3.2}
\end{equation*}
$$

where $Q \in \mathcal{S}^{\dagger}$ and A is an \mathcal{S}-filtered module such that $A \in{ }^{\perp}\left(\mathcal{S}^{\dagger}\right)$.
(2) Let M be an R-module. Then there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow B \rightarrow P \rightarrow M \rightarrow 0 \tag{3.3}
\end{equation*}
$$

where $P \in{ }^{\perp}\left(\mathcal{S}^{\dagger}\right)$ and $B \in \mathcal{S}^{\dagger}$.

Proof. (1) Set $X:=\bigoplus_{S \in \mathcal{S}_{1}} S$ and $Y:=\underset{J \in \mathrm{GV}(R)}{\bigoplus} R / J$. Then X is a GV-torsionfree module and Y is a GV-torsion module. Set $S=X \oplus Y$. Then $\mathcal{S}^{\perp}=\{S\}^{\perp}$. Thus we may assume that \mathcal{S} is the class of modules composed of the fixed module S and its direct sums. Let $0 \rightarrow K_{1} \xrightarrow{\mu_{1}} F_{1} \rightarrow X \rightarrow 0$ and $0 \rightarrow K_{2} \xrightarrow{\mu_{2}}$ $F_{2} \rightarrow Y \rightarrow 0$ be exact sequences, where F_{1} and F_{2} are free modules. Set $F:=F_{1} \oplus F_{2}$ and $K:=K_{1} \oplus K_{2}$. Then $0 \rightarrow K \xrightarrow{\mu} F \rightarrow S \rightarrow 0$ is an exact sequence, where $\mu:=\mu_{1} \oplus \mu_{2}$. Since X is GV-torsion-free, K_{1} is a w-module. Since Y is GV-torsion, we have $\left(K_{2}\right)_{w}=F_{2}$

Take a regular cardinal λ so that K has a generating system Z with $|Z|<\lambda$.
Set $Q_{0}:=N$. Then Q_{0} is GV-torsion-free. For $\alpha<\lambda$, if Q_{α} has been constructed, select a free module F_{α}^{\prime} and an epimorphism $\delta_{\alpha}: F_{\alpha}^{\prime} \rightarrow Q_{\alpha}$. Set $I_{\alpha}:=\operatorname{Hom}_{R}\left(K, Q_{\alpha}\right)$ to be a new index set and define $\mu_{\alpha}: K^{\left(I_{\alpha}\right)} \rightarrow F^{\left(I_{\alpha}\right)}$ as the homomorphism of direct sums, which is induced by μ. Then μ_{α} is a monomorphism and $\operatorname{Coker}\left(\mu_{\alpha}\right)=S^{\left(I_{\alpha}\right)}$.

Define $\varphi_{\alpha}: K^{\left(I_{\alpha}\right)} \oplus F_{\alpha}^{\prime}=\left(\underset{f \in I_{\alpha}}{\bigoplus_{f}} K_{f}\right) \oplus F_{\alpha}^{\prime} \rightarrow Q_{\alpha}$, where $K_{f}=K$, by $\varphi_{\alpha}\left(\left[u_{f}\right], z\right)=\sum_{f \in I_{\alpha}} f\left(u_{f}\right)+\delta_{\alpha}(z)$, where $u_{f} \in K_{f}, z \in F_{\alpha}^{\prime}$. Since δ_{α} is an epimorphism, so is φ_{α}. In addition, for any $f \in I_{\alpha}$, let $i_{f}: K \rightarrow K^{\left(I_{\alpha}\right)}$ and $j_{f}: F \rightarrow F^{\left(I_{\alpha}\right)}$ be the natural imbeddings. Then one has

$$
\begin{equation*}
f=\varphi_{\alpha} i_{f} \quad \text { and } \quad j_{f} \mu=\mu_{\alpha} i_{f} \tag{3.4}
\end{equation*}
$$

Now assume that if $\beta \leqslant \alpha$, then Q_{β} has been constructed (if α is a limit ordinal, set $Q_{\alpha}=\bigcup_{\beta<\alpha} Q_{\beta}$), in particular, Q_{α} has been constructed. Construct the following pushout diagram:

One gets $Q_{\alpha+1}$. At this time ψ_{α} is an epimorphism. As you can see from the above diagram, if Q_{α} is a GV-torsion-free module, then $\operatorname{Ker}\left(\psi_{\alpha}\right)=\operatorname{Ker}\left(\varphi_{\alpha}\right)$ is a w-module, and thus $Q_{\alpha+1}$ is also a GV-torsion-free module. Hence by a transfinite induction, we see that each Q_{α} is a GV-torsion-free module.

Set $Q:=\bigcup_{\alpha<\lambda} Q_{\alpha}=\underset{\alpha<\lambda}{\lim } Q_{\alpha}$. Then Q is a GV-torsion-free module. Set $A:=Q / N$ and $A_{\alpha}:=Q_{\alpha} / N$. Then $A_{\alpha+1} / A_{\alpha} \cong Q_{\alpha+1} / Q_{\alpha} \cong S^{\left(I_{\alpha}\right)}$. Since $Q=\bigcup_{\alpha<\lambda} Q_{\alpha}$, one gets that $A=\bigcup_{\alpha<\lambda} A_{\alpha}$. Thus A is an \mathcal{S}-filtered module, and thus one has $A \in{ }^{\perp}\left(\mathcal{S}^{\perp}\right)$. Since $\mathcal{S}^{\dagger} \subseteq \mathcal{S}^{\perp}$, one has $A \in{ }^{\perp}\left(\mathcal{S}^{\dagger}\right)$.

Let us prove that $Q \in \mathcal{S}^{\perp}$. For this, it is sufficient to prove that μ^{*} : $\operatorname{Hom}_{R}(F, Q) \rightarrow \operatorname{Hom}_{R}(K, Q)$ is an epimorphism. Let $g: K \rightarrow Q$ be a homomorphism. Since the generating system Z of K satisfies $|Z|<\lambda$ and $Q=$
$\bigcup_{\alpha<\lambda} Q_{\alpha}$, there exists an ordinal $\alpha<\lambda$ such that $\operatorname{Im}(g) \subseteq Q_{\alpha}$. Thus there exists a homomorphism $f: K \rightarrow Q_{\alpha}$ such that $g(x)=f(x)$ for any $x \in K$. By the pushout diagram above and (3.4), one has $\psi_{\alpha} j_{f} \mu=\psi_{\alpha} \mu_{\alpha} i_{f}=h_{\alpha} \varphi_{\alpha} i_{f}=h_{\alpha} f$. Define $\sigma: F \rightarrow Q$ by $\sigma(z)=\psi_{\alpha} j_{f}(z) \in Q_{\alpha+1} \subseteq Q$. Then one can verify directly that $g=\sigma \mu=\mu^{*}(\sigma)$. Thus μ^{*} is an epimorphism. Therefore $Q \in \mathcal{S}^{\perp} \cap \mathcal{F} \mathcal{T}=\mathcal{S}^{\dagger}$.
(2) Take an exact sequence $0 \rightarrow N \rightarrow F \rightarrow M \rightarrow 0$, where F is a projective module. Then N is a GV-torsion-free module. By (1), there is an exact sequence $0 \rightarrow N \rightarrow Q \rightarrow A \rightarrow 0$, where $Q \in \mathcal{S}^{\dagger}$ and $A \in{ }^{\perp}\left(\mathcal{S}^{\dagger}\right)$. Consider the following commutative diagram with two exact rows:

where the square diagrams in the upper left and lower corners are pushout diagrams. Since $F, A \in{ }^{\perp}\left(\mathcal{S}^{\dagger}\right)$, one has $P \in{ }^{\perp}\left(\mathcal{S}^{\dagger}\right)$. Therefore one gets the exact sequence (3.3) by taking $B:=Q$.

Let \mathcal{A} be a class of modules. Then an \mathcal{A}-precover $f: C \rightarrow M$ of M is said to be special if f is surjective and $\operatorname{Ker}(f) \in \mathcal{A}^{\perp}$. In other words, there is an exact sequence $0 \rightarrow K \rightarrow C \rightarrow M \rightarrow 0$ with $C \in \mathcal{A}$ and $K \in \mathcal{A}^{\perp}$.

Theorem 3.3. Let $\mathcal{S}=\operatorname{GV}(R)^{*} \cup \mathcal{S}_{1}$ be a set of modules, where $\mathcal{S}_{1} \subseteq \mathcal{F} \mathcal{T}$. Set $\mathcal{A}:={ }^{\perp}\left(\mathcal{S}^{\dagger}\right)$. If \mathcal{A} is closed under w-isomorphisms, then $\left(\mathcal{A}, \mathcal{A}^{\perp}\right)$ is a complete cotorsion theory.

Proof. Note that $\left(\mathcal{A}, \mathcal{A}^{\perp}\right)$ is the cotorsion theory generated by \mathcal{S}^{\dagger}. Let us prove that any module M has a special \mathcal{A}-precover.

By Lemma 3.2, there is an exact sequence (3.3), where $P \in \mathcal{A}$ and $B \in \mathcal{S}^{\dagger} \subseteq$ $\left({ }^{\perp}\left(\mathcal{S}^{\dagger}\right)\right)^{\perp}=\mathcal{A}^{\perp}$. Therefore M has a special \mathcal{A}-precover.

Proposition 3.4. Let \mathcal{S} be a class of modules such that $\mathrm{GV}(R)^{*} \subseteq \mathcal{S}$. Set $\mathcal{B}:={ }^{\perp}\left(\mathcal{S}^{\dagger} \infty\right)$. Then:
(1) $\mathcal{S}^{\dagger} \infty$ is closed under direct products, direct summands, and cokernels of monomorphisms.
(2) \mathcal{B} is closed under direct sums, direct summands, kernels of epimorphisms, and w-isomorphisms.
(3) $\mathcal{B}^{\dagger}=\mathcal{B}^{\dagger} \infty=\mathcal{S}^{\dagger} \infty$.

Proof. (1) Obviously $\mathcal{S}^{\dagger} \infty$ is closed under direct products and direct summands. Obviously $\mathcal{S}^{\perp_{\infty}}$ is closed under cokernels of monomorphisms. By [12, Proposition $2.2(2)$], \mathcal{W}_{∞} is also closed under cokernels of monomorphisms. Since $\mathcal{S}^{\dagger \infty}=\mathcal{S}^{\perp_{\infty}} \cap \mathcal{W}_{\infty}, \mathcal{S}^{\dagger} \infty$ is closed under cokernels of monomorphisms.
(2) Obviously \mathcal{B} is closed under direct sums and direct summands. By (1), \mathcal{B} is closed under kernels of epimorphisms. By Corollary 2.5, \mathcal{B} is closed under w-isomorphisms.
(3) Obviously we have that $\mathcal{S}^{\dagger} \infty \subseteq\left({ }^{\perp}\left(\mathcal{S}^{\dagger} \infty\right)\right)^{\perp} \cap \mathcal{F} \mathcal{T}=\mathcal{B}^{\dagger}$. Since \mathcal{B} is closed under kernels of epimorphisms, we have $\mathcal{B}^{\perp_{\infty}}=\mathcal{B}^{\perp}$. Thus we have $\mathcal{B}^{\dagger}=\mathcal{B}^{\perp_{\infty}} \cap \mathcal{F} \mathcal{T}=\mathcal{B}^{\dagger}$. Since $\mathcal{S} \subseteq \mathcal{B}$, it follows that $\mathcal{B}^{\dagger}=\mathcal{B}^{\dagger} \infty \subseteq \mathcal{S}^{\dagger}$. Therefore $\mathcal{B}^{\dagger}=\mathcal{S}^{\dagger}$.

Let M be an R-module. Then M is said to be $w-\aleph_{0}$-generated if there exist a countably generated free module F and a w-epimorphism $\phi: F \rightarrow M$.

Let M be a w-projective w-module. If there is a continuous ascending chain of w-projective w-submodules of M :

$$
0=M_{0} \subseteq M_{1}^{\prime} \subseteq M_{2}^{\prime} \subseteq \cdots \subseteq M_{\alpha}^{\prime} \subseteq \cdots \subseteq M_{\lambda}^{\prime}=M
$$

such that each factor $M_{\alpha+1}^{\prime} / M_{\alpha}^{\prime}$ is a w - \aleph_{0}-generated w-projective module, then it is said that M has a w-projective $w-\aleph_{0}$-continuous ascending chain. It follows from [13, Theorem 3.5] that if M is a w-projective w-module, then M has a w-projective $w-\aleph_{0}$-continuous ascending chain.
Proposition 3.5. (1) $w \mathcal{P}_{w}{ }^{\dagger}=\mathcal{P}_{w}^{\dagger}$.
(2) Let $\mathcal{S}=\operatorname{GV}(R)^{*} \cup \mathcal{S}_{1}$ be a set of modules, where \mathcal{S}_{1} is the class of w-projective $w-\aleph_{0}$-generated w-modules. Then $\mathcal{S}^{\dagger} \infty=\mathcal{P}_{w}^{\dagger}$.
(3) Let $\mathcal{S}=\operatorname{GV}(R)^{*} \cup \mathcal{S}_{1}$ be a set of modules, where $\mathcal{S}_{1}=\{R\}$. Then $\mathcal{S}^{\dagger}{ }^{\infty}=\mathcal{W}_{\infty}$.

Proof. (1) This follows immediately from Proposition 3.4 by setting $\mathcal{S}:=\mathcal{P}_{w}$.
(2) Since $\mathcal{S} \subseteq \mathcal{P}_{w}$, we have $\mathcal{P}_{w}^{\dagger \infty} \subseteq \mathcal{S}^{\dagger \infty}$. Let $N \in \mathcal{S}^{\dagger}$. For any w projective w-module P, by [13, Theorem 3.5] P is an \mathcal{S}_{1}-filtered module. Thus $\operatorname{Ext}_{R}^{i}(P, N)=0$ for any $i \geqslant 1$. By Proposition 2.7, N is a strong w-module. Let P be a w-projective module. Then one has the following two exact sequences:

$$
0 \rightarrow \operatorname{tor}_{\mathrm{GV}(R)}(P) \rightarrow P \rightarrow P / \operatorname{tor}_{\mathrm{GV}(R)}(P) \rightarrow 0
$$

and

$$
0 \rightarrow Q \rightarrow Q_{w} \rightarrow Q_{w} / Q \rightarrow 0
$$

where $Q:=P / \operatorname{tor}_{G V(R)}(P)$ is GV-torsion-free. Considering two long exact sequences induced by the above two exact sequences, it follows that $\operatorname{Ext}^{i}(P, N)=$ 0 for any w-projective module P and any $i \geqslant 1$ since \mathcal{P}_{w} is closed under w isomorphisms. Thus $N \in \mathcal{P}_{w}^{\perp \infty} \cap \mathcal{F} \mathcal{T}=\mathcal{P}_{w}^{\dagger \infty}$. Therefore $\mathcal{S}^{\dagger \infty}=\mathcal{P}_{w}^{\dagger \infty}$.
(3) This is trivial.

Theorem 3.6. Let $\mathcal{S}=\operatorname{GV}(R)^{*} \cup \mathcal{S}_{1}$ be a set of modules, where $\mathcal{S}_{1} \subseteq \mathcal{F} \mathcal{T}$. Set $\mathcal{B}:={ }^{\perp}\left(\mathcal{S}^{\dagger \infty}\right)$. Then $\left(\mathcal{B}, \mathcal{B}^{\perp}\right)$ is a hereditary and complete cotorsion theory.

Proof. For any $M \in \mathcal{S}$, fix a projective resolution of M. Let \mathcal{L}_{M} be the set of all syzygies of this projective resolution of M (including M itself as -1 syzygy). Set $\mathcal{L}:=\bigcup_{M \in \mathcal{S}} \mathcal{L}_{M}$. Then \mathcal{L} is again a set. Note that \mathcal{L} can be split into $\mathcal{L}=\operatorname{GV}(R)^{*} \cup \mathcal{L}_{1}$, where \mathcal{L}_{1} is the set of all syzygies of $M \in \mathcal{S}_{1}$ and all non-negative syzygies of $R / J \in \mathrm{GV}(R)^{*}$. Then $\mathcal{L}_{1} \subseteq \mathcal{F} \mathcal{T}$.

Let $N \in \mathcal{S}^{\perp \infty}$. For any $X \in \mathcal{L}$, there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow X \rightarrow P_{k} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0 \tag{3.5}
\end{equation*}
$$

where each P_{i} is a projective module and $M \in \mathcal{S}$. Thus one has $\operatorname{Ext}^{1}(X, N) \cong$ $\operatorname{Ext}_{R}^{k+2}(M, N)=0$. Therefore $N \in \mathcal{L}^{\perp}$.

On the other hand, let $N \in \mathcal{L}^{\perp}$. For any $Y \in \mathcal{S}$ and any $k \geqslant-1$, by considering the exact sequence (3.5), one has $\operatorname{Ext}_{R}^{k+2}(Y, N) \cong \operatorname{Ext}_{R}^{1}(X, N)=0$. Thus $N \in \mathcal{S}^{\perp_{\infty}}$. Therefore $\mathcal{L}^{\perp}=\mathcal{S}^{\perp_{\infty}}$. By Theorem 3.3, $\left(\mathcal{B}, \mathcal{B}^{\perp}\right)$ is a complete cotorsion theory. It follows by Proposition 3.4 that $\left(\mathcal{B}, \mathcal{B}^{\perp}\right)$ is a hereditary cotorsion theory.

Now we are ready to state the main theorem.
Theorem 3.7. ($\mathrm{w} \mathcal{P}_{w}, \mathrm{w} \mathcal{P}_{w}{ }^{\perp}$) is a hereditary and complete cotorsion theory, and so every module has a special weak w-projective precover.

Proof. Let \mathcal{S}_{1} be the collection of all w - \aleph_{0}-generated w-projective w-modules and set $\mathcal{S}:=\mathrm{GV}(R)^{*} \cup \mathcal{S}_{1}$. Since the collection of all \aleph_{0}-generated modules is a set, \mathcal{S} is also a set. By Proposition $3.5(2), \mathcal{S}^{\dagger}{ }^{\dagger}=\mathcal{W}_{\infty}$. By Theorem 3.6, ($\mathrm{w} \mathcal{P}_{w}, \mathrm{w} \mathcal{P}_{w}{ }^{\perp}$) is a hereditary and complete cotorsion theory.

According to $[5,6]$, we say that a module M is a w_{∞}-projective module if $\operatorname{Ext}_{R}^{1}(M, N)=0$ for any strong w-module N. Denote by $\mathcal{P}_{w_{\infty}}$ the class of w_{∞}-projective modules. Then $\mathcal{P}_{w_{\infty}}={ }^{\perp} \mathcal{W}_{\infty}$.

Theorem 3.8. $\left(\mathcal{P}_{w_{\infty}}, \mathcal{P}_{w_{\infty}}^{\perp}\right)$ is a hereditary and complete cotorsion theory.
Proof. Set $\mathcal{S}_{1}:=\{R\}$ and $\mathcal{S}:=\mathrm{GV}(R)^{*} \cup \mathcal{S}_{1}$. Then S is a set of modules. By Proposition 3.5, $\mathcal{S}^{\dagger \infty}=\mathcal{W}_{\infty}$. Thus $\mathcal{P}_{w_{\infty}}={ }^{\perp}\left(\mathcal{S}^{\dagger} \infty\right)$. Now the assertion follows by Theorem 3.6.

Proposition 3.9. Let M be a w-module. Then there is a special weak w projective precover of $M, \varphi: P \rightarrow M$ such that P is a w-module and $\operatorname{Ker}(\varphi) \in$ $\mathcal{P}_{w}^{\dagger \infty}$.

Proof. We use the notation \mathcal{L} as in the proof of Theorem 3.6 and the notation \mathcal{S} as in Proposition 3.5(2). Then $\mathcal{L}^{\dagger}=\mathcal{S}^{\dagger \infty}=\mathcal{P}_{w}^{\dagger \infty}$. Now the assertion follows by Theorem 3.6.

Recall that a class of modules is said to be hereditary if it is closed under isomorphic copies and submodules.
Lemma 3.10. If \mathcal{P}_{w} is a hereditary class of modules, then $\mathrm{w} \mathcal{P}_{w}{ }^{\dagger}=\mathcal{P}_{w}{ }^{\dagger}$.
Proof. If \mathcal{P}_{w} is a hereditary class of modules, then $\mathcal{P}_{w}^{\perp}=\mathcal{P}_{w}^{\perp \infty}$, and thus $\mathcal{P}_{w}^{\dagger}=\mathcal{P}_{w}^{\dagger}$. Now the assertion immediately follows by applying Proposition 3.5(1).

In the following result, we give some necessary and sufficient conditions for weak w-projective modules to be w-projective.

Theorem 3.11. The following conditions are equivalent for a ring R :
(1) Every weak w-projective module is w-projective.
(2) Every weak w-projective w-module is w-projective.
(3) $\left(\mathcal{P}_{w}, \mathcal{P}_{w}{ }^{\perp}\right)$ is a hereditary cotorsion theory and every w-module has a special \mathcal{P}_{w}-precover of a w-module.
Proof. $(1) \Rightarrow(3)$ This follows by Theorem 3.7 and Proposition 3.9.
$(3) \Rightarrow(2)$ Let M be a weak w-projective w-module. By assumption, there is an exact sequence $0 \rightarrow A \rightarrow P \rightarrow M \rightarrow 0$ such that P is a w-projective w-module and $A \in \mathcal{P}_{w}{ }^{\perp}$. Since any GV-torsion module is w-projective, A is a w-module. By Lemma 3.10, $A \in \mathcal{P}_{w}{ }^{\dagger}=\mathcal{P}_{w}{ }^{\dagger}$. $\operatorname{Thus~}_{\operatorname{Ext}}{ }_{R}^{1}(M, A)=0$, and so the above exact sequence is split. Therefore M is a w-projective module.
$(2) \Rightarrow(1)$ Let M be a weak w-projective module. It follows from [12, Corollary 2.7] that $L(M)$ is a weak w-projective module. By assumption, $L(M)$ is a w projective module. So M is a w-projective module.
Proposition 3.12. Let \mathcal{A} be a class of modules which is closed under w isomorphisms. Let M be a GV-torsion-free module and $\varphi: P \rightarrow M$ be an \mathcal{A}-cover. Then:
(1) P is a $G V$-torsion-free module.
(2) If φ is a special \mathcal{A}-cover and M is a w-module, then P is a w-module.

Proof. Set $T:=\operatorname{tor}_{\mathrm{GV}}(P)$ and $B:=P / T$. Then B is a GV-torsion-free module. Let $\pi: P \rightarrow B$ be a natural homomorphism. Since M is a GV-torsion-free module, φ induces a homomorphism $\psi: B \rightarrow M$ such that $\psi(\bar{x})=\varphi(x)$ for any $x \in F$, that is $\psi \pi=\varphi$. Since \mathcal{A} is closed under w-isomorphisms, it follows that $B \in \mathcal{A}$. Thus there is a homomorphism $h: B \rightarrow P$ such that $\varphi h=\psi$. So $\varphi h \pi=\psi \pi=\varphi$. Hence $h \pi$ is an isomorphism, and thus π is an isomorphism. Therefore P is a GV-torsion-free module.
(2) By (1), $A:=\operatorname{Ker}(\varphi)$ is also a GV-torsion-free module. Since \mathcal{A} is closed under w-isomorphisms, \mathcal{A} contains all GV-torsion modules. So A is a w-module. It follows from the exact sequence $0 \rightarrow A \rightarrow P \rightarrow M \rightarrow 0$ that P is a w module.

Theorem 3.13. Let \mathcal{A} be a class of modules closed under w-isomorphisms. Let M be a $G V$-torsion-free module. Then M has a special \mathcal{A}-cover if and only
if M_{w} has a special \mathcal{A}-cover. In addition, if M is $G V$-torsion-free and B is a special \mathcal{A}-cover of M, then B_{w} is a special \mathcal{A}-cover of M_{w}.

Proof. Let $\varphi: P \rightarrow M_{w}$ be an \mathcal{A}-cover of M_{w}. Set $T:=M_{w} / M$. Then T is a GV-torsion module. Let $\pi: M_{w} \rightarrow T$ be a natural homomorphism. Set $g:=\pi \varphi, A:=\operatorname{Ker}(\varphi)$, and $B:=\operatorname{Ker}(g)$. Then one has the following commutative diagram with exact rows and columns:

where $\varphi_{0}=\left.\varphi\right|_{B}$. It follows that $\varphi_{0}: B \rightarrow M$ is a special \mathcal{A}-precover of M.
Let $h: B \rightarrow B$ be a homomorphism such that $\varphi_{0} h=\varphi_{0}$. By [10, Theorem 6.3.2], h can be extended only to a homomorphism $h^{\prime}: P \rightarrow P$. So φh^{\prime} is an extension of $\varphi_{0} h$. Again by [10, Theorem 6.3.2], $\varphi h^{\prime}=\varphi$. So h^{\prime} is an isomorphism. Thus h is a monomorphism.

Let $x \in B$. Then there is $y \in P$ such that $h^{\prime}(y)=x$. So $g h^{\prime}(y)=\pi \varphi h^{\prime}(y)=$ $\pi \varphi(y)=g(y)$. Therefore $b:=y-h^{\prime}(y)=y-x \in \operatorname{Ker}(g)=B$. So $y=b+x \in B$, which results in $x=h(y)$. Thus h is an epimorphism. So h is an isomorphism, and thus $\varphi_{0}: B \rightarrow M$ is an \mathcal{A}-cover of M.

Conversely, let $\alpha: B \rightarrow M$ be an \mathcal{A}-cover of M and $P:=B_{w}$. It follows from Proposition 3.12(1) that B is a GV-torsion-free module. By [10, Theorem 6.3.2], α induces a unique homomorphism $\varphi: P \rightarrow M_{w}$. Set $T:=P / B$ and $T_{2}:=M_{w} / M$. Then T and T_{2} are GV-torsion modules. Thus one has the following commutative diagram with two exact rows:

Set $A:=\operatorname{Ker}(\alpha), D:=\operatorname{Ker}(\varphi)$, and $T_{1}:=\operatorname{Ker}(\beta)$. It follows from the snake lemma that one has the following exact sequence: $0 \rightarrow A \rightarrow D \rightarrow T_{1} \rightarrow 0$. Because $A \in \mathcal{A}^{\perp}$, one has $\operatorname{Ext}_{R}^{1}\left(T_{1}, A\right)=0$. Thus $D \cong A \oplus T_{1}$. Since D is GV-torsion-free, it follows that $T_{1}=0$, and so $D=A$. Since α is an epimorphism, φ is also an epimorphism, and thus β is an isomorphism. Hence φ is a special \mathcal{A}-precover of M_{w}.

Now let $h: P \rightarrow P$ be a homomorphism such that $\varphi h=\varphi$. Consider the following diagram with exact two rows:

Then $\pi h=\beta^{-1} \pi_{1} \varphi h=\beta^{-1} \pi_{1} \varphi=\pi$, and so the square diagram on the right is a commutative diagram. Thus $h_{0}: B \rightarrow B$ makes the left square a commutative diagram. Since α is the restriction of φ on B, one has $\alpha h_{0}=\alpha$. So h_{0} is an isomorphism, and thus h is an isomorphism. Therefore φ is an \mathcal{A}-cover of M_{w}.

Proposition 3.14. Let \mathcal{A} be a class of modules which is closed under w isomorphisms. Let M be an R-module and set $T:=\operatorname{tor}_{\mathrm{GV}}(M)$. If $\varphi: P \rightarrow$ M / T is a special \mathcal{A}-cover which makes the pullback diagram:

then $\alpha: P_{1} \rightarrow M$ is a special \mathcal{A}-cover.
Proof. Because P_{1} is w-isomorphic to P, one has $P_{1} \in \mathcal{A}$. Set $A:=\operatorname{Ker}(\varphi)$. Since $\operatorname{Ker}(\alpha) \cong A$, it follows that $\alpha: P_{1} \rightarrow M$ is a special \mathcal{A}-precover. Let $h: P_{1} \rightarrow P_{1}$ be a homomorphism such that $\alpha h=\alpha$. It follows from Proposition $3.12(1)$ that P is a GV-torsion-free module. Thus h induces a homomorphism $\bar{h}: P \rightarrow P$ such that $\varphi \bar{h}=\varphi$. So \bar{h} is an isomorphism. Thus one has the following commutative diagram with two exact rows:

So h is an isomorphism. Therefore α is a special \mathcal{A}-cover.
Remark 3.15. Taking $\mathcal{A}:=\mathrm{w} \mathcal{P}_{w}$, by Theorem 3.13 and Proposition 3.14, in order to discuss the existence of a weak w-projective cover of a module, just consider whether the w-module has a weak w-projective cover.

Acknowledgements. The authors would like to express their sincere thanks for the referee for his/her careful reading and helpful comments. This research was supported by the Academic Research Fund of Hoseo University in 2019 (20190817).

References

[1] F. A. A. Almahdi, M. Tamekkante, and R. A. K. Assaad, On the right orthogonal complement of the class of w-flat modules, J. Ramanujan Math. Soc. 33 (2018), no. 2, 159-175.
[2] P. C. Eklof and J. Trlifaj, How to make Ext vanish, Bull. London Math. Soc. 33 (2001), no. 1, 41-51. https://doi.org/10.1112/blms/33.1.41
[3] E. E. Enochs and O. M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter \& Co., Berlin, 2000. https://doi.org/10.1515/ 9783110803662
[4] H. Kim and F. Wang, On LCM-stable modules, J. Algebra Appl. 13 (2014), no. 4, 1350133, 18 pp. https://doi.org/10.1142/S0219498813501338
[5] Y. Y. Pu, W. Zhao, G. H. Tang, and F. G. Wang, w_{∞}-projective modules and Krull domains, Commun. Algebra, to appear.
[6] Y. Y. Pu, W. Zhao, G. H. Tang, and F. G. Wang, w_{∞}-Warfield cotorsion modules and Krull domains, Algebra Colloq., to appear.
[7] J. Trlifaj, Covers, envelopes, and cotorsion theories, Lecture notes for the workshop, Homological Methods in Module Theory, 10-16 September, Cortona, 2000.
[8] F. Wang, On w-projective modules and w-flat modules, Algebra Colloq. 4 (1997), no. 1, 111-120.
[9] F. Wang and H. Kim, Two generalizations of projective modules and their applications, J. Pure Appl. Algebra 219 (2015), no. 6, 2099-2123. https://doi.org/10.1016/j.jpaa. 2014.07.025
[10] F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
[11] F. Wang and L. Qiao, The w-weak global dimension of commutative rings, Bull. Korean Math. Soc. 52 (2015), no. 4, 1327-1338. https://doi.org/10.4134/BKMS.2015.52.4. 1327
[12] F. Wang and L. Qiao, A homological characterization of Krull domains II, Comm. Algebra 47 (2019), no. 5, 1917-1929. https://doi.org/10.1080/00927872.2018.1524007
[13] F. Wang and L. Qiao, A new version of a theorem of Kaplansky, Comm. Algebra 48 (2020), no. 8, 3415-3428. https://doi.org/10.1080/00927872.2020.1739289
[14] F. G. Wang and D. C. Zhou, A homological characterization of Krull domains, Bull. Korean Math. Soc. 55 (2018), no. 2, 649-657. https://doi.org/10.4134/BKMS.b170203

Hwankoo Kim
Division of Computer Engineering
Hoseo University
Asan 31499, Korea
Email address: hkkim@hoseo.edu
Lei Qiao
College of Mathematics and Software Science
Sichuan Normal University
Chengdu 610068, P. R. China
Email address: lqiao@sicnu.edu.cn
Fanggui Wang
College of Mathematics and Software Science
Sichuan Normal University
Chengdu 610068, P. R. China
Email address: wangfg2004@163.com

[^0]: Received February 21, 2021; Accepted October 14, 2021.
 2010 Mathematics Subject Classification. 13C10, 13D05, 13D07, 13D30.
 Key words and phrases. Weak w-projective precover, w-operation (theory), cotorsion theory.

