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THE CLASS OF WEAK w-PROJECTIVE MODULES

IS A PRECOVER

Hwankoo Kim, Lei Qiao, and Fanggui Wang

Abstract. Let R be a commutative ring with identity. Denote by wPw

the class of weak w-projective R-modules and by wPw
⊥ the right orthog-

onal complement of wPw. It is shown that (wPw,wPw
⊥) is a hereditary

and complete cotorsion theory, and so every R-module has a special weak
w-projective precover. We also give some necessary and sufficient con-

ditions for weak w-projective modules to be w-projective. Finally it is

shown that when we discuss the existence of a weak w-projective cover
of a module, it is enough to consider the w-envelope of the module.

1. Introduction

Throughout this paper R is always a commutative ring with identity. We
first review some related concepts of w-modules. A finitely generated ideal J
of R is called a GV-ideal if the homomorphism R → HomR(J,R) induced by
the inclusion map J ↪→ R is an isomorphism. Denote by GV(R) the set of
GV-ideals of R. For any R-module N , set

torGV(R)(N) = {x ∈ N | there exists J ∈ GV(R) such that Jx = 0},

which is a submodule of N , called the total GV-torsion submodule of N . If
torGV(R)(N) = N , then N is called a GV-torsion module; if torGV(R)(N) = 0,
then N is called a GV-torsion-free module. A GV-torsion-free module N is
called a w-module if Ext1R(R/J,N) = 0 for any J ∈ GV(R). Denote by W the
class of w-modules. The set of maximal w-ideals of R is denoted by w-Max(R).
By [10, Theorem 6.2.15], an R-module T is a GV-torsion module if and only if
Tm = 0 for any m ∈ w-Max(R).

We also need the concept of strong w-modules. An R-module N is called
a strong w-module if ExtkR(T,N) = 0 for any GV-torsion module T and any
k > 1. For a discussion of strong w-modules, please refer to [12]. Denote by
W∞ the class of strong w-modules.
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Since the w-operation on an integral domain can establish the concept of w-
modules, which allows the w-operation to work in the category of modules, in
1997 the concepts of w-projective modules and w-flat modules over an integral
domain were first introduced [8]. In [4] the definition of w-flat modules was
extended to any commutative ring as follows. A module M is called a w-flat
module if the functor M ⊗ − preserves a w-exact sequence into a w-exact se-
quence. In [11] the concepts of the w-flat dimension (w-fd) of a module and the
w-weak global dimension (w-w.gl.dim) of a ring have been successively intro-
duced. Using the w-weak global dimension of a ring, a Prüfer v-multiplication
domain (PVMD for short) can be characterized homologically as an integral
domain of w-w.gl.dim(R) 6 1.

In 2015, the concept of w-projective modules was also extended to any com-
mutative ring [9]. Let M be an R-module. Set L(M) := (M/torGV(R)(M))w.

Then M is called a w-projective module if Ext1R(L(M), N) is a GV-torsion mod-
ule for any w-module N . Denoted by Pw the class of w-projective modules.
One can use the w-projective modules to introduce the w-projective ideals. One
hopes that some rings that used to be described by ideals can be described by
the w-projective modules. For example, in [11] it is proved that an integral
domain R is a PVMD if and only if every finitely generated submodule of a
projective module is w-projective. As we all know, an integral domain R is a
Dedekind domain if and only if each nonzero ideal is invertible; R is a Krull
domain if and only if each nonzero ideal is w-invertible. Therefore, in the above
sense, Krull domains can actually be considered as w-Dedekind domains. But a
Dedekind domain is exactly an integral domain with global dimension at most
1, in other words, every submodule of a projective module is projective. In
[14], the authors can only prove that an integral domain R is a Krull domain
if and only if every submodule of a finitely generated projective module is w-
projective. That is to say, the concept of w-projective modules cannot be used
to obtain a complete characterization of the Krull domains corresponding to
the Dedekind domains.

In order to give a complete homological characterization of Krull domains,
the concept of weak w-projective modules is introduced in [12] with the aid of
w-projective modules. Denote by RM the category of all R-modules. Set

Pw†∞ =

{
N ∈M

∣∣∣∣ N is GV-torsion-free and

ExtkR(M,N) = 0 for any M ∈ Pw and any k > 1

}
.

An R-module M is called a weak w-projective module if Ext1R(M,N) = 0
for any N ∈ Pw†∞ . Denote by wPw the class of weak w-projective modules.
In [12] the authors pointed out: Every w-projective module must be weak w-
projective. Conversely, every weak w-projective module of finite type and any
weak w-projective ideal of an integral domain are all w-projective. At the same
time, in [12] it is also given an example of a weak w-projective module over
a UFD, which is not w-projective. In [12] it is also introduced the concept
of the w-projective dimension (w-pd) of a module and the global w-projective
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dimension (w-gl.dim) of a ring. With the help of the concepts of weak w-
projective modules and the global w-projective dimension of a ring, in [12]
the authors give a homological characterization of Krull domains: An integral
domain R is a Krull domain if and only if every submodule of a projective
module is weak w-projective, equivalently, w-gl.dim(R) ≤ 1.

Let A be a class of modules, M be an R-module, A ∈ A, and ϕ : A→M be
a homomorphism. Then (A,ϕ) is called an A-precover of M if for any A′ ∈ A
and any homomorphism f : A′ →M , the following diagram

A′

h

xx
f
��

A
ϕ // M

is commutative, equivalently, for anyA′ ∈ A, HomR(A′, A)
ϕ∗→ HomR(A′,M)→

0 is an exact sequence. Let (A,ϕ) be an A-precover of a module M . When
A′ = A, f = ϕ, and the above diagram is commutative, it is said that (A,ϕ) is
an A-cover of M if h is an isomorphism. If any R-module M has A-precover
(resp., cover), then we say that A is a precover (resp, cover) class.

Let S be a class of modules. Set

⊥S := {A ∈M | Ext1R(A,C) = 0 for any C ∈ S}
and

S⊥ := {B ∈M | Ext1R(C,B) = 0 for any C ∈ S},
are called the left orthogonal complement and the right orthogonal complement

of S, respectively [3]. Then obviously one has wPw = ⊥(P†∞w ). In [1], the
authors introduced and studied the right orthogonal complement of the class
of w-flat modules. Also set

⊥∞S := {A ∈M | ExtkR(A,C) = 0 for any C ∈ S and any k > 1},
and

S⊥∞ := {B ∈M | ExtkR(C,B) = 0 for any C ∈ S and any k > 1}.
In recent years, the cotorsion theory has received great attention from re-

searchers. Let A,B be two classes of modules. Then (A,B) is called a cotorsion
theory if B = A⊥ and A = ⊥B. In addition, (A,B) is called a hereditary co-
torsion theory if whenever 0 → A1 → A → A2 → 0 is exact with A,A2 ∈ A,
one has A1 ∈ A. And (A,B) is called a complete cotorsion theory if for any
R-module M , there is an exact sequence 0 → K → A → M → 0 with A ∈ A
and K ∈ B. When a formulated pair (A,B) of modules becomes a cotorsion
pair, the classical homology method can be used very smoothly to characterize
rings and modules. For the projective modules, a well-known theorem of Ka-
plansky states that a projective module over an arbitrary ring is a direct sum of
countably generated projective modules. In 2020, Wang and Qiao established
the w-version of Kaplansky’s theorem [13]: If M is a w-projective w-module,
then M has a w-projective w-ℵ0-continuous ascending chain (see the definition
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later). Using this result, this article obtains the main result: (wPw,wPw⊥) is
a hereditary and complete cotorsion theory, and so every module has a special
weak w-projective precover.

2. Basic results

Denoted by FT the class of GV-torsion-free modules. Let S be a class of
modules. Define:

S† := S⊥ ∩ FT
= {N ∈M | N is GV-torsion-free and Ext1R(M,N) = 0 for any M ∈ S}

and

S†∞ := S⊥∞ ∩ FT

=

{
N ∈M

∣∣∣∣ N is GV-torsion-free and

ExtkR(M,N) = 0 for any M ∈ S and any k > 1

}
.

Set
GV(R)∗ := {R/J | J ∈ GV(R)}.

Obviously GV(R)∗ is a set of modules.

Proposition 2.1. Let S,S1 be classes of modules. Then:

(1) S ⊆ ⊥(S†∞) ⊆ ⊥(S†).

(2) If S ⊆ S1, then S†1 ⊆ S† and S†∞1 ⊆ S†∞ .

(3) (S ∪ S1)† = S† ∩ S†1 .

Proof. These are obvious. �

For k > 1, set

Wk := {N ∈ FT | ExtiR(R/J,N) = 0 for any J ∈ GV(R) and any 1 6 i 6 k}.
By convention, we set W0 := FT . A module N is called a wk-module if
N ∈ Wk. It is known that a GV-torsion-free module N is a w-module if and
only if Ext1R(C,N) = 0 for any GV-torsion-module C ([10, Theorem 6.2.7]).

Lemma 2.2. (1) If 1 6 i 6 k, then Wk ⊆ Wi.
(2) Wk is closed under extensions.

(3) Let N ∈ Wk. Then N ∈ Wk+1 if and only if Extk+1
R (M,N) = 0 for

any GV-torsion module M .

Proof. (1) and (2) are trivial. We will prove only (3). It is enough to show the
necessity. Assume that N ∈ Wk+1. If k = 0, then N ∈ W1 = W. Thus by
[10, Theorem 6.2.7], Ext1R(M,N) = 0 for any GV-torsion module M . Consider
the case k = 1. Let M be a GV-torsion module. Then for any x ∈ M , there
exists Ix ∈ GV(R) such that Ixx = 0. Set F :=

⊕
x∈M

R/Ix. Then F is a GV-

torsion module. Let ex denote the element in F that takes the value 1+Ix at the
component x, and the other components take the value 0. Define h : F → M
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by h(ex) = x. Then h is an epimorphism. Set A := Ker(h). Then it follows
from the exact sequence 0 = Ext1R(A,N) → Ext2R(M,N) → Ext2R(F,N) = 0
that Ext2R(M,N) = 0. Now the assertion follows by induction. �

Proposition 2.3. The following are equivalent for a GV-torsion-free module
N .

(1) N ∈ W∞.
(2) ExtiR(R/J,N) = 0 for any J ∈ GV(R) and any i > 1.

Proof. (1)⇒ (2) This is trivial.
(2)⇒ (1) Let k > 1 and set

W
′

k :=

{
N ∈ FT

∣∣∣∣ ExtiR(M,N) = 0 for any GV-torsion module M
and any 1 6 i 6 k

}
.

By Lemma 2.2, W ′k =Wk. Thus N ∈
⋂∞
k=1W

′

k =W∞. �

Let M and N be R-modules. A homomorphism f : M → N is called a w-
monomorphism (resp., a w-epimorphism, a w-isomorphism) if fm : Mm → Nm

is a monomorphism (resp., an epimorphism, an isomorphism) for any maximal
w-ideal m of R. And M is said to be w-isomorphic to N provided that there
exist an R-module L and two w-isomorphisms f : L→M and g : L→ N .

Theorem 2.4. Let S be a class of modules such that S ⊆ FT . Set A := ⊥S.
Then the following are equivalent.

(1) A is closed under w-isomorphisms.
(2) GV(R) ∪GV(R)∗ ⊆ A.
(3) S ⊆ W2.

Proof. (1)⇒ (2) Let J ∈ GV(R). Since R ∈ A and J and R are w-isomorphic,
it follows that J ∈ A. Also since R/J and 0 are w-isomorphic, it follows that
R/J ∈ A.

(2)⇒ (3) Let N ∈ S. Then Ext1R(R/J,N) = 0 and Ext1R(J,N) = 0 for any
J ∈ GV(R). Thus N is a w2-module. Therefore S ⊆ W2.

(3)⇒ (1) Let f : M →M
′

be a w-isomorphism. By [10, Proposition 6.3.4],
there exist a module B and exact sequences 0 → A → M → B → 0 and
0 → B → M

′ → C → 0, where A and C are GV-torsion modules. If M ∈ A,
then for any N ∈ S it follows from the exact sequence 0 = HomR(A,N) →
Ext1R(B,N) → Ext1R(M,N) = 0 that Ext1R(B,N) = 0. Again by the exact

sequence 0 = Ext1R(C,N) → Ext1R(M
′
, N) → Ext1R(B,N) = 0 it follows that

Ext1R(M
′
, N) = 0, that is, M

′ ∈ A.

On the other hand, assume that M
′ ∈ A. By Lemma 2.2, Ext2R(C,N) = 0.

By the exact sequence 0 = Ext1R(M
′
, N)→ Ext1R(B,N)→ Ext2R(C,N) = 0 it

follows that Ext1R(B,N) = 0. Also by the exact sequence 0 = Ext1R(B,N) →
Ext1R(M,N)→ Ext1R(A,N) = 0, it follows that Ext1R(M,N) = 0, i.e., M ∈ A.
Therefore A is closed under w-isomorphisms. �
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Corollary 2.5. Let S be a class of modules. Set A := ⊥S. If S ⊆ W∞, then
A is closed under w-isomorphisms.

Proof. This follows directly from Theorem 2.4 and the fact thatW∞ ⊆ W2. �

Example 2.6. (1) It is easy to see that (GV(R)∗)† =W.
(2) By Proposition 2.3, (GV(R)∗)†∞ =W∞.
(3) By Theorem 2.4, (GV(R)∗ ∪GV(R))† =W2.

Proposition 2.7. Let S be a class of modules satisfying GV(R)∗ ⊆ S. Then:

(1) S† ⊆ W and S†∞ ⊆ W∞.
(2) If GV(R) ⊆ S, then S† ⊆ W2.

Proof. This follows immediately from Example 2.6. �

3. The class of weak w-projective modules is a precover

Let A be a class of modules and M be an R-module. If there is a continuous
ascending chain of submodules of M :

(3.1) 0 = M0 ⊆M1 ⊆ · · · ⊆Mα ⊆Mα+1 ⊆ · · · ⊆Mλ = M

such that Mα+1/Mα ∈ A for any α < λ, then M is called an A-filtered module.
A continuous ascending chain (3.1) is called an A-filtration of M .

In order to determine when (S,S⊥) is a complete cotorsion theory, the fol-
lowing lemma is very effective and will be used later.

Lemma 3.1 (Eklof–Trlifaj). Let S be a set of modules. Then:

(1) Let N be an R-module. Then there exists a short exact sequence 0 →
N → Q → A → 0, where Q ∈ S⊥ and A is an S-filtered module, and
thus A ∈ ⊥(S⊥).

(2) (⊥(S⊥),S⊥) is a complete cotorsion theory.

Proof. See [2] or [7, Theorem 2.2]. �

In order to make Lemma 3.1 apply to the context of a class of related mod-
ules, we make corresponding modifications to it, but note that the idea belongs
to Eklof–Trlifaj essentially.

Lemma 3.2. Let S = GV(R)∗ ∪ S1 be a set of modules, where S1 ⊆ FT .

(1) Let N be a GV-torsion-free module. Then there exists an exact sequence

(3.2) 0→ N → Q→ A→ 0,

where Q ∈ S† and A is an S-filtered module such that A ∈ ⊥(S†).
(2) Let M be an R-module. Then there exists an exact sequence

(3.3) 0→ B → P →M → 0,

where P ∈ ⊥(S†) and B ∈ S†.
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Proof. (1) Set X :=
⊕
S∈S1

S and Y :=
⊕

J∈GV(R)

R/J . Then X is a GV-torsion-

free module and Y is a GV-torsion module. Set S = X⊕Y . Then S⊥ = {S}⊥.
Thus we may assume that S is the class of modules composed of the fixed

module S and its direct sums. Let 0→ K1
µ1−→ F1 → X → 0 and 0→ K2

µ2−→
F2 → Y → 0 be exact sequences, where F1 and F2 are free modules. Set

F := F1 ⊕ F2 and K := K1 ⊕ K2. Then 0 → K
µ−→ F → S → 0 is an exact

sequence, where µ := µ1 ⊕ µ2. Since X is GV-torsion-free, K1 is a w-module.
Since Y is GV-torsion, we have (K2)w = F2

Take a regular cardinal λ so that K has a generating system Z with |Z| < λ.
Set Q0 := N . Then Q0 is GV-torsion-free. For α < λ, if Qα has been

constructed, select a free module F
′

α and an epimorphism δα : F
′

α → Qα. Set
Iα := HomR(K,Qα) to be a new index set and define µα : K(Iα) → F (Iα)

as the homomorphism of direct sums, which is induced by µ. Then µα is a
monomorphism and Coker(µα) = S(Iα).

Define ϕα : K(Iα) ⊕ F
′

α = (
⊕
f∈Iα

Kf ) ⊕ F
′

α → Qα, where Kf = K, by

ϕα([uf ], z) =
∑
f∈Iα

f(uf ) + δα(z), where uf ∈ Kf , z ∈ F
′

α. Since δα is an

epimorphism, so is ϕα. In addition, for any f ∈ Iα, let if : K → K(Iα) and

jf : F → F (Iα) be the natural imbeddings. Then one has

(3.4) f = ϕαif and jfµ = µαif .

Now assume that if β 6 α, then Qβ has been constructed (if α is a limit
ordinal, set Qα =

⋃
β<α

Qβ), in particular, Qα has been constructed. Construct

the following pushout diagram:

0 // K(Iα) ⊕ F ′α
µα⊕1 //

ϕα
��

F (Iα) ⊕ F ′α //

ψα
��

S(Iα) //

∼=
��

0

0 // Qα
hα // Qα+1

// Qα+1/Qα // 0

One gets Qα+1. At this time ψα is an epimorphism. As you can see from the
above diagram, if Qα is a GV-torsion-free module, then Ker(ψα) = Ker(ϕα)
is a w-module, and thus Qα+1 is also a GV-torsion-free module. Hence by a
transfinite induction, we see that each Qα is a GV-torsion-free module.

Set Q :=
⋃
α<λ

Qα = lim
→
α<λ

Qα. Then Q is a GV-torsion-free module. Set

A := Q/N and Aα := Qα/N . Then Aα+1/Aα ∼= Qα+1/Qα ∼= S(Iα). Since
Q =

⋃
α<λ

Qα, one gets that A =
⋃
α<λ

Aα. Thus A is an S-filtered module, and

thus one has A ∈ ⊥(S⊥). Since S† ⊆ S⊥, one has A ∈ ⊥(S†).
Let us prove that Q ∈ S⊥. For this, it is sufficient to prove that µ∗ :

HomR(F,Q) → HomR(K,Q) is an epimorphism. Let g : K → Q be a ho-
momorphism. Since the generating system Z of K satisfies |Z| < λ and Q =
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α<λ

Qα, there exists an ordinal α < λ such that Im(g) ⊆ Qα. Thus there exists

a homomorphism f : K → Qα such that g(x) = f(x) for any x ∈ K. By the
pushout diagram above and (3.4), one has ψαjfµ = ψαµαif = hαϕαif = hαf .
Define σ : F → Q by σ(z) = ψαjf (z) ∈ Qα+1 ⊆ Q. Then one can ver-
ify directly that g = σµ = µ∗(σ). Thus µ∗ is an epimorphism. Therefore
Q ∈ S⊥ ∩ FT = S†.

(2) Take an exact sequence 0 → N → F → M → 0, where F is a projec-
tive module. Then N is a GV-torsion-free module. By (1), there is an exact
sequence 0 → N → Q → A → 0, where Q ∈ S† and A ∈ ⊥(S†). Consider the
following commutative diagram with two exact rows:

0

��

0

��
0 // N //

��

F

��

// M // 0

0 // Q //

��

P //

��

M // 0

A

��

A

��
0 0

where the square diagrams in the upper left and lower corners are pushout
diagrams. Since F,A ∈ ⊥(S†), one has P ∈ ⊥(S†). Therefore one gets the
exact sequence (3.3) by taking B := Q. �

Let A be a class of modules. Then an A-precover f : C → M of M is said
to be special if f is surjective and Ker(f) ∈ A⊥. In other words, there is an
exact sequence 0→ K → C →M → 0 with C ∈ A and K ∈ A⊥.

Theorem 3.3. Let S = GV(R)∗∪S1 be a set of modules, where S1 ⊆ FT . Set
A := ⊥(S†). If A is closed under w-isomorphisms, then (A,A⊥) is a complete
cotorsion theory.

Proof. Note that (A,A⊥) is the cotorsion theory generated by S†. Let us prove
that any module M has a special A-precover.

By Lemma 3.2, there is an exact sequence (3.3), where P ∈ A and B ∈ S† ⊆(⊥(S†)
)⊥

= A⊥. Therefore M has a special A-precover. �

Proposition 3.4. Let S be a class of modules such that GV(R)∗ ⊆ S. Set
B := ⊥(S†∞). Then:

(1) S†∞ is closed under direct products, direct summands, and cokernels of
monomorphisms.

(2) B is closed under direct sums, direct summands, kernels of epimor-
phisms, and w-isomorphisms.

(3) B† = B†∞ = S†∞ .
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Proof. (1) Obviously S†∞ is closed under direct products and direct summands.
Obviously S⊥∞ is closed under cokernels of monomorphisms. By [12, Propo-
sition 2.2(2)], W∞ is also closed under cokernels of monomorphisms. Since
S†∞ = S⊥∞ ∩W∞, S†∞ is closed under cokernels of monomorphisms.

(2) Obviously B is closed under direct sums and direct summands. By (1),
B is closed under kernels of epimorphisms. By Corollary 2.5, B is closed under
w-isomorphisms.

(3) Obviously we have that S†∞ ⊆
(⊥(S†∞)

)⊥ ∩ FT = B†. Since B is

closed under kernels of epimorphisms, we have B⊥∞ = B⊥. Thus we have
B† = B⊥∞ ∩ FT = B†∞ . Since S ⊆ B, it follows that B† = B†∞ ⊆ S†∞ .
Therefore B† = S†∞ . �

Let M be an R-module. Then M is said to be w-ℵ0-generated if there exist
a countably generated free module F and a w-epimorphism φ : F →M .

Let M be a w-projective w-module. If there is a continuous ascending chain
of w-projective w-submodules of M :

0 = M0 ⊆M ′1 ⊆M ′2 ⊆ · · · ⊆M ′α ⊆ · · · ⊆M ′λ = M

such that each factor M ′α+1/M
′
α is a w-ℵ0-generated w-projective module, then

it is said that M has a w-projective w-ℵ0-continuous ascending chain. It follows
from [13, Theorem 3.5] that if M is a w-projective w-module, then M has a
w-projective w-ℵ0-continuous ascending chain.

Proposition 3.5. (1) wPw† = P†∞w .
(2) Let S = GV(R)∗ ∪ S1 be a set of modules, where S1 is the class of

w-projective w-ℵ0-generated w-modules. Then S†∞ = P†∞w .
(3) Let S = GV(R)∗ ∪ S1 be a set of modules, where S1 = {R}. Then
S†∞ =W∞.

Proof. (1) This follows immediately from Proposition 3.4 by setting S := Pw.

(2) Since S ⊆ Pw, we have P†∞w ⊆ S†∞ . Let N ∈ S†∞ . For any w-
projective w-module P , by [13, Theorem 3.5] P is an S1-filtered module. Thus
ExtiR(P,N) = 0 for any i > 1. By Proposition 2.7, N is a strong w-module. Let
P be a w-projective module. Then one has the following two exact sequences:

0→ torGV(R)(P )→ P → P/torGV(R)(P )→ 0

and

0→ Q→ Qw → Qw/Q→ 0,

where Q := P/torGV(R)(P ) is GV-torsion-free. Considering two long exact se-

quences induced by the above two exact sequences, it follows that ExtiR(P,N) =
0 for any w-projective module P and any i > 1 since Pw is closed under w-

isomorphisms. Thus N ∈ P⊥∞w ∩ FT = P†∞w . Therefore S†∞ = P†∞w .
(3) This is trivial. �
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Theorem 3.6. Let S = GV(R)∗ ∪ S1 be a set of modules, where S1 ⊆ FT .
Set B := ⊥(S†∞). Then (B,B⊥) is a hereditary and complete cotorsion theory.

Proof. For any M ∈ S, fix a projective resolution of M . Let LM be the set
of all syzygies of this projective resolution of M (including M itself as −1
syzygy). Set L :=

⋃
M∈S

LM . Then L is again a set. Note that L can be split

into L = GV(R)∗ ∪ L1, where L1 is the set of all syzygies of M ∈ S1 and all
non-negative syzygies of R/J ∈ GV(R)∗. Then L1 ⊆ FT .

Let N ∈ S⊥∞ . For any X ∈ L, there exists an exact sequence

(3.5) 0→ X → Pk → · · · → P1 → P0 →M → 0,

where each Pi is a projective module and M ∈ S. Thus one has Ext1R(X,N) ∼=
Extk+2

R (M,N) = 0. Therefore N ∈ L⊥.
On the other hand, let N ∈ L⊥. For any Y ∈ S and any k > −1, by

considering the exact sequence (3.5), one has Extk+2
R (Y,N) ∼= Ext1R(X,N) = 0.

Thus N ∈ S⊥∞ . Therefore L⊥ = S⊥∞ . By Theorem 3.3, (B,B⊥) is a complete
cotorsion theory. It follows by Proposition 3.4 that (B,B⊥) is a hereditary
cotorsion theory. �

Now we are ready to state the main theorem.

Theorem 3.7. (wPw,wPw⊥) is a hereditary and complete cotorsion theory,
and so every module has a special weak w-projective precover.

Proof. Let S1 be the collection of all w-ℵ0-generated w-projective w-modules
and set S := GV(R)∗ ∪ S1. Since the collection of all ℵ0-generated modules
is a set, S is also a set. By Proposition 3.5(2), S†∞ = W∞. By Theorem 3.6,

(wPw,wPw⊥) is a hereditary and complete cotorsion theory. �

According to [5, 6], we say that a module M is a w∞-projective module if
Ext1R(M,N) = 0 for any strong w-module N . Denote by Pw∞ the class of
w∞-projective modules. Then Pw∞ = ⊥W∞.

Theorem 3.8. (Pw∞ ,P⊥w∞) is a hereditary and complete cotorsion theory.

Proof. Set S1 := {R} and S := GV(R)∗ ∪ S1. Then S is a set of modules. By
Proposition 3.5, S†∞ =W∞. Thus Pw∞ = ⊥(S†∞). Now the assertion follows
by Theorem 3.6. �

Proposition 3.9. Let M be a w-module. Then there is a special weak w-
projective precover of M , ϕ : P →M such that P is a w-module and Ker(ϕ) ∈
P†∞w .

Proof. We use the notation L as in the proof of Theorem 3.6 and the notation

S as in Proposition 3.5(2). Then L† = S†∞ = P†∞w . Now the assertion follows
by Theorem 3.6. �
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Recall that a class of modules is said to be hereditary if it is closed under
isomorphic copies and submodules.

Lemma 3.10. If Pw is a hereditary class of modules, then wPw† = Pw†.
Proof. If Pw is a hereditary class of modules, then P⊥w = P⊥∞w , and thus

P†w = P†∞w . Now the assertion immediately follows by applying Proposition
3.5(1). �

In the following result, we give some necessary and sufficient conditions for
weak w-projective modules to be w-projective.

Theorem 3.11. The following conditions are equivalent for a ring R:

(1) Every weak w-projective module is w-projective.
(2) Every weak w-projective w-module is w-projective.
(3) (Pw,Pw⊥) is a hereditary cotorsion theory and every w-module has a

special Pw-precover of a w-module.

Proof. (1)⇒(3) This follows by Theorem 3.7 and Proposition 3.9.
(3)⇒(2) Let M be a weak w-projective w-module. By assumption, there

is an exact sequence 0 → A → P → M → 0 such that P is a w-projective
w-module and A ∈ Pw⊥. Since any GV-torsion module is w-projective, A is a
w-module. By Lemma 3.10, A ∈ Pw† = Pw†∞ . Thus Ext1R(M,A) = 0, and so
the above exact sequence is split. Therefore M is a w-projective module.

(2)⇒(1) LetM be a weak w-projective module. It follows from [12, Corollary
2.7] that L(M) is a weak w-projective module. By assumption, L(M) is a w-
projective module. So M is a w-projective module. �

Proposition 3.12. Let A be a class of modules which is closed under w-
isomorphisms. Let M be a GV-torsion-free module and ϕ : P → M be an
A-cover. Then:

(1) P is a GV-torsion-free module.
(2) If ϕ is a special A-cover and M is a w-module, then P is a w-module.

Proof. Set T := torGV(P ) and B := P/T . Then B is a GV-torsion-free module.
Let π : P → B be a natural homomorphism. Since M is a GV-torsion-free
module, ϕ induces a homomorphism ψ : B → M such that ψ(x) = ϕ(x) for
any x ∈ F , that is ψπ = ϕ. Since A is closed under w-isomorphisms, it follows
that B ∈ A. Thus there is a homomorphism h : B → P such that ϕh = ψ. So
ϕhπ = ψπ = ϕ. Hence hπ is an isomorphism, and thus π is an isomorphism.
Therefore P is a GV-torsion-free module.

(2) By (1), A := Ker(ϕ) is also a GV-torsion-free module. Since A is closed
under w-isomorphisms, A contains all GV-torsion modules. SoA is a w-module.
It follows from the exact sequence 0 → A → P → M → 0 that P is a w-
module. �

Theorem 3.13. Let A be a class of modules closed under w-isomorphisms.
Let M be a GV-torsion-free module. Then M has a special A-cover if and only
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if Mw has a special A-cover. In addition, if M is GV-torsion-free and B is a
special A-cover of M , then Bw is a special A-cover of Mw.

Proof. Let ϕ : P → Mw be an A-cover of Mw. Set T := Mw/M . Then
T is a GV-torsion module. Let π : Mw → T be a natural homomorphism.
Set g := πϕ, A := Ker(ϕ), and B := Ker(g). Then one has the following
commutative diagram with exact rows and columns:

0

��

0

��
A

��

A

��
0 // B //

ϕ0 ��

P
g //

ϕ
��

T // 0

0 // M //

��

Mw
π //

��

T // 0

0 0

where ϕ0 = ϕ|B . It follows that ϕ0 : B →M is a special A-precover of M .
Let h : B → B be a homomorphism such that ϕ0h = ϕ0. By [10, Theorem

6.3.2], h can be extended only to a homomorphism h′ : P → P . So ϕh′ is
an extension of ϕ0h. Again by [10, Theorem 6.3.2], ϕh′ = ϕ. So h′ is an
isomorphism. Thus h is a monomorphism.

Let x ∈ B. Then there is y ∈ P such that h′(y) = x. So gh′(y) = πϕh′(y) =
πϕ(y) = g(y). Therefore b := y−h′(y) = y−x ∈ Ker(g) = B. So y = b+x ∈ B,
which results in x = h(y). Thus h is an epimorphism. So h is an isomorphism,
and thus ϕ0 : B →M is an A-cover of M .

Conversely, let α : B → M be an A-cover of M and P := Bw. It follows
from Proposition 3.12(1) that B is a GV-torsion-free module. By [10, Theorem
6.3.2], α induces a unique homomorphism ϕ : P → Mw. Set T := P/B and
T2 := Mw/M . Then T and T2 are GV-torsion modules. Thus one has the
following commutative diagram with two exact rows:

0 // B //

α
��

P
π //

ϕ
��

T //

β��

0

0 // M // Mw
π1 // T2 // 0

Set A := Ker(α), D := Ker(ϕ), and T1 := Ker(β). It follows from the snake
lemma that one has the following exact sequence: 0 → A → D → T1 → 0.
Because A ∈ A⊥, one has Ext1R(T1, A) = 0. Thus D ∼= A⊕T1. Since D is GV-
torsion-free, it follows that T1 = 0, and so D = A. Since α is an epimorphism,
ϕ is also an epimorphism, and thus β is an isomorphism. Hence ϕ is a special
A-precover of Mw.
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Now let h : P → P be a homomorphism such that ϕh = ϕ. Consider the
following diagram with exact two rows:

0 // B //

h0 ��

P
π //

h��

T // 0

0 // B // P
π // T // 0

Then πh = β−1π1ϕh = β−1π1ϕ = π, and so the square diagram on the right is a
commutative diagram. Thus h0 : B → B makes the left square a commutative
diagram. Since α is the restriction of ϕ on B, one has αh0 = α. So h0 is
an isomorphism, and thus h is an isomorphism. Therefore ϕ is an A-cover of
Mw. �

Proposition 3.14. Let A be a class of modules which is closed under w-
isomorphisms. Let M be an R-module and set T := torGV(M). If ϕ : P →
M/T is a special A-cover which makes the pullback diagram:

0 // T
λ // P1

β //

α
��

P //

ϕ
��

0

0 // T // M
π // M/T // 0,

then α : P1 →M is a special A-cover.

Proof. Because P1 is w-isomorphic to P , one has P1 ∈ A. Set A := Ker(ϕ).
Since Ker(α) ∼= A, it follows that α : P1 → M is a special A-precover. Let
h : P1 → P1 be a homomorphism such that αh = α. It follows from Proposition
3.12(1) that P is a GV-torsion-free module. Thus h induces a homomorphism
h : P → P such that ϕh = ϕ. So h is an isomorphism. Thus one has the
following commutative diagram with two exact rows:

0 // T // P1
//

h��

P //

h��

0

0 // T // P1
// P // 0

So h is an isomorphism. Therefore α is a special A-cover. �

Remark 3.15. Taking A := wPw, by Theorem 3.13 and Proposition 3.14, in
order to discuss the existence of a weak w-projective cover of a module, just
consider whether the w-module has a weak w-projective cover.
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