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THE CLASS OF WEAK w-PROJECTIVE MODULES
IS A PRECOVER

Hwankoo KiMm, Ll QIA0, AND FANGGUI WANG

ABSTRACT. Let R be a commutative ring with identity. Denote by wPy,
the class of weak w-projective R-modules and by wP,,* the right orthog-
onal complement of wP,,. It is shown that (W'Pw,W,PwJ‘) is a hereditary
and complete cotorsion theory, and so every R-module has a special weak
w-projective precover. We also give some necessary and sufficient con-
ditions for weak w-projective modules to be w-projective. Finally it is
shown that when we discuss the existence of a weak w-projective cover
of a module, it is enough to consider the w-envelope of the module.

1. Introduction

Throughout this paper R is always a commutative ring with identity. We
first review some related concepts of w-modules. A finitely generated ideal J
of R is called a GV-ideal if the homomorphism R — Hompg(J, R) induced by
the inclusion map J < R is an isomorphism. Denote by GV(R) the set of
GV-ideals of R. For any R-module N, set

torgy(r)(N) = {z € N | there exists J € GV(R) such that Jz = 0},

which is a submodule of N, called the total GV-torsion submodule of N. If
torgy(r)(IN) = N, then N is called a G'V-torsion module; if torgy gy (N) = 0,
then N is called a GV-torsion-free module. A GV-torsion-free module N is
called a w-module if Extk(R/J, N) = 0 for any J € GV(R). Denote by W the
class of w-modules. The set of maximal w-ideals of R is denoted by w-Max(R).
By [10, Theorem 6.2.15], an R-module T is a GV-torsion module if and only if
T = 0 for any m € w-Max(R).

We also need the concept of strong w-modules. An R-module N is called
a strong w-module if Ext%(T, N) = 0 for any GV-torsion module T" and any
k > 1. For a discussion of strong w-modules, please refer to [12]. Denote by
Wso the class of strong w-modules.
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Since the w-operation on an integral domain can establish the concept of w-
modules, which allows the w-operation to work in the category of modules, in
1997 the concepts of w-projective modules and w-flat modules over an integral
domain were first introduced [8]. In [4] the definition of w-flat modules was
extended to any commutative ring as follows. A module M is called a w-flat
module if the functor M ® — preserves a w-exact sequence into a w-exact se-
quence. In [11] the concepts of the w-flat dimension (w-fd) of a module and the
w-weak global dimension (w-w.gl.dim) of a ring have been successively intro-
duced. Using the w-weak global dimension of a ring, a Priifer v-multiplication
domain (PVMD for short) can be characterized homologically as an integral
domain of w-w.gl.dim(R) < 1.

In 2015, the concept of w-projective modules was also extended to any com-
mutative ring [9]. Let M be an R-module. Set L(M) := (M /torgy(r)(M))w.
Then M is called a w-projective module if Extg(L(M), N) is a GV-torsion mod-
ule for any w-module N. Denoted by P, the class of w-projective modules.
One can use the w-projective modules to introduce the w-projective ideals. One
hopes that some rings that used to be described by ideals can be described by
the w-projective modules. For example, in [11] it is proved that an integral
domain R is a PVMD if and only if every finitely generated submodule of a
projective module is w-projective. As we all know, an integral domain R is a
Dedekind domain if and only if each nonzero ideal is invertible; R is a Krull
domain if and only if each nonzero ideal is w-invertible. Therefore, in the above
sense, Krull domains can actually be considered as w-Dedekind domains. But a
Dedekind domain is exactly an integral domain with global dimension at most
1, in other words, every submodule of a projective module is projective. In
[14], the authors can only prove that an integral domain R is a Krull domain
if and only if every submodule of a finitely generated projective module is w-
projective. That is to say, the concept of w-projective modules cannot be used
to obtain a complete characterization of the Krull domains corresponding to
the Dedekind domains.

In order to give a complete homological characterization of Krull domains,
the concept of weak w-projective modules is introduced in [12] with the aid of
w-projective modules. Denote by g9 the category of all R-modules. Set

N is GV-torsion-free and
Ext]}%(M, N) =0 for any M € P, and any k > 1

An R-module M is called a weak w-projective module if Exth(M,N) = 0
for any N € P,f~. Denote by wP,, the class of weak w-projective modules.
In [12] the authors pointed out: Every w-projective module must be weak w-
projective. Conversely, every weak w-projective module of finite type and any
weak w-projective ideal of an integral domain are all w-projective. At the same
time, in [12] it is also given an example of a weak w-projective module over
a UFD, which is not w-projective. In [12] it is also introduced the concept
of the w-projective dimension (w-pd) of a module and the global w-projective

Pyie = {Neim
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dimension (w-gl.dim) of a ring. With the help of the concepts of weak w-
projective modules and the global w-projective dimension of a ring, in [12]
the authors give a homological characterization of Krull domains: An integral
domain R is a Krull domain if and only if every submodule of a projective
module is weak w-projective, equivalently, w-gl.dim(R) < 1.

Let A be a class of modules, M be an R-module, A € A, and ¢ : A — M be
a homomorphism. Then (A4, ¢) is called an A-precover of M if for any A’ € A
and any homomorphism f : A" — M, the following diagram

A/
2
AT M
is commutative, equivalently, for any A’ € A, Homp(A’, A) 25 Homp(A4', M) —
0 is an exact sequence. Let (A, ¢) be an A-precover of a module M. When
A" = A, f = ¢, and the above diagram is commutative, it is said that (A, ¢) is
an A-cover of M if h is an isomorphism. If any R-module M has A-precover

(resp., cover), then we say that A is a precover (resp, cover) class.
Let S be a class of modules. Set

1S :={A e M| Exth(A,C) =0 for any C € S}

A

and

St :={BeM|Exth(C,B) =0 for any C € S},
are called the left orthogonal complement and the right orthogonal complement
of S, respectively [3]. Then obviously one has wP,, = l(732:;”). In [1], the
authors introduced and studied the right orthogonal complement of the class
of w-flat modules. Also set

LS = {A e M| Exth(A,C) =0 for any C € S and any k > 1},
and
Ste .= {B e M| Exth(C,B) =0 for any C € S and any k > 1}.

In recent years, the cotorsion theory has received great attention from re-
searchers. Let A, B be two classes of modules. Then (A, B) is called a cotorsion
theory if B = A+ and A = +B. In addition, (A, B) is called a hereditary co-
torsion theory if whenever 0 — A; — A — As; — 0 is exact with A, Ay € A,
one has 41 € A. And (A, B) is called a complete cotorsion theory if for any
R-module M, there is an exact sequence 0 - K - A — M — 0 with Ae A
and K € B. When a formulated pair (A, B) of modules becomes a cotorsion
pair, the classical homology method can be used very smoothly to characterize
rings and modules. For the projective modules, a well-known theorem of Ka-
plansky states that a projective module over an arbitrary ring is a direct sum of
countably generated projective modules. In 2020, Wang and Qiao established
the w-version of Kaplansky’s theorem [13]: If M is a w-projective w-module,
then M has a w-projective w-Rg-continuous ascending chain (see the definition



144 H. KIM, L. QIAO, AND F. WANG

later). Using this result, this article obtains the main result: (WP, WPwL) is
a hereditary and complete cotorsion theory, and so every module has a special
weak w-projective precover.

2. Basic results

Denoted by FT the class of GV-torsion-free modules. Let S be a class of
modules. Define:
Sti=8tnrT
= {N € M| N is GV-torsion-free and Exty (M, N) = 0 for any M € S}
and
St 1= St nFT

_ { Nem N is GV-torsion-free and } '

Ext¥ (M, N) =0 for any M € S and any k > 1
Set
GV(R)":=={R/J | J € GV(R)}.
Obviously GV(R)* is a set of modules.

Proposition 2.1. Let §,81 be classes of modules. Then:
(1) S S +(ST=) € +(ST).
(2) IfSC Sy, then S] C ST and Sj= C Ste.
3) (SUS)t =8NSl
Proof. These are obvious. O
For k > 1, set
Wy := {N € FT | Ext(R/J,N) = 0 for any J € GV(R) and any 1 <i < k}.
By convention, we set Wy := FT. A module N is called a wy-module if

N € Wg. It is known that a GV-torsion-free module N is a w-module if and
only if Extk(C, N) = 0 for any GV-torsion-module C' ([10, Theorem 6.2.7]).

Lemma 2.2. (1) If 1 <i <k, then Wy, CW,.
(2) Wy, is closed under extensions.
(3) Let N € Wy. Then N € Wiy if and only if Exti™ (M, N) = 0 for
any GV-torsion module M.

Proof. (1) and (2) are trivial. We will prove only (3). It is enough to show the
necessity. Assume that N € Wy, If £ = 0, then N € W; = W. Thus by
[10, Theorem 6.2.7], Ext (M, N) = 0 for any GV-torsion module M. Consider
the case k = 1. Let M be a GV-torsion module. Then for any = € M, there

exists I, € GV(R) such that I,z = 0. Set F':= @@ R/I,. Then F is a GV-
zeM
torsion module. Let e, denote the element in F' that takes the value 1+, at the

component x, and the other components take the value 0. Define h : FF — M
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by h(ey) = z. Then h is an epimorphism. Set A := Ker(h). Then it follows
from the exact sequence 0 = Exth(A, N) — Ext%(M, N) — Ext3(F,N) = 0
that Ext% (M, N) = 0. Now the assertion follows by induction. O
Proposition 2.3. The following are equivalent for a GV-torsion-free module
N.

(1) N € W.

(2) Extw(R/J,N) =0 for any J € GV(R) and any i > 1.
(1) = (2) This is trivial.
= (1) Let k > 1 and set

Extz (M, N) = 0 for any GV-torsion module M
and any 1 <i < k ’

Proof.
(2)
W, = {N eFT

By Lemma 2.2, W, = Wy. Thus N € (72, W, = We. 0

Let M and N be R-modules. A homomorphism f: M — N is called a w-
monomorphism (resp., a w-epimorphism, a w-isomorphism) if fu : My — Ny
is & monomorphism (resp., an epimorphism, an isomorphism) for any maximal
w-ideal m of R. And M is said to be w-isomorphic to N provided that there
exist an R-module L and two w-isomorphisms f: L — M and g : L — N.

Theorem 2.4. Let S be a class of modules such that S C FT. Set A :=*S.
Then the following are equivalent.

(1) A is closed under w-isomorphisms.

(2) GV(R)UGV(R)* C A.

(3) SCTWs.

Proof. (1) = (2) Let J € GV(R). Since R € A and J and R are w-isomorphic,
it follows that J € A. Also since R/J and 0 are w-isomorphic, it follows that
R/J € A.

(2) = (3) Let N € S. Then Exty(R/J, N) =0 and Exty(J, N) = 0 for any
J € GV(R). Thus N is a wo-module. Therefore S C W.

(3) = (1) Let f : M — M’ be a w-isomorphism. By [10, Proposition 6.3.4],
there exist a module B and exact sequences 0 - A — M — B — 0 and
0 B— M — C — 0, where A and C are GV-torsion modules. If M € A,
then for any N € § it follows from the exact sequence 0 = Homp(A4,N) —
Exth(B,N) — Exth(M,N) = 0 that ExthL(B,N) = 0. Again by the exact
sequence 0 = Exth(C,N) — ExthL(M',N) — Exth(B,N) = 0 it follows that
Exth(M',N) =0, that is, M € A.

On the other hand, assume that M € A. By Lemma 2.2, Ext%(C, N) = 0.
By the exact sequence 0 = ExtL(M', N) — Exth(B, N) — Ext%(C,N) = 0 it
follows that Extk(B, N) = 0. Also by the exact sequence 0 = Exth(B, N) —
Exty (M, N) — Exty(A, N) =0, it follows that Exty(M, N) = 0, i.e., M € A.
Therefore A is closed under w-isomorphisms. (I
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Corollary 2.5. Let S be a class of modules. Set A:=*S. If S C Wy, then
A is closed under w-isomorphisms.

Proof. This follows directly from Theorem 2.4 and the fact that W, CW,. O

Example 2.6. (1) Tt is easy to see that (GV(R)*)t = W.
(2) By Proposition 2.3, (GV(R)*)T= = W...
(3) By Theorem 2.4, (GV(R)* UGV(R))" = W,.
Proposition 2.7. Let S be a class of modules satisfying GV(R)* C S. Then:
(1) ST CW and St~ C W,
(2) If GV(R) C S, then ST C W;.

Proof. This follows immediately from Example 2.6. U

3. The class of weak w-projective modules is a precover

Let A be a class of modules and M be an R-module. If there is a continuous
ascending chain of submodules of M:

(3.1) 0=MyCM C- - CMyC My C--CMy=M

such that M,1/M, € A for any o < A, then M is called an A-filtered module.
A continuous ascending chain (3.1) is called an A-filtration of M.

In order to determine when (S,S*) is a complete cotorsion theory, the fol-
lowing lemma is very effective and will be used later.
Lemma 3.1 (Eklof-Trlifaj). Let S be a set of modules. Then:

(1) Let N be an R-module. Then there exists a short exact sequence 0 —
N> Q— A—0, where Q € S+ and A is an S-filtered module, and
thus A € (S4).

(2) (+(81),81) is a complete cotorsion theory.

Proof. See [2] or [7, Theorem 2.2]. O

In order to make Lemma 3.1 apply to the context of a class of related mod-
ules, we make corresponding modifications to it, but note that the idea belongs
to Eklof-Trlifaj essentially.

Lemma 3.2. Let S = GV(R)* U Sy be a set of modules, where S; C FT.

(1) Let N be a GV-torsion-free module. Then there exists an ezact sequence
(3.2) 0-N—-Q—-A—0,

where Q € ST and A is an S-filtered module such that A € +(ST).
(2) Let M be an R-module. Then there exists an exact sequence

(3.3) 0—-B—P—M—0,
where P € 1(S") and B € ST.
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Proof. (1) Set X := @ SandY := & R/J. Then X is a GV-torsion-
Ses JeEGV(R)

free module and Y is a GV-torsion module. Set S = X ®Y. Then S+ = {S}+.
Thus we may assume that S is the class of modules composed of the fixed
module S and its direct sums. Let 0 — K3 , F; - X - 0and 0 — Ko LEN
F, — Y — 0 be exact sequences, where F} and F5 are free modules. Set
F:=F ®Fand K :== K; ®Ko. Then0 — K % F — S — 0 is an exact
sequence, where u = p1 D po. Since X is GV-torsion-free, K7 is a w-module.
Since Y is GV-torsion, we have (K3),, = F

Take a regular cardinal A so that K has a generating system Z with |Z] < A.

Set Qo := N. Then Qg is GV-torsion-free. For o < A, if @, has been
constructed, select a free module FC; and an epimorphism d,, : FO: — Q. Set
I, := Hompg(K,Q,) to be a new index set and define p, : KUe) 5 pla)
as the homomorphism of direct sums, which is induced by u. Then pu, is a
monomorphism and Coker(jo) = SU=).

Define ¢, : KU @ F, = (@ Kf) ® F, = Qa, where K; = K, by

f€la

oa(lug],2) = 3 f(ug) + 6a(z), where uy € K,z € F,. Since §, is an
fela

epimorphism, so is ¢,. In addition, for any f € I,, let iy : K — KUe) and
jr = FUe) be the natural imbeddings. Then one has

(3.4) I =¢ais and JfH = Half.

Now assume that if 8 < «, then Qg has been constructed (if « is a limit

ordinal, set Q, = | @), in particular, @, has been constructed. Construct
B<a
the following pushout diagram:

00— KU) g F, _Ha®l | p(la) @ F, ) 0

M M -
0 Qa Qa+1 Qa+1/Qa ——0

One gets Q1. At this time 9, is an epimorphism. As you can see from the
above diagram, if @, is a GV-torsion-free module, then Ker(1,) = Ker(p,)
is a w-module, and thus Q.41 is also a GV-torsion-free module. Hence by a
transfinite induction, we see that each @, is a GV-torsion-free module.
Set Q == U Qo = linga. Then @ is a GV-torsion-free module. Set
a< a<A
A:= Q/N and A, = Qu/N. Then Apy1/Aq = Quy1/Qua = SU~). Since

Q = U Qa, one gets that A = |J A,. Thus A is an S-filtered module, and
a<A a<

thus one has A € +(S*). Since ST C S*, one has 4 € +(S1).

Let us prove that Q € S*. For this, it is sufficient to prove that p* :
Hompg(F,Q) — Hompg(K,Q) is an epimorphism. Let g : K — @ be a ho-
momorphism. Since the generating system Z of K satisfies |Z] < A and Q =

ha
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U Qa, there exists an ordinal o < A such that Im(g) C Q. Thus there exists
a<
a homomorphism f : K — Q, such that g(z) = f(z) for any z € K. By the

pushout diagram above and (3.4), one has ¥ajrit = Yalialis = hapals = haf.
Define 0 : F — Q by 0(2) = ¥ajs(2) € Qa1 € Q. Then one can ver-
ify directly that ¢ = ou = p*(o). Thus p* is an epimorphism. Therefore
QeStNFT =8N

(2) Take an exact sequence 0 = N — F — M — 0, where F is a projec-
tive module. Then N is a GV-torsion-free module. By (1), there is an exact
sequence 0 = N — @Q — A — 0, where Q € ST and A € +(ST). Consider the
following commutative diagram with two exact rows:

P

0 N F M 0
L

0 Q P M 0
L
A A
b

where the square diagrams in the upper left and lower corners are pushout
diagrams. Since F, A € +(ST), one has P € +(S"). Therefore one gets the
exact sequence (3.3) by taking B := Q. O

Let A be a class of modules. Then an A-precover f : C' — M of M is said
to be special if f is surjective and Ker(f) € A*. In other words, there is an
exact sequence 0 -+ K — C — M — 0 with C € A and K € A*+.

Theorem 3.3. Let S = GV(R)*US; be a set of modules, where Sy C FT. Set
A= +(8"). If A is closed under w-isomorphisms, then (A, AY) is a complete
cotorsion theory.

Proof. Note that (A, A+) is the cotorsion theory generated by ST. Let us prove
that any module M has a special A-precover.
By Lemma 3.2, there is an exact sequence (3.3), where P € Aand B € ST C

(+ (ST))L = A*. Therefore M has a special A-precover. O

Proposition 3.4. Let S be a class of modules such that GV(R)* C S. Set
B:=+(ST=). Then:
(1) St is closed under direct products, direct summands, and cokernels of
monomorphisms.
(2) B is closed under direct sums, direct summands, kernels of epimor-

phisms, and w-isomorphisms.
(3) Bf = Bfx = St



WEAK w-PROJECTIVE MODULES 149

Proof. (1) Obviously ST is closed under direct products and direct summands.
Obviously S+ is closed under cokernels of monomorphisms. By [12, Propo-
sition 2.2(2)], W is also closed under cokernels of monomorphisms. Since
St = St~ NW,,, ST= is closed under cokernels of monomorphisms.

(2) Obviously B is closed under direct sums and direct summands. By (1),
B is closed under kernels of epimorphisms. By Corollary 2.5, B is closed under
w-isomorphisms.

(3) Obviously we have that Sfe C (J-(STOO))J' NFT = Bf. Since B is

closed under kernels of epimorphisms, we have Bt~ = BL. Thus we have
Bf = Ble N FT = Bf~. Since S C B, it follows that Bf = Bfe C Ste.
Therefore Bf = Sf. O

Let M be an R-module. Then M is said to be w-Rg-generated if there exist
a countably generated free module F' and a w-epimorphism ¢ : F' — M.

Let M be a w-projective w-module. If there is a continuous ascending chain
of w-projective w-submodules of M:

0=MyCM;{CM;C---CM,C---CM=M

such that each factor M, /M, is a w-Ro-generated w-projective module, then
it is said that M has a w-projective w-Rg-continuous ascending chain. It follows
from [13, Theorem 3.5] that if M is a w-projective w-module, then M has a
w-projective w-Rp-continuous ascending chain.

Proposition 3.5. (1) wP,' =Pl
(2) Let S = GV(R)* U Sy be a set of modules, where Sy is the class of
w-projective w-Ro-generated w-modules. Then ST~ = ’P;Lw.
(3) Let S = GV(R)* U Sy be a set of modules, where S; = {R}. Then
STee = Weo.

Proof. (1) This follows immediately from Proposition 3.4 by setting S := P,,.

(2) Since § C P, we have P:Ef’" C Stx. Let N € Sf~. For any w-
projective w-module P, by [13, Theorem 3.5] P is an S;-filtered module. Thus
Ext(P,N) = 0 for any i > 1. By Proposition 2.7, N is a strong w-module. Let
P be a w-projective module. Then one has the following two exact sequences:

O%torgv(R)(P) — P — P/torgv(R)(P) —0

and
0= Q — Qu— Qu/Q — 0,

where Q) := P/torgy(g)(P) is GV-torsion-free. Considering two long exact se-
quences induced by the above two exact sequences, it follows that EthR(P, N) =
0 for any w-projective module P and any i > 1 since P, is closed under w-
isomorphisms. Thus N € Pj,‘” NFT = PL“. Therefore Stee = PL“’.

(3) This is trivial. O
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Theorem 3.6. Let S = GV(R)* US; be a set of modules, where S; C FT.
Set B :=*+(ST=). Then (B,B') is a hereditary and complete cotorsion theory.

Proof. For any M € S, fix a projective resolution of M. Let Lj; be the set
of all syzygies of this projective resolution of M (including M itself as —1

syzygy). Set L := |J L. Then L is again a set. Note that £ can be split
MesS
into £L = GV(R)* U Ly, where £, is the set of all syzygies of M € §; and all

non-negative syzygies of R/J € GV(R)*. Then £ C FT.
Let N € Ste~. For any X € L, there exists an exact sequence

(3.5) 0-X—P,—--—P =P —M-—0,

where each P; is a projective module and M € S. Thus one has Ext (X, N) =
Ext%?(M, N) = 0. Therefore N € £*.

On the other hand, let N € £*. For any Y € S and any k > —1, by
considering the exact sequence (3.5), one has Ext%™ (Y, N) = Exth(X, N) = 0.
Thus N € S*=. Therefore L = S+=. By Theorem 3.3, (B, B+) is a complete
cotorsion theory. It follows by Proposition 3.4 that (B,B%) is a hereditary
cotorsion theory. ([l

Now we are ready to state the main theorem.

Theorem 3.7. (pr,WPwJ') is a hereditary and complete cotorsion theory,
and so every module has a special weak w-projective precover.

Proof. Let S be the collection of all w-Rg-generated w-projective w-modules
and set S := GV(R)* US;. Since the collection of all Rp-generated modules
is a set, S is also a set. By Proposition 3.5(2), St = W_,,. By Theorem 3.6,
(WP, WPwJ') is a hereditary and complete cotorsion theory. O

According to [5,6], we say that a module M is a ws-projective module if
Exth(M,N) = 0 for any strong w-module N. Denote by P,_. the class of
Woo-projective modules. Then P, = W

Theorem 3.8. (P.,_, Py _) is a hereditary and complete cotorsion theory.

Proof. Set & := {R} and § := GV(R)* US;. Then S is a set of modules. By
Proposition 3.5, St = W,,. Thus P, = +(ST=). Now the assertion follows
by Theorem 3.6. (]

Proposition 3.9. Let M be a w-module. Then there is a special weak w-
projective precover of M, ¢ : P — M such that P is a w-module and Ker(p) €

Pl

Proof. We use the notation £ as in the proof of Theorem 3.6 and the notation
S as in Proposition 3.5(2). Then £1 = St= = Pl>=. Now the assertion follows
by Theorem 3.6. (|
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Recall that a class of modules is said to be hereditary if it is closed under
isomorphic copies and submodules.

Lemma 3.10. If P, is a hereditary class of modules, then W’PU,T =P,k
Proof. If P,, is a hereditary class of modules, then P = Pl and thus

w
Pl = ’P;fﬁ“. Now the assertion immediately follows by applying Proposition
3.5(1). O

In the following result, we give some necessary and sufficient conditions for
weak w-projective modules to be w-projective.

Theorem 3.11. The following conditions are equivalent for a ring R:

(1) Every weak w-projective module is w-projective.

(2) Every weak w-projective w-module is w-projective.

(3) (Puw,Puw™) is a hereditary cotorsion theory and every w-module has a
special Py, -precover of a w-module.

Proof. (1)=(3) This follows by Theorem 3.7 and Proposition 3.9.

(3)=(2) Let M be a weak w-projective w-module. By assumption, there
is an exact sequence 0 - A — P — M — 0 such that P is a w-projective
w-module and A € P,,*. Since any GV-torsion module is w-projective, A is a
w-module. By Lemma 3.10, A € P, = P,t~. Thus Exth(M, A) = 0, and so
the above exact sequence is split. Therefore M is a w-projective module.

(2)=-(1) Let M be a weak w-projective module. It follows from [12, Corollary
2.7] that L(M) is a weak w-projective module. By assumption, L(M) is a w-
projective module. So M is a w-projective module. (]

Proposition 3.12. Let A be a class of modules which is closed under w-
isomorphisms. Let M be a GV-torsion-free module and ¢ : P — M be an
A-cover. Then:

(1) P is a GV-torsion-free module.
(2) If ¢ is a special A-cover and M is a w-module, then P is a w-module.

Proof. Set T := torgv(P) and B := P/T. Then B is a GV-torsion-free module.
Let w : P — B be a natural homomorphism. Since M is a GV-torsion-free
module, ¢ induces a homomorphism ¢ : B — M such that ¥(z) = ¢(x) for
any x € I, that is ¥m = ¢. Since A is closed under w-isomorphisms, it follows
that B € A. Thus there is a homomorphism & : B — P such that ¢h = . So
phm = ¢Ym = ¢. Hence hr is an isomorphism, and thus 7 is an isomorphism.
Therefore P is a GV-torsion-free module.

(2) By (1), A := Ker(yp) is also a GV-torsion-free module. Since A is closed
under w-isomorphisms, A contains all GV-torsion modules. So A is a w-module.
It follows from the exact sequence 0 — A — P — M — 0 that P is a w-
module. O

Theorem 3.13. Let A be a class of modules closed under w-isomorphisms.
Let M be a GV-torsion-free module. Then M has a special A-cover if and only
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if My, has a special A-cover. In addition, if M is GV-torsion-free and B is a
special A-cover of M, then By, is a special A-cover of M,,.

Proof. Let ¢ : P — M, be an A-cover of M,,. Set T := M, /M. Then
T is a GV-torsion module. Let 7 : M,, — T be a natural homomorphism.
Set g == mp, A = Ker(p), and B := Ker(g). Then one has the following
commutative diagram with exact rows and columns:

0 0
| |
A A
| |
0 B P T 0
) b
0 M M, T 0
| |
0 0

where o = ¢|p. It follows that ¢ : B — M is a special A-precover of M.

Let h : B — B be a homomorphism such that ¢gh = po. By [10, Theorem
6.3.2], h can be extended only to a homomorphism A’ : P — P. So @h' is
an extension of poh. Again by [10, Theorem 6.3.2], ph’ = ¢. So A’ is an
isomorphism. Thus A is a monomorphism.

Let x € B. Then there is y € P such that h'(y) = x. So gh'/(y) = 7oh/(y) =
mp(y) = g(y). Therefore b := y—h'(y) = y—x € Ker(g) = B. Soy = b+z € B,
which results in @ = h(y). Thus h is an epimorphism. So h is an isomorphism,
and thus g : B — M is an A-cover of M.

Conversely, let « : B — M be an A-cover of M and P := B,,. It follows
from Proposition 3.12(1) that B is a GV-torsion-free module. By [10, Theorem
6.3.2], a induces a unique homomorphism ¢ : P — M,,. Set T := P/B and
Ty := My /M. Then T and T are GV-torsion modules. Thus one has the
following commutative diagram with two exact rows:

0 B P ul T 0
e
0 M M, T, 0

Set A := Ker(a), D := Ker(p), and Ty := Ker(3). It follows from the snake
lemma that one has the following exact sequence: 0 - A — D — T; — 0.
Because A € A, one has Exth (71, A) = 0. Thus D = A® Ty. Since D is GV-
torsion-free, it follows that 77 = 0, and so D = A. Since « is an epimorphism,
 is also an epimorphism, and thus § is an isomorphism. Hence ¢ is a special
A-precover of M,,.
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Now let h : P — P be a homomorphism such that ¢h = ¢. Consider the
following diagram with exact two rows:

0 B P Ul T 0
ol b
0 B P T 0

Then 7h = B~ mph = 37 79 = 7, and so the square diagram on the right is a
commutative diagram. Thus hy : B — B makes the left square a commutative
diagram. Since « is the restriction of ¢ on B, one has ahg = a. So hg is
an isomorphism, and thus h is an isomorphism. Therefore ¢ is an A-cover of
M. O

Proposition 3.14. Let A be a class of modules which is closed under w-
isomorphisms. Let M be an R-module and set T = torqy(M). If ¢ : P —
M/T is a special A-cover which makes the pullback diagram:

0 T—> .p—" .p 0
H Jo e
0 T M =~ M/T 0,

then o : P, — M is a special A-cover.

Proof. Because P; is w-isomorphic to P, one has P; € A. Set A := Ker(yp).
Since Ker(a) = A, it follows that o : P — M is a special A-precover. Let
h: P, — P; be a homomorphism such that ah = «. It follows from Proposition
3.12(1) that P is a GV-torsion-free module. Thus h induces a homomorphism
h : P — P such that ph = . So h is an isomorphism. Thus one has the
following commutative diagram with two exact rows:

0 T Py P 0
| I "
0 T Py P 0
So h is an isomorphism. Therefore « is a special A-cover. O

Remark 3.15. Taking A := wP,, by Theorem 3.13 and Proposition 3.14, in
order to discuss the existence of a weak w-projective cover of a module, just
consider whether the w-module has a weak w-projective cover.
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