Bull. Korean Math. Soc. **59** (2022), No. 1, pp. 141–154 https://doi.org/10.4134/BKMS.b210155 pISSN: 1015-8634 / eISSN: 2234-3016

THE CLASS OF WEAK *w*-PROJECTIVE MODULES IS A PRECOVER

HWANKOO KIM, LEI QIAO, AND FANGGUI WANG

ABSTRACT. Let R be a commutative ring with identity. Denote by $w\mathcal{P}_w$ the class of weak *w*-projective R-modules and by $w\mathcal{P}_w^{\perp}$ the right orthogonal complement of $w\mathcal{P}_w$. It is shown that $(w\mathcal{P}_w, w\mathcal{P}_w^{\perp})$ is a hereditary and complete cotorsion theory, and so every R-module has a special weak *w*-projective precover. We also give some necessary and sufficient conditions for weak *w*-projective modules to be *w*-projective. Finally it is shown that when we discuss the existence of a weak *w*-projective cover of a module, it is enough to consider the *w*-envelope of the module.

1. Introduction

Throughout this paper R is always a commutative ring with identity. We first review some related concepts of w-modules. A finitely generated ideal J of R is called a GV-*ideal* if the homomorphism $R \to \operatorname{Hom}_R(J, R)$ induced by the inclusion map $J \hookrightarrow R$ is an isomorphism. Denote by $\operatorname{GV}(R)$ the set of GV -ideals of R. For any R-module N, set

$$\operatorname{tor}_{\operatorname{GV}(R)}(N) = \{x \in N \mid \text{there exists } J \in \operatorname{GV}(R) \text{ such that } Jx = 0\},\$$

which is a submodule of N, called the *total GV-torsion submodule* of N. If $\operatorname{tor}_{\operatorname{GV}(R)}(N) = N$, then N is called a *GV-torsion module*; if $\operatorname{tor}_{\operatorname{GV}(R)}(N) = 0$, then N is called a *GV-torsion-free module*. A GV-torsion-free module N is called a *w-module* if $\operatorname{Ext}_{R}^{1}(R/J, N) = 0$ for any $J \in \operatorname{GV}(R)$. Denote by \mathcal{W} the class of *w*-modules. The set of maximal *w*-ideals of R is denoted by *w*-Max(R). By [10, Theorem 6.2.15], an R-module T is a GV-torsion module if and only if $T_{\mathfrak{m}} = 0$ for any $\mathfrak{m} \in w$ -Max(R).

We also need the concept of strong w-modules. An *R*-module *N* is called a strong w-module if $\operatorname{Ext}_{R}^{k}(T, N) = 0$ for any GV-torsion module *T* and any $k \ge 1$. For a discussion of strong w-modules, please refer to [12]. Denote by \mathcal{W}_{∞} the class of strong w-modules.

©2022 Korean Mathematical Society

Received February 21, 2021; Accepted October 14, 2021.

²⁰¹⁰ Mathematics Subject Classification. 13C10, 13D05, 13D07, 13D30.

Key words and phrases. Weak w-projective precover, w-operation (theory), cotorsion theory.

Since the *w*-operation on an integral domain can establish the concept of *w*-modules, which allows the *w*-operation to work in the category of modules, in 1997 the concepts of *w*-projective modules and *w*-flat modules over an integral domain were first introduced [8]. In [4] the definition of *w*-flat modules was extended to any commutative ring as follows. A module *M* is called a *w*-flat module if the functor $M \otimes -$ preserves a *w*-exact sequence into a *w*-exact sequence. In [11] the concepts of the *w*-flat dimension (*w*-fd) of a module and the *w*-weak global dimension (*w*-w.gl.dim) of a ring have been successively introduced. Using the *w*-weak global dimension of a ring, a Prüfer *v*-multiplication domain (PVMD for short) can be characterized homologically as an integral domain of *w*-w.gl.dim(R) ≤ 1 .

In 2015, the concept of w-projective modules was also extended to any commutative ring [9]. Let M be an R-module. Set $L(M) := (M/\operatorname{tor}_{\mathrm{GV}(R)}(M))_w$. Then M is called a w-projective module if $\operatorname{Ext}^1_B(L(M), N)$ is a GV-torsion module for any w-module N. Denoted by \mathcal{P}_w the class of w-projective modules. One can use the *w*-projective modules to introduce the *w*-projective ideals. One hopes that some rings that used to be described by ideals can be described by the w-projective modules. For example, in [11] it is proved that an integral domain R is a PVMD if and only if every finitely generated submodule of a projective module is w-projective. As we all know, an integral domain R is a Dedekind domain if and only if each nonzero ideal is invertible; R is a Krull domain if and only if each nonzero ideal is w-invertible. Therefore, in the above sense, Krull domains can actually be considered as w-Dedekind domains. But a Dedekind domain is exactly an integral domain with global dimension at most 1, in other words, every submodule of a projective module is projective. In [14], the authors can only prove that an integral domain R is a Krull domain if and only if every submodule of a finitely generated projective module is wprojective. That is to say, the concept of w-projective modules cannot be used to obtain a complete characterization of the Krull domains corresponding to the Dedekind domains.

In order to give a complete homological characterization of Krull domains, the concept of weak *w*-projective modules is introduced in [12] with the aid of *w*-projective modules. Denote by $_R\mathfrak{M}$ the category of all *R*-modules. Set

$$\mathcal{P}_w^{\dagger_{\infty}} = \left\{ N \in \mathfrak{M} \mid \begin{array}{c} N \text{ is GV-torsion-free and} \\ \operatorname{Ext}_R^k(M, N) = 0 \text{ for any } M \in \mathcal{P}_w \text{ and any } k \ge 1 \end{array} \right\}.$$

An *R*-module *M* is called a weak *w*-projective module if $\operatorname{Ext}_R^1(M, N) = 0$ for any $N \in \mathcal{P}_w^{\dagger_{\infty}}$. Denote by $w\mathcal{P}_w$ the class of weak *w*-projective modules. In [12] the authors pointed out: Every *w*-projective module must be weak *w*projective. Conversely, every weak *w*-projective module of finite type and any weak *w*-projective ideal of an integral domain are all *w*-projective. At the same time, in [12] it is also given an example of a weak *w*-projective module over a UFD, which is not *w*-projective. In [12] it is also introduced the concept of the *w*-projective dimension (*w*-pd) of a module and the global *w*-projective dimension (w-gl.dim) of a ring. With the help of the concepts of weak wprojective modules and the global w-projective dimension of a ring, in [12] the authors give a homological characterization of Krull domains: An integral domain R is a Krull domain if and only if every submodule of a projective module is weak w-projective, equivalently, w-gl.dim $(R) \leq 1$.

Let \mathcal{A} be a class of modules, M be an R-module, $A \in \mathcal{A}$, and $\varphi : A \to M$ be a homomorphism. Then (A, φ) is called an \mathcal{A} -precover of M if for any $A' \in \mathcal{A}$ and any homomorphism $f : A' \to M$, the following diagram

$$A \xrightarrow{\stackrel{h}{\swarrow} \stackrel{\varphi}{\longrightarrow} \stackrel{\varphi}{\longrightarrow} M} \stackrel{A'}{\downarrow_f}$$

is commutative, equivalently, for any $A' \in \mathcal{A}$, $\operatorname{Hom}_R(A', A) \xrightarrow{\varphi_*} \operatorname{Hom}_R(A', M) \to 0$ is an exact sequence. Let (A, φ) be an \mathcal{A} -precover of a module M. When A' = A, $f = \varphi$, and the above diagram is commutative, it is said that (A, φ) is an \mathcal{A} -cover of M if h is an isomorphism. If any R-module M has \mathcal{A} -precover (resp., cover), then we say that \mathcal{A} is a precover (resp, cover) class.

Let \mathcal{S} be a class of modules. Set

$${}^{\perp}\mathcal{S} := \{ A \in \mathfrak{M} \mid \operatorname{Ext}^{1}_{R}(A, C) = 0 \text{ for any } C \in \mathcal{S} \}$$

and

$$\mathcal{S}^{\perp} := \{ B \in \mathfrak{M} \mid \operatorname{Ext}^{1}_{R}(C, B) = 0 \text{ for any } C \in \mathcal{S} \},\$$

are called the *left orthogonal complement* and the *right orthogonal complement* of S, respectively [3]. Then obviously one has $w\mathcal{P}_w = {}^{\perp}(\mathcal{P}_w^{\dagger_{\infty}})$. In [1], the authors introduced and studied the right orthogonal complement of the class of *w*-flat modules. Also set

$${}^{\perp_{\infty}}\mathcal{S} := \{ A \in \mathfrak{M} \mid \operatorname{Ext}_{B}^{k}(A, C) = 0 \text{ for any } C \in \mathcal{S} \text{ and any } k \ge 1 \},\$$

and

$$\mathcal{S}^{\perp_{\infty}} := \{ B \in \mathfrak{M} \mid \operatorname{Ext}_{B}^{k}(C, B) = 0 \text{ for any } C \in \mathcal{S} \text{ and any } k \ge 1 \}.$$

In recent years, the cotorsion theory has received great attention from researchers. Let \mathcal{A}, \mathcal{B} be two classes of modules. Then $(\mathcal{A}, \mathcal{B})$ is called a *cotorsion* theory if $\mathcal{B} = \mathcal{A}^{\perp}$ and $\mathcal{A} = {}^{\perp}\mathcal{B}$. In addition, $(\mathcal{A}, \mathcal{B})$ is called a *hereditary co*torsion theory if whenever $0 \to A_1 \to A \to A_2 \to 0$ is exact with $\mathcal{A}, \mathcal{A}_2 \in \mathcal{A}$, one has $A_1 \in \mathcal{A}$. And $(\mathcal{A}, \mathcal{B})$ is called a *complete cotorsion theory* if for any R-module \mathcal{M} , there is an exact sequence $0 \to K \to \mathcal{A} \to \mathcal{M} \to 0$ with $\mathcal{A} \in \mathcal{A}$ and $K \in \mathcal{B}$. When a formulated pair $(\mathcal{A}, \mathcal{B})$ of modules becomes a cotorsion pair, the classical homology method can be used very smoothly to characterize rings and modules. For the projective modules, a well-known theorem of Kaplansky states that a projective module over an arbitrary ring is a direct sum of countably generated projective modules. In 2020, Wang and Qiao established the *w*-version of Kaplansky's theorem [13]: If \mathcal{M} is a *w*-projective *w*-module, then \mathcal{M} has a *w*-projective w- \aleph_0 -continuous ascending chain (see the definition later). Using this result, this article obtains the main result: $(W\mathcal{P}_w, W\mathcal{P}_w^{\perp})$ is a hereditary and complete cotorsion theory, and so every module has a special weak *w*-projective precover.

2. Basic results

Denoted by \mathcal{FT} the class of GV-torsion-free modules. Let $\mathcal S$ be a class of modules. Define:

$$\mathcal{S}^{\dagger} := \mathcal{S}^{\perp} \cap \mathcal{FT}$$

 $= \{ N \in \mathfrak{M} \mid N \text{ is GV-torsion-free and } \operatorname{Ext}^{1}_{R}(M, N) = 0 \text{ for any } M \in \mathcal{S} \}$

and

$$S^{\top_{\infty}} := S^{\bot_{\infty}} \cap \mathcal{F}'$$
$$= \left\{ N \in \mathfrak{M} \mid \begin{array}{c} N \text{ is GV-torsion-free and} \\ \operatorname{Ext}_{R}^{k}(M, N) = 0 \text{ for any } M \in \mathcal{S} \text{ and any } k \ge 1 \end{array} \right\}.$$

Set

$$\mathrm{GV}(R)^* := \{ R/J \mid J \in \mathrm{GV}(R) \}.$$

Obviously $GV(R)^*$ is a set of modules.

Proposition 2.1. Let S, S_1 be classes of modules. Then:

(1) $\mathcal{S} \subseteq {}^{\perp}(\mathcal{S}^{\dagger}_{\infty}) \subseteq {}^{\perp}(\mathcal{S}^{\dagger}).$ (2) If $\mathcal{S} \subseteq \mathcal{S}_1$, then $\mathcal{S}_1^{\dagger} \subseteq \mathcal{S}^{\dagger}$ and $\mathcal{S}_1^{\dagger}_{\infty} \subseteq \mathcal{S}^{\dagger}_{\infty}.$ (3) $(\mathcal{S} \cup \mathcal{S}_1)^{\dagger} = \mathcal{S}^{\dagger} \cap \mathcal{S}_1^{\dagger}.$

Proof. These are obvious.

For $k \ge 1$, set

 $\mathcal{W}_k := \{ N \in \mathcal{FT} \mid \operatorname{Ext}_R^i(R/J, N) = 0 \text{ for any } J \in \operatorname{GV}(R) \text{ and any } 1 \leqslant i \leqslant k \}.$

By convention, we set $\mathcal{W}_0 := \mathcal{FT}$. A module N is called a w_k -module if $N \in \mathcal{W}_k$. It is known that a GV-torsion-free module N is a w-module if and only if $\operatorname{Ext}^1_R(C, N) = 0$ for any GV-torsion-module C ([10, Theorem 6.2.7]).

Lemma 2.2. (1) If $1 \leq i \leq k$, then $W_k \subseteq W_i$.

- (2) \mathcal{W}_k is closed under extensions.
- (3) Let $N \in \mathcal{W}_k$. Then $N \in \mathcal{W}_{k+1}$ if and only if $\operatorname{Ext}_R^{k+1}(M, N) = 0$ for any GV-torsion module M.

Proof. (1) and (2) are trivial. We will prove only (3). It is enough to show the necessity. Assume that $N \in \mathcal{W}_{k+1}$. If k = 0, then $N \in \mathcal{W}_1 = \mathcal{W}$. Thus by [10, Theorem 6.2.7], $\operatorname{Ext}_R^1(M, N) = 0$ for any GV-torsion module M. Consider the case k = 1. Let M be a GV-torsion module. Then for any $x \in M$, there exists $I_x \in \operatorname{GV}(R)$ such that $I_x x = 0$. Set $F := \bigoplus_{x \in M} R/I_x$. Then F is a GV-torsion module. Let e_x denote the element in F that takes the value $1+I_x$ at the component x, and the other components take the value 0. Define $h: F \to M$

by $h(e_x) = x$. Then h is an epimorphism. Set A := Ker(h). Then it follows from the exact sequence $0 = \text{Ext}_R^1(A, N) \to \text{Ext}_R^2(M, N) \to \text{Ext}_R^2(F, N) = 0$ that $\text{Ext}_R^2(M, N) = 0$. Now the assertion follows by induction. \Box

Proposition 2.3. The following are equivalent for a GV-torsion-free module N.

(1) $N \in \mathcal{W}_{\infty}$. (2) $\operatorname{Ext}_{R}^{i}(R/J, N) = 0$ for any $J \in \operatorname{GV}(R)$ and any $i \ge 1$.

Proof. (1) \Rightarrow (2) This is trivial. (2) \Rightarrow (1) Let $k \ge 1$ and set

$$\mathcal{W}_{k}^{'} := \left\{ N \in \mathcal{FT} \mid \operatorname{Ext}_{R}^{i}(M,N) = 0 \text{ for any GV-torsion module } M \\ \text{and any } 1 \leqslant i \leqslant k \end{array} \right\}.$$

By Lemma 2.2, $\mathcal{W}'_{k} = \mathcal{W}_{k}$. Thus $N \in \bigcap_{k=1}^{\infty} \mathcal{W}'_{k} = \mathcal{W}_{\infty}$.

Let M and N be R-modules. A homomorphism $f: M \to N$ is called a w-monomorphism (resp., a w-epimorphism, a w-isomorphism) if $f_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is a monomorphism (resp., an epimorphism, an isomorphism) for any maximal w-ideal \mathfrak{m} of R. And M is said to be w-isomorphic to N provided that there exist an R-module L and two w-isomorphisms $f: L \to M$ and $g: L \to N$.

Theorem 2.4. Let S be a class of modules such that $S \subseteq \mathcal{FT}$. Set $\mathcal{A} := {}^{\perp}S$. Then the following are equivalent.

- (1) \mathcal{A} is closed under w-isomorphisms.
- (2) $\operatorname{GV}(R) \cup \operatorname{GV}(R)^* \subseteq \mathcal{A}.$
- (3) $\mathcal{S} \subseteq \mathcal{W}_2$.

Proof. (1) \Rightarrow (2) Let $J \in GV(R)$. Since $R \in \mathcal{A}$ and J and R are *w*-isomorphic, it follows that $J \in \mathcal{A}$. Also since R/J and 0 are *w*-isomorphic, it follows that $R/J \in \mathcal{A}$.

 $(2) \Rightarrow (3)$ Let $N \in \mathcal{S}$. Then $\operatorname{Ext}^{1}_{R}(R/J, N) = 0$ and $\operatorname{Ext}^{1}_{R}(J, N) = 0$ for any $J \in \operatorname{GV}(R)$. Thus N is a w_2 -module. Therefore $\mathcal{S} \subseteq \mathcal{W}_2$.

 $(3) \Rightarrow (1)$ Let $f: M \to M'$ be a *w*-isomorphism. By [10, Proposition 6.3.4], there exist a module *B* and exact sequences $0 \to A \to M \to B \to 0$ and $0 \to B \to M' \to C \to 0$, where *A* and *C* are GV-torsion modules. If $M \in \mathcal{A}$, then for any $N \in \mathcal{S}$ it follows from the exact sequence $0 = \operatorname{Hom}_R(A, N) \to$ $\operatorname{Ext}_R^1(B, N) \to \operatorname{Ext}_R^1(M, N) = 0$ that $\operatorname{Ext}_R^1(B, N) = 0$. Again by the exact sequence $0 = \operatorname{Ext}_R^1(C, N) \to \operatorname{Ext}_R^1(M', N) \to \operatorname{Ext}_R^1(B, N) = 0$ it follows that $\operatorname{Ext}_R^1(M', N) = 0$, that is, $M' \in \mathcal{A}$.

On the other hand, assume that $M' \in \mathcal{A}$. By Lemma 2.2, $\operatorname{Ext}_R^2(C, N) = 0$. By the exact sequence $0 = \operatorname{Ext}_R^1(M', N) \to \operatorname{Ext}_R^1(B, N) \to \operatorname{Ext}_R^2(C, N) = 0$ it follows that $\operatorname{Ext}_R^1(B, N) = 0$. Also by the exact sequence $0 = \operatorname{Ext}_R^1(B, N) \to \operatorname{Ext}_R^1(M, N) \to \operatorname{Ext}_R^1(A, N) = 0$, it follows that $\operatorname{Ext}_R^1(M, N) = 0$, i.e., $M \in \mathcal{A}$. Therefore \mathcal{A} is closed under *w*-isomorphisms. \Box

Corollary 2.5. Let S be a class of modules. Set $A := {}^{\perp}S$. If $S \subseteq W_{\infty}$, then A is closed under w-isomorphisms.

Proof. This follows directly from Theorem 2.4 and the fact that $\mathcal{W}_{\infty} \subseteq \mathcal{W}_2$. \Box

Example 2.6. (1) It is easy to see that $(\mathrm{GV}(R)^*)^{\dagger} = \mathcal{W}$.

- (2) By Proposition 2.3, $(\mathrm{GV}(R)^*)^{\dagger_{\infty}} = \mathcal{W}_{\infty}$.
- (3) By Theorem 2.4, $(\mathrm{GV}(R)^* \cup \mathrm{GV}(R))^{\dagger} = \mathcal{W}_2$.

Proposition 2.7. Let S be a class of modules satisfying $GV(R)^* \subseteq S$. Then:

- (1) $\mathcal{S}^{\dagger} \subseteq \mathcal{W} \text{ and } \mathcal{S}^{\dagger_{\infty}} \subseteq \mathcal{W}_{\infty}.$
- (2) If $\operatorname{GV}(R) \subseteq \mathcal{S}$, then $\mathcal{S}^{\dagger} \subseteq \mathcal{W}_2$.

Proof. This follows immediately from Example 2.6.

3. The class of weak w-projective modules is a precover

Let \mathcal{A} be a class of modules and M be an R-module. If there is a continuous ascending chain of submodules of M:

$$(3.1) 0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_\alpha \subseteq M_{\alpha+1} \subseteq \cdots \subseteq M_\lambda = M$$

such that $M_{\alpha+1}/M_{\alpha} \in \mathcal{A}$ for any $\alpha < \lambda$, then M is called an \mathcal{A} -filtered module. A continuous ascending chain (3.1) is called an \mathcal{A} -filtration of M.

In order to determine when $(\mathcal{S}, \mathcal{S}^{\perp})$ is a complete cotorsion theory, the following lemma is very effective and will be used later.

Lemma 3.1 (Eklof–Trlifaj). Let S be a set of modules. Then:

- Let N be an R-module. Then there exists a short exact sequence 0 → N → Q → A → 0, where Q ∈ S[⊥] and A is an S-filtered module, and thus A ∈ [⊥](S[⊥]).
- (2) $(^{\perp}(\mathcal{S}^{\perp}), \mathcal{S}^{\perp})$ is a complete cotorsion theory.

Proof. See [2] or [7, Theorem 2.2].

In order to make Lemma 3.1 apply to the context of a class of related modules, we make corresponding modifications to it, but note that the idea belongs to Eklof–Trlifaj essentially.

Lemma 3.2. Let $S = GV(R)^* \cup S_1$ be a set of modules, where $S_1 \subseteq \mathcal{FT}$.

(1) Let N be a GV-torsion-free module. Then there exists an exact sequence

$$(3.2) 0 \to N \to Q \to A \to 0$$

where $Q \in S^{\dagger}$ and A is an S-filtered module such that $A \in {}^{\perp}(S^{\dagger})$. (2) Let M be an R-module. Then there exists an exact sequence

$$(3.3) 0 \to B \to P \to M \to 0,$$

where $P \in {}^{\perp}(\mathcal{S}^{\dagger})$ and $B \in \mathcal{S}^{\dagger}$.

Proof. (1) Set $X := \bigoplus_{S \in S_1} S$ and $Y := \bigoplus_{J \in \mathrm{GV}(R)} R/J$. Then X is a GV-torsion-

free module and Y is a GV-torsion module. Set $S = X \oplus Y$. Then $S^{\perp} = \{S\}^{\perp}$. Thus we may assume that \mathcal{S} is the class of modules composed of the fixed module S and its direct sums. Let $0 \to K_1 \xrightarrow{\mu_1} F_1 \to X \to 0$ and $0 \to K_2 \xrightarrow{\mu_2}$ $F_2 \rightarrow Y \rightarrow 0$ be exact sequences, where F_1 and F_2 are free modules. Set $F := F_1 \oplus F_2$ and $K := K_1 \oplus K_2$. Then $0 \to K \xrightarrow{\mu} F \to S \to 0$ is an exact sequence, where $\mu := \mu_1 \oplus \mu_2$. Since X is GV-torsion-free, K_1 is a w-module. Since Y is GV-torsion, we have $(K_2)_w = F_2$

Take a regular cardinal λ so that K has a generating system Z with $|Z| < \lambda$.

Set $Q_0 := N$. Then Q_0 is GV-torsion-free. For $\alpha < \lambda$, if Q_α has been constructed, select a free module F'_{α} and an epimorphism $\delta_{\alpha}: F'_{\alpha} \to Q_{\alpha}$. Set $I_{\alpha} := \operatorname{Hom}_{R}(K, Q_{\alpha})$ to be a new index set and define $\mu_{\alpha}: K^{(I_{\alpha})} \to F^{(I_{\alpha})}$ as the homomorphism of direct sums, which is induced by μ . Then μ_{α} is a monomorphism and $\operatorname{Coker}(\mu_{\alpha}) = S^{(I_{\alpha})}$.

Define φ_{α} : $K^{(I_{\alpha})} \oplus F_{\alpha}' \stackrel{\sim}{=} (\bigoplus_{f \in I_{\alpha}} K_f) \oplus F_{\alpha}' \to Q_{\alpha}$, where $K_f = K$, by $\varphi_{\alpha}([u_{f}],z) = \sum_{f \in I_{\alpha}} f(u_{f}) + \delta_{\alpha}(z), \text{ where } u_{f} \in K_{f}, z \in F'_{\alpha}.$ Since δ_{α} is an

epimorphism, so is φ_{α} . In addition, for any $f \in I_{\alpha}$, let $i_f : K \to K^{(I_{\alpha})}$ and $j_f: F \to F^{(I_\alpha)}$ be the natural imbeddings. Then one has

(3.4)
$$f = \varphi_{\alpha} i_f$$
 and $j_f \mu = \mu_{\alpha} i_f$.

Now assume that if $\beta \leq \alpha$, then Q_{β} has been constructed (if α is a limit ordinal, set $Q_{\alpha} = \bigcup_{\beta < \alpha} Q_{\beta}$), in particular, Q_{α} has been constructed. Construct

the following pushout diagram:

One gets $Q_{\alpha+1}$. At this time ψ_{α} is an epimorphism. As you can see from the above diagram, if Q_{α} is a GV-torsion-free module, then $\operatorname{Ker}(\psi_{\alpha}) = \operatorname{Ker}(\varphi_{\alpha})$ is a w-module, and thus $Q_{\alpha+1}$ is also a GV-torsion-free module. Hence by a transfinite induction, we see that each Q_{α} is a GV-torsion-free module.

Set $Q := \bigcup_{\alpha < \lambda} Q_{\alpha} = \lim_{\alpha < \lambda} Q_{\alpha}$. Then Q is a GV-torsion-free module. Set $\alpha < \lambda$

A := Q/N and $A_{\alpha} := Q_{\alpha}/N$. Then $A_{\alpha+1}/A_{\alpha} \cong Q_{\alpha+1}/Q_{\alpha} \cong S^{(I_{\alpha})}$. Since $Q = \bigcup_{\alpha < \lambda} Q_{\alpha}$, one gets that $A = \bigcup_{\alpha < \lambda} A_{\alpha}$. Thus A is an S-filtered module, and thus one has $A \in {}^{\perp}(S^{\perp})$. Since $S^{\dagger} \subseteq S^{\perp}$, one has $A \in {}^{\perp}(S^{\dagger})$.

Let us prove that $Q \in S^{\perp}$. For this, it is sufficient to prove that μ^* : $\operatorname{Hom}_R(F,Q) \to \operatorname{Hom}_R(K,Q)$ is an epimorphism. Let $g: K \to Q$ be a homomorphism. Since the generating system Z of K satisfies $|Z| < \lambda$ and Q = $\bigcup_{\alpha < \lambda} Q_{\alpha}$, there exists an ordinal $\alpha < \lambda$ such that $\operatorname{Im}(g) \subseteq Q_{\alpha}$. Thus there exists a homomorphism $f: K \to Q_{\alpha}$ such that g(x) = f(x) for any $x \in K$. By the pushout diagram above and (3.4) one has $\psi_{\alpha} i_{\beta} = \psi_{\alpha} u_{\alpha} i_{\beta} = h$ of

pushout diagram above and (3.4), one has $\psi_{\alpha}j_{f}\mu = \psi_{\alpha}\mu_{\alpha}i_{f} = h_{\alpha}\varphi_{\alpha}i_{f} = h_{\alpha}f$. Define $\sigma : F \to Q$ by $\sigma(z) = \psi_{\alpha}j_{f}(z) \in Q_{\alpha+1} \subseteq Q$. Then one can verify directly that $g = \sigma\mu = \mu^{*}(\sigma)$. Thus μ^{*} is an epimorphism. Therefore $Q \in S^{\perp} \cap \mathcal{FT} = S^{\dagger}$.

(2) Take an exact sequence $0 \to N \to F \to M \to 0$, where F is a projective module. Then N is a GV-torsion-free module. By (1), there is an exact sequence $0 \to N \to Q \to A \to 0$, where $Q \in S^{\dagger}$ and $A \in {}^{\perp}(S^{\dagger})$. Consider the following commutative diagram with two exact rows:

where the square diagrams in the upper left and lower corners are pushout diagrams. Since $F, A \in {}^{\perp}(S^{\dagger})$, one has $P \in {}^{\perp}(S^{\dagger})$. Therefore one gets the exact sequence (3.3) by taking B := Q.

Let \mathcal{A} be a class of modules. Then an \mathcal{A} -precover $f: C \to M$ of M is said to be *special* if f is surjective and $\operatorname{Ker}(f) \in \mathcal{A}^{\perp}$. In other words, there is an exact sequence $0 \to K \to C \to M \to 0$ with $C \in \mathcal{A}$ and $K \in \mathcal{A}^{\perp}$.

Theorem 3.3. Let $S = GV(R)^* \cup S_1$ be a set of modules, where $S_1 \subseteq \mathcal{FT}$. Set $\mathcal{A} := {}^{\perp}(S^{\dagger})$. If \mathcal{A} is closed under w-isomorphisms, then $(\mathcal{A}, \mathcal{A}^{\perp})$ is a complete cotorsion theory.

Proof. Note that $(\mathcal{A}, \mathcal{A}^{\perp})$ is the cotorsion theory generated by \mathcal{S}^{\dagger} . Let us prove that any module M has a special \mathcal{A} -precover.

By Lemma 3.2, there is an exact sequence (3.3), where $P \in \mathcal{A}$ and $B \in \mathcal{S}^{\dagger} \subseteq (^{\perp}(\mathcal{S}^{\dagger}))^{\perp} = \mathcal{A}^{\perp}$. Therefore M has a special \mathcal{A} -precover. \Box

Proposition 3.4. Let S be a class of modules such that $GV(R)^* \subseteq S$. Set $\mathcal{B} := {}^{\perp}(S^{\dagger_{\infty}})$. Then:

- (1) $S^{\dagger_{\infty}}$ is closed under direct products, direct summands, and cokernels of monomorphisms.
- (2) *B* is closed under direct sums, direct summands, kernels of epimorphisms, and w-isomorphisms.
- (3) $\mathcal{B}^{\dagger} = \mathcal{B}^{\dagger_{\infty}} = \mathcal{S}^{\dagger_{\infty}}.$

Proof. (1) Obviously $S^{\dagger_{\infty}}$ is closed under direct products and direct summands. Obviously $\mathcal{S}^{\perp_{\infty}}$ is closed under cokernels of monomorphisms. By [12, Proposition 2.2(2)], \mathcal{W}_{∞} is also closed under cokernels of monomorphisms. Since $\mathcal{S}^{\dagger_{\infty}} = \mathcal{S}^{\perp_{\infty}} \cap \mathcal{W}_{\infty}, \mathcal{S}^{\dagger_{\infty}}$ is closed under cokernels of monomorphisms.

(2) Obviously \mathcal{B} is closed under direct sums and direct summands. By (1), \mathcal{B} is closed under kernels of epimorphisms. By Corollary 2.5, \mathcal{B} is closed under w-isomorphisms.

(3) Obviously we have that $\mathcal{S}^{\dagger_{\infty}} \subseteq (^{\perp}(\mathcal{S}^{\dagger_{\infty}}))^{\perp} \cap \mathcal{FT} = \mathcal{B}^{\dagger}$. Since \mathcal{B} is closed under kernels of epimorphisms, we have $\mathcal{B}^{\perp_{\infty}} = \mathcal{B}^{\perp}$. Thus we have $\mathcal{B}^{\dagger} = \mathcal{B}^{\perp_{\infty}} \cap \mathcal{FT} = \mathcal{B}^{\dagger_{\infty}}$. Since $\mathcal{S} \subseteq \mathcal{B}$, it follows that $\mathcal{B}^{\dagger} = \mathcal{B}^{\dagger_{\infty}} \subseteq \mathcal{S}^{\dagger_{\infty}}$. Therefore $\mathcal{B}^{\dagger} = \mathcal{S}^{\dagger_{\infty}}$. \square

Let M be an R-module. Then M is said to be $w \cdot \aleph_0$ -generated if there exist a countably generated free module F and a w-epimorphism $\phi: F \to M$.

Let M be a w-projective w-module. If there is a continuous ascending chain of w-projective w-submodules of M:

$$0 = M_0 \subseteq M'_1 \subseteq M'_2 \subseteq \cdots \subseteq M'_\alpha \subseteq \cdots \subseteq M'_\lambda = M$$

such that each factor $M'_{\alpha+1}/M'_{\alpha}$ is a w- \aleph_0 -generated w-projective module, then it is said that M has a w-projective w- \aleph_0 -continuous ascending chain. It follows from [13, Theorem 3.5] that if M is a w-projective w-module, then M has a w-projective w- \aleph_0 -continuous ascending chain.

Proposition 3.5.

- **pposition 3.5.** (1) $w \mathcal{P}_w^{\dagger} = \mathcal{P}_w^{\dagger_{\infty}}$. (2) Let $\mathcal{S} = \mathrm{GV}(R)^* \cup \mathcal{S}_1$ be a set of modules, where \mathcal{S}_1 is the class of w-projective w- \aleph_0 -generated w-modules. Then $\mathcal{S}^{\dagger_{\infty}} = \mathcal{P}_w^{\dagger_{\infty}}$.
- (3) Let $S = GV(R)^* \cup S_1$ be a set of modules, where $S_1 = \{R\}$. Then $\mathcal{S}^{\dagger_{\infty}} = \mathcal{W}_{\infty}.$

Proof. (1) This follows immediately from Proposition 3.4 by setting $S := \mathcal{P}_w$.

(2) Since $\mathcal{S} \subseteq \mathcal{P}_w$, we have $\mathcal{P}_w^{\dagger_{\infty}} \subseteq \mathcal{S}^{\dagger_{\infty}}$. Let $N \in \mathcal{S}^{\dagger_{\infty}}$. For any wprojective w-module P, by [13, Theorem 3.5] P is an S_1 -filtered module. Thus $\operatorname{Ext}_{R}^{i}(P,N) = 0$ for any $i \ge 1$. By Proposition 2.7, N is a strong w-module. Let P be a w-projective module. Then one has the following two exact sequences:

$$0 \to \operatorname{tor}_{\operatorname{GV}(R)}(P) \to P \to P/\operatorname{tor}_{\operatorname{GV}(R)}(P) \to 0$$

and

$$0 \to Q \to Q_w \to Q_w/Q \to 0,$$

where $Q := P/\operatorname{tor}_{\operatorname{GV}(R)}(P)$ is GV-torsion-free. Considering two long exact sequences induced by the above two exact sequences, it follows that $\operatorname{Ext}_{R}^{i}(P, N) =$ 0 for any *w*-projective module *P* and any $i \ge 1$ since \mathcal{P}_w is closed under *w*-isomorphisms. Thus $N \in \mathcal{P}_w^{\perp_{\infty}} \cap \mathcal{FT} = \mathcal{P}_w^{\dagger_{\infty}}$. Therefore $\mathcal{S}^{\dagger_{\infty}} = \mathcal{P}_w^{\dagger_{\infty}}$.

(3) This is trivial.

Theorem 3.6. Let $S = GV(R)^* \cup S_1$ be a set of modules, where $S_1 \subseteq \mathcal{FT}$. Set $\mathcal{B} := {}^{\perp}(\mathcal{S}^{\dagger_{\infty}})$. Then $(\mathcal{B}, \mathcal{B}^{\perp})$ is a hereditary and complete cotorsion theory.

Proof. For any $M \in \mathcal{S}$, fix a projective resolution of M. Let \mathcal{L}_M be the set of all syzygies of this projective resolution of M (including M itself as -1syzygy). Set $\mathcal{L} := \bigcup_{M \in \mathcal{S}} \mathcal{L}_M$. Then \mathcal{L} is again a set. Note that \mathcal{L} can be split into $\mathcal{L} = \mathrm{GV}(R)^* \cup \mathcal{L}_1$, where \mathcal{L}_1 is the set of all syzygies of $M \in \mathcal{S}_1$ and all

non-negative syzygies of $R/J \in \mathrm{GV}(R)^*$. Then $\mathcal{L}_1 \subseteq \mathcal{FT}$.

Let $N \in \mathcal{S}^{\perp_{\infty}}$. For any $X \in \mathcal{L}$, there exists an exact sequence

$$(3.5) 0 \to X \to P_k \to \dots \to P_1 \to P_0 \to M \to 0,$$

where each P_i is a projective module and $M \in \mathcal{S}$. Thus one has $\operatorname{Ext}^1_R(X, N) \cong$ $\operatorname{Ext}_{R}^{k+2}(M,N) = 0.$ Therefore $N \in \mathcal{L}^{\perp}$.

On the other hand, let $N \in \mathcal{L}^{\perp}$. For any $Y \in \mathcal{S}$ and any $k \ge -1$, by considering the exact sequence (3.5), one has $\operatorname{Ext}_{R}^{k+2}(Y,N) \cong \operatorname{Ext}_{R}^{1}(X,N) = 0$. Thus $N \in \mathcal{S}^{\perp_{\infty}}$. Therefore $\mathcal{L}^{\perp} = \mathcal{S}^{\perp_{\infty}}$. By Theorem 3.3, $(\mathcal{B}, \mathcal{B}^{\perp})$ is a complete cotorsion theory. It follows by Proposition 3.4 that $(\mathcal{B}, \mathcal{B}^{\perp})$ is a hereditary cotorsion theory.

Now we are ready to state the main theorem.

Theorem 3.7. $(w\mathcal{P}_w, w\mathcal{P}_w^{\perp})$ is a hereditary and complete cotorsion theory, and so every module has a special weak w-projective precover.

Proof. Let S_1 be the collection of all $w \cdot \aleph_0$ -generated w-projective w-modules and set $\mathcal{S} := \mathrm{GV}(R)^* \cup \mathcal{S}_1$. Since the collection of all \aleph_0 -generated modules is a set, S is also a set. By Proposition 3.5(2), $S^{\dagger_{\infty}} = \mathcal{W}_{\infty}$. By Theorem 3.6, $(\mathbf{w}\mathcal{P}_w, \mathbf{w}\mathcal{P}_w^{\perp})$ is a hereditary and complete cotorsion theory.

According to [5,6], we say that a module M is a w_{∞} -projective module if $\operatorname{Ext}^{1}_{R}(M,N) = 0$ for any strong w-module N. Denote by $\mathcal{P}_{w_{\infty}}$ the class of w_{∞} -projective modules. Then $\mathcal{P}_{w_{\infty}} = {}^{\perp}\mathcal{W}_{\infty}$.

Theorem 3.8. $(\mathcal{P}_{w_{\infty}}, \mathcal{P}_{w_{\infty}}^{\perp})$ is a hereditary and complete cotorsion theory.

Proof. Set $S_1 := \{R\}$ and $S := \operatorname{GV}(R)^* \cup S_1$. Then S is a set of modules. By Proposition 3.5, $\hat{\mathcal{S}}^{\dagger_{\infty}} = \mathcal{W}_{\infty}$. Thus $\mathcal{P}_{w_{\infty}} = {}^{\perp}(\mathcal{S}^{\dagger_{\infty}})$. Now the assertion follows by Theorem 3.6. \square

Proposition 3.9. Let M be a w-module. Then there is a special weak wprojective precover of $M, \varphi: P \to M$ such that P is a w-module and $\operatorname{Ker}(\varphi) \in$ $\mathcal{P}_w^{\dagger\infty}$.

Proof. We use the notation \mathcal{L} as in the proof of Theorem 3.6 and the notation \mathcal{S} as in Proposition 3.5(2). Then $\mathcal{L}^{\dagger} = \mathcal{S}^{\dagger}_{\infty} = \mathcal{P}_{w}^{\dagger}$. Now the assertion follows by Theorem 3.6. \square

Recall that a class of modules is said to be hereditary if it is closed under isomorphic copies and submodules.

Lemma 3.10. If \mathcal{P}_w is a hereditary class of modules, then $w\mathcal{P}_w^{\dagger} = \mathcal{P}_w^{\dagger}$.

Proof. If \mathcal{P}_w is a hereditary class of modules, then $\mathcal{P}_w^{\perp} = \mathcal{P}_w^{\perp \infty}$, and thus $\mathcal{P}_w^{\dagger} = \mathcal{P}_w^{\dagger \infty}$. Now the assertion immediately follows by applying Proposition 3.5(1).

In the following result, we give some necessary and sufficient conditions for weak w-projective modules to be w-projective.

Theorem 3.11. The following conditions are equivalent for a ring R:

- (1) Every weak w-projective module is w-projective.
- (2) Every weak w-projective w-module is w-projective.
- (3) $(\mathcal{P}_w, \mathcal{P}_w^{\perp})$ is a hereditary cotorsion theory and every w-module has a special \mathcal{P}_w -precover of a w-module.

Proof. $(1) \Rightarrow (3)$ This follows by Theorem 3.7 and Proposition 3.9.

 $(3)\Rightarrow(2)$ Let M be a weak w-projective w-module. By assumption, there is an exact sequence $0 \to A \to P \to M \to 0$ such that P is a w-projective w-module and $A \in \mathcal{P}_w^{\perp}$. Since any GV-torsion module is w-projective, A is a w-module. By Lemma 3.10, $A \in \mathcal{P}_w^{\dagger} = \mathcal{P}_w^{\dagger \infty}$. Thus $\operatorname{Ext}^1_R(M, A) = 0$, and so the above exact sequence is split. Therefore M is a w-projective module.

 $(2) \Rightarrow (1)$ Let M be a weak w-projective module. It follows from [12, Corollary 2.7] that L(M) is a weak w-projective module. By assumption, L(M) is a w-projective module. \Box

Proposition 3.12. Let \mathcal{A} be a class of modules which is closed under wisomorphisms. Let M be a GV-torsion-free module and $\varphi : P \to M$ be an \mathcal{A} -cover. Then:

- (1) P is a GV-torsion-free module.
- (2) If φ is a special A-cover and M is a w-module, then P is a w-module.

Proof. Set $T := \operatorname{tor}_{\mathrm{GV}}(P)$ and B := P/T. Then B is a GV-torsion-free module. Let $\pi : P \to B$ be a natural homomorphism. Since M is a GV-torsion-free module, φ induces a homomorphism $\psi : B \to M$ such that $\psi(\overline{x}) = \varphi(x)$ for any $x \in F$, that is $\psi \pi = \varphi$. Since \mathcal{A} is closed under w-isomorphisms, it follows that $B \in \mathcal{A}$. Thus there is a homomorphism $h : B \to P$ such that $\varphi h = \psi$. So $\varphi h \pi = \psi \pi = \varphi$. Hence $h \pi$ is an isomorphism, and thus π is an isomorphism. Therefore P is a GV-torsion-free module.

(2) By (1), $A := \text{Ker}(\varphi)$ is also a GV-torsion-free module. Since \mathcal{A} is closed under *w*-isomorphisms, \mathcal{A} contains all GV-torsion modules. So A is a *w*-module. It follows from the exact sequence $0 \to A \to P \to M \to 0$ that P is a *w*-module.

Theorem 3.13. Let \mathcal{A} be a class of modules closed under w-isomorphisms. Let M be a GV-torsion-free module. Then M has a special \mathcal{A} -cover if and only if M_w has a special \mathcal{A} -cover. In addition, if M is GV-torsion-free and B is a special \mathcal{A} -cover of M, then B_w is a special \mathcal{A} -cover of M_w .

Proof. Let $\varphi : P \to M_w$ be an \mathcal{A} -cover of M_w . Set $T := M_w/M$. Then T is a GV-torsion module. Let $\pi : M_w \to T$ be a natural homomorphism. Set $g := \pi \varphi$, $A := \operatorname{Ker}(\varphi)$, and $B := \operatorname{Ker}(g)$. Then one has the following commutative diagram with exact rows and columns:

where $\varphi_0 = \varphi|_B$. It follows that $\varphi_0 : B \to M$ is a special \mathcal{A} -precover of M.

Let $h: B \to B$ be a homomorphism such that $\varphi_0 h = \varphi_0$. By [10, Theorem 6.3.2], h can be extended only to a homomorphism $h': P \to P$. So $\varphi h'$ is an extension of $\varphi_0 h$. Again by [10, Theorem 6.3.2], $\varphi h' = \varphi$. So h' is an isomorphism. Thus h is a monomorphism.

Let $x \in B$. Then there is $y \in P$ such that h'(y) = x. So $gh'(y) = \pi \varphi h'(y) = \pi \varphi(y) = g(y)$. Therefore $b := y - h'(y) = y - x \in \text{Ker}(g) = B$. So $y = b + x \in B$, which results in x = h(y). Thus h is an epimorphism. So h is an isomorphism, and thus $\varphi_0 : B \to M$ is an \mathcal{A} -cover of M.

Conversely, let $\alpha : B \to M$ be an \mathcal{A} -cover of M and $P := B_w$. It follows from Proposition 3.12(1) that B is a GV-torsion-free module. By [10, Theorem 6.3.2], α induces a unique homomorphism $\varphi : P \to M_w$. Set T := P/B and $T_2 := M_w/M$. Then T and T_2 are GV-torsion modules. Thus one has the following commutative diagram with two exact rows:

Set $A := \operatorname{Ker}(\alpha)$, $D := \operatorname{Ker}(\varphi)$, and $T_1 := \operatorname{Ker}(\beta)$. It follows from the snake lemma that one has the following exact sequence: $0 \to A \to D \to T_1 \to 0$. Because $A \in \mathcal{A}^{\perp}$, one has $\operatorname{Ext}_R^1(T_1, A) = 0$. Thus $D \cong A \oplus T_1$. Since D is GVtorsion-free, it follows that $T_1 = 0$, and so D = A. Since α is an epimorphism, φ is also an epimorphism, and thus β is an isomorphism. Hence φ is a special \mathcal{A} -precover of M_w . Now let $h: P \to P$ be a homomorphism such that $\varphi h = \varphi$. Consider the following diagram with exact two rows:

Then $\pi h = \beta^{-1} \pi_1 \varphi h = \beta^{-1} \pi_1 \varphi = \pi$, and so the square diagram on the right is a commutative diagram. Thus $h_0: B \to B$ makes the left square a commutative diagram. Since α is the restriction of φ on B, one has $\alpha h_0 = \alpha$. So h_0 is an isomorphism, and thus h is an isomorphism. Therefore φ is an \mathcal{A} -cover of M_w .

Proposition 3.14. Let \mathcal{A} be a class of modules which is closed under wisomorphisms. Let M be an R-module and set $T := \operatorname{tor}_{\mathrm{GV}}(M)$. If $\varphi : P \to M/T$ is a special \mathcal{A} -cover which makes the pullback diagram:

then $\alpha: P_1 \to M$ is a special \mathcal{A} -cover.

Proof. Because P_1 is *w*-isomorphic to P, one has $P_1 \in \mathcal{A}$. Set $A := \operatorname{Ker}(\varphi)$. Since $\operatorname{Ker}(\alpha) \cong A$, it follows that $\alpha : P_1 \to M$ is a special \mathcal{A} -precover. Let $h : P_1 \to P_1$ be a homomorphism such that $\alpha h = \alpha$. It follows from Proposition 3.12(1) that P is a GV-torsion-free module. Thus h induces a homomorphism $\overline{h} : P \to P$ such that $\varphi \overline{h} = \varphi$. So \overline{h} is an isomorphism. Thus one has the following commutative diagram with two exact rows:

So h is an isomorphism. Therefore α is a special \mathcal{A} -cover.

Remark 3.15. Taking $\mathcal{A} := w\mathcal{P}_w$, by Theorem 3.13 and Proposition 3.14, in order to discuss the existence of a weak *w*-projective cover of a module, just consider whether the *w*-module has a weak *w*-projective cover.

Acknowledgements. The authors would like to express their sincere thanks for the referee for his/her careful reading and helpful comments. This research was supported by the Academic Research Fund of Hoseo University in 2019 (20190817).

153

References

- F. A. A. Almahdi, M. Tamekkante, and R. A. K. Assaad, On the right orthogonal complement of the class of w-flat modules, J. Ramanujan Math. Soc. 33 (2018), no. 2, 159–175.
- [2] P. C. Eklof and J. Trlifaj, *How to make Ext vanish*, Bull. London Math. Soc. **33** (2001), no. 1, 41–51. https://doi.org/10.1112/blms/33.1.41
- [3] E. E. Enochs and O. M. G. Jenda, *Relative homological algebra*, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000. https://doi.org/10.1515/ 9783110803662
- [4] H. Kim and F. Wang, On LCM-stable modules, J. Algebra Appl. 13 (2014), no. 4, 1350133, 18 pp. https://doi.org/10.1142/S0219498813501338
- [5] Y. Y. Pu, W. Zhao, G. H. Tang, and F. G. Wang, w_{∞} -projective modules and Krull domains, Commun. Algebra, to appear.
- [6] Y. Y. Pu, W. Zhao, G. H. Tang, and F. G. Wang, w_∞-Warfield cotorsion modules and Krull domains, Algebra Colloq., to appear.
- [7] J. Trlifaj, *Covers, envelopes, and cotorsion theories*, Lecture notes for the workshop, Homological Methods in Module Theory, 10–16 September, Cortona, 2000.
- [8] F. Wang, On w-projective modules and w-flat modules, Algebra Colloq. 4 (1997), no. 1, 111–120.
- [9] F. Wang and H. Kim, Two generalizations of projective modules and their applications, J. Pure Appl. Algebra 219 (2015), no. 6, 2099-2123. https://doi.org/10.1016/j.jpaa. 2014.07.025
- [10] F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
- [11] F. Wang and L. Qiao, The w-weak global dimension of commutative rings, Bull. Korean Math. Soc. 52 (2015), no. 4, 1327–1338. https://doi.org/10.4134/BKMS.2015.52.4. 1327
- [12] F. Wang and L. Qiao, A homological characterization of Krull domains II, Comm. Algebra 47 (2019), no. 5, 1917–1929. https://doi.org/10.1080/00927872.2018.1524007
- [13] F. Wang and L. Qiao, A new version of a theorem of Kaplansky, Comm. Algebra 48 (2020), no. 8, 3415–3428. https://doi.org/10.1080/00927872.2020.1739289
- [14] F. G. Wang and D. C. Zhou, A homological characterization of Krull domains, Bull. Korean Math. Soc. 55 (2018), no. 2, 649–657. https://doi.org/10.4134/BKMS.b170203

HWANKOO KIM DIVISION OF COMPUTER ENGINEERING HOSEO UNIVERSITY ASAN 31499, KOREA Email address: hkkim@hoseo.edu

LEI QIAO COLLEGE OF MATHEMATICS AND SOFTWARE SCIENCE SICHUAN NORMAL UNIVERSITY CHENGDU 610068, P. R. CHINA *Email address*: lqiao@sicnu.edu.cn

FANGGUI WANG COLLEGE OF MATHEMATICS AND SOFTWARE SCIENCE SICHUAN NORMAL UNIVERSITY CHENGDU 610068, P. R. CHINA *Email address*: wangfg2004@163.com