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THE IMAGES OF LOCALLY FINITE £-DERIVATIONS OF
POLYNOMIAL ALGEBRAS

LINTONG Lv AND DAN YAN

ABSTRACT. Let K be a field of characteristic zero. We first show that
images of the linear derivations and the linear £-derivations of the poly-
nomial algebra K[z] = K[z1,22,...,%n] are ideals if the products of any
power of eigenvalues of the matrices according to the linear derivations
and the linear £-derivations are not unity. In addition, we prove that the
images of D and § are Mathieu-Zhao spaces of the polynomial algebra
Klz) if D = Y ((asz; +b;)0; and § = I — ¢, ¢(x5) = Xix; + p; for
ai,bi, N\i,u; € K for 1 < i < n. Finally, we prove that the image of an
affine £-derivation of the polynomial algebra K[z1,z2] is a Mathieu-Zhao
space of the polynomial algebra K[zi1,z2]. Hence we give an affirma-
tive answer to the LFED Conjecture for the affine £-derivations of the
polynomial algebra K[z1,z2].

1. Introduction

Throughout this paper, we will write K for a field of characteristic zero

without specific note and K[z] = K[x1,22,...,x,] for the polynomial algebra
over K in n indeterminates. And 0; denotes the derivations % forl1 <i<n.

A K-linear endomorphism 7 of K[z] is said to be locally znilpotent if for
each a € K[x] there exists m > 1 such that 7™ (a) = 0, and locally finite if for
each a € K[z] the subspace of K[z] spanned by n'(a) (i > 0) over K is finitely
generated.

A derivation D of K[z] means a K-linear map D : K[z| — K|x] that satisfies
D(ab) = D(a)b+ aD(b) for all a,b € K[z] and D(c) = 0 for any ¢ € K. An
E-derivation 0 of K[x] means a K-linear map § : K[z] — K|[z] such that for all
a,b € K|x] the following equation holds:

d(ab) = 6(a)b+ ad(b) — 6(a)d(b).
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74 L. LV AND D. YAN

It is easy to verify that ¢ is an £-derivation of K[z] if and only if 6 = I — ¢
for some K-algebra endomorphism ¢ of K[z]. D is called a linear derivation of
K|[x] if D(x;) is a linear form for all 1 <14 < n.

The Mathieu-Zhao space was introduced by Zhao in [7] and [8], which is a
natural generalization of ideals. We give the definition here for the polynomial
algebras. A K-subspace M of K|[z] is said to be a Mathieu-Zhao space if for
any a,b € K[x] with a™ € M for all m > 1, we have ba™ € M when m > 0.
The radical of a Mathieu-Zhao space was first introduced in [8], denoted by
t(M), and

t(M) ={a € K[z]|a™ € M for all m > 0}.
There is an equivalent definition about Mathieu-Zhao space which was proved
in Proposition 2.1 of [8]. We only give the equivalent definition here for the
polynomial algebras. A K-subspace M of K|x] is said to be a Mathieu-Zhao
space if for any a,b € K[z] with a € t(M), we have ba™ € M when m > 0.
In [13], Wenhua Zhao posed the following two conjectures:

Conjecture 1.1 (LFED). Let K be a field of characteristic zero and A a K-
algebra. Then for every locally finite derivation or E-derivation § of A, the
image Im 0 := 6(A) of 0 is a Mathieu-Zhao space of A.

Conjecture 1.2 (LNED). Let K be a field of characteristic zero and A a
K-algebra and 6 a locally nilpotent derivation or E-deriwvation of A. Then for
every ideal I of A, the image 6(I) of I under 6 is a Mathieu-Zhao space of A.

There are many positive answers to the above two conjectures. In [9], Wen-
hua Zhao proved that Conjecture 1.1 is true for polynomial algebras in one
variable and Conjecture 1.2 is true for polynomial algebras in one variable for
derivations and most £-derivations. Arno van den Essen, David Wright, Wen-
hua Zhao showed that Conjecture 1.1 is true for derivations for polynomial
algebras in two variables in [2]. In [10], Wenhua Zhao proved that Conjecture
1.1 is true for Laurent polynomial algebras in one or two variables and Conjec-
ture 1.2 is true for all Laurent polynomial algebras. Wenhua Zhao proved the
above two conjectures for algebraic algebras in [11]. In [4], Dayan Liu, Xiaosong
Sun showed that Conjecture 1.1 is true for linear locally nilpotent derivations
of a polynomial algebras in dimension three. They also proved that Conjecture
1.1 is true for triangular derivations and homogeneous locally nilpotent deriva-
tions of a polynomial algebras in dimension three in [6]. Arno van den Essen,
Wenhua Zhao showed that Conjecture 1.1 is true for locally integral domains
and K[[z]][z~!] in [3].

Note that we call 2 22 - - aln < 2ial - ain if l; =iy, ... =i, 1 <
i; for some j € {1,2,...,n}. D(x), ¢(x) denote to (D(z1), D(x2), ..., D(xy))"
and (¢(z1), ¢(z2),...,d(x,))", respectively.

In our paper, we prove that images of the linear derivations and the linear
E-derivations of the polynomial algebra K[z] = K[z1,%2,...,2y] are ideals if
the products of any power of eigenvalues of the matrices according to the linear
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derivations and the linear £-derivations are not unity. We also prove that the
images of D and § are Mathieu-Zhao spaces of the polynomial algebra K|[z] if
D= Z:.l:l(aixi + bz)ﬁz and § = [ — gf), d)(:EZ) = /\zzz + 1 for ai,bi,)\i,,ui e K
for 1 <14 < mn in Section 2. In Section 3, we mainly prove the following result.

Theorem 1.3. Let 6 = I — ¢ be an E-derivation of K[x]. If ¢p(x1) = A\1x1 + 22
and ¢(xs) = As—12s for all 2 < s < n, then Im§ is a Mathieu-Zhao space of
K|[z].

Theorem 1.3 is Theorem 3.2 in Section 3. Similar as Lemma 3.2 in [6], we
can assume that K is an algebraically closed field in our paper.

2. The positive answer to Conjecture 1.1 for some derivations and
&E-derivations

Lemma 2.1. Let 6 = I — ¢ be an E-derivation of K[z] and ¢(x;) = Njz; +
f,»(mi_H, ‘e ,Jin) with fi(xi_H, ‘e ,xn) S K[Z‘H_l, sy .1‘"] and fn e K fO?” 1 S
1<n-—1 If N\ #1 for all 1 <i < n, then there exists o € Aut(K[z]) such
that 0=Y60 = I — ¢ and ¢(x;) = Nxs + fi(Tip1, ..., Tn), where fi(0) = 0 for
1 <i<n.

Proof. Let 5 = 07160 and o(x;) = x; + ¢ for 1 < i < n, where ¢; = (\; —
%)flfi(fci_s_l,...,jcn) and ¢, = (A, — 1)71f, for 1 < i < n — 1. Then
=010 =1I- ¢ and

G(i) = Niwi + (1= Ni)ei + fi(@ig1 — Cig1ren s Tn — Cp)
for 1 <i<n. Let fi(xiH, cos®y) = fi@izt1 — Cit1, - T —cn) + (1= N

for 1 <4 <mn. Then the conclusion follows. O

Theorem 2.2. Let 6 = I — ¢ be an E-derivation of K[x] and ¢(x;) = Niz; +
fi_(xiﬂ, ey Xp), where fi € K[xiy1,...,2,] and N; € K for oll 1 < i <n. If
Ao XN £ 1 for all iy, ... yin €N, iy + -+ 414, > 1, then Im§ is an ideal

generated by T1,To,...,T,. In particular, if Ay = Ao = e = Ap 1= 5\, then
Imd is an ideal generated by x1,x2,...,2, in the case that A is not a root of
unity.

Proof. Tt follows from Lemma 2.1 that we can assume that f;(0) = 0 for all
1 < i < n. Thus, we have f,, = 0. We proceed by induction according to

the lexicographical order z; > x2 > -+ > x, on KJz]|. Since ¢(x,) = ApTn,
we have §(xin) = (1 — Ain)zi». Note that Ai» # 1. We have zi» € Im§ for

. * U et ln—1_1, U et In
all i, € N*. Suppose that z;fz;"") --- 2, "j2;» € Imd for all zjfx;71) -0 <

ik bkt i
xfy - xyr. Then we have

6($;ckx23:11 T x?ﬂn) = :C?ck U x:Ln - (Akmk + fk(xk+17 s 7$n))lk T (/\nl’n)in

:(17)\Zk...)\;ﬂ)x;;k...zilﬂ+Q.
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By induction hypothesis, we have Q € Imé. Since )\Zk <o Ain £ 1 for any
ke {1,2,...,n},wehavexz’“~~-J:fl" € Imé for all i, ... i, € Ny g+ +i, >
1,1 <k <n. Since 1 ¢ ImJ, we have that Im ¢ is the ideal generated by
T1,29,...,Lp. [l

Corollary 2.3. Let § = I — ¢ be an E-derivation of K[z] and ¢ = Az is a
linear polynomial homomorphism of K[z] with A € M, (K). If Xt - Xin £ 1
foralliy,...,inp €N, iy + - +1i, > 1, where A\11,..., Ay are the eigenvalues
of A, then Im§ is an ideal of K|x]. In particular, if \11 = -+ = Ay := A, then
Im§ is an ideal of K[x] in the case that \ is not a root of unity.

Proof. Since ¢ = Az, there exists T € GL,,(K) such that

A Az Aig
. 0 Aoz o Ao
T AT = . . . .
0 0 - A
Let o(z) = Tx. Then we have 0 100 = I — o~ '¢o. It suffices to prove

that Im(c~'d0) is an ideal of K[z]. Let 6 = 060 = I — ¢. Then ¢(x;) =
Z?:i Aijx; for 1 <4 < n. Thus, the conclusion follows from Theorem 2.2. [

Proposition 2.4. Let § = I — ¢ be an E-derivation of K[z] and ¢(x;) =
Aix; + pi, where Aj,u; € K for all 1 < i <mn. Then Im¢ is a Mathieu-Zhao
space of K|x].

Proof. Tf \; # 1 for some i € {1,2,...,n}, then we have o; '¢o;(z;) = \iz;
and o} '¢oi(z;) = Njzj + pj, where o;(2;) = x; + (N — 1) " gy, 04(x;) = 2 for
j#iforalll <j<n.

If \; =1, then §(z;) = —p;. If p; #0, then 1 € Im . It’s easy to check that
J is locally finite, it follows from Proposition 1.4 in [12] that Im § is a Mathieu-
Zhao space of Kz]. If u; = 0, then ¢(x;) = N\jz;. We assume that o; = T
in this case. Let 0 = 0, 0--- 001 € Aut(K[z]). Then 0100 = I — ¢, where

(?(ch) = M\z; for all 1 < ¢ < n or Imd is a Mathieu-Zhao space of K[z]. Let

6 = 0~ 160. Tt follows from Lemma 3.2 and Corollary 3.3 in [1] that TmJ is a
Mathieu-Zhao space of K[z]. Thus, Im § is a Mathieu-Zhao space of K[z]. O

Corollary 2.5. Let § = I — ¢ be an E-derivation of the polynomial algebra
Klzy, w0, 3], where ¢(z1) = z1 + fi(z2,23), d(x2) = 22 + folws), d(a3) =
x3 + f3 with fi(ze,x3) € Klxe,x3], fo(xs) € Klzg], f3 € K. Then Imd is a
Mathieu-Zhao space of the polynomial algebra K|x1,x,x3).

Proof. Since ¢ is triangular, it follows from Theorem 2.1 and Corollary 2.4 in
[12] that there exists a triangular derivation D such that Im é = Im D. Tt follows
from Corollary 3.10 in [6] that Im D is a Mathieu-Zhao space of K|z, x2, z3].
Thus, Im § is a Mathieu-Zhao space of K|z, x2, x3]. O
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Proposition 2.6. Let D = """ (a;z; + b;)0; be a derivation of K|xz| with
a;,b; € K for all1 <i<n. Then ImD is a Mathieu-Zhao space of K|[z].

Proof. If a; # 0 for some ¢ € {1,2,...,n}, then we have

O';lDUi = am@ + Z (a]'(Ej + bj)aj
1<j<n
JFi
where o;(x;) = a;x; + b;, 0;(x;) = a; for j #iforall 1 < j <n.
If a; = 0, then D(x;) = b;. If b; # 0, then 1 € Im D. It follows from Example
9.3.2 in [5] that D is locally finite. Thus, it follows from Proposition 1.4 in [12]
that Im D is a Mathieu-Zhao space of K[z]. If b; = 0, then

D= Z (ajasj + bj)6]
1<j<n
J#i
Hence we have that Im D is a Mathieu-Zhao space of KJz] or there exists
o € Aut(K[z]) such that o~ 1 Do = Z?Zl a;x;0;. It follows from Lemma 3.4
in [2] that Im(c~!Do) is a Mathieu-Zhao space of K[z]. Thus, Im D is a
Mathieu-Zhao space of K|z]. O

Proposition 2.7. Let D = Y " (a;x; + bi(ziy1,...,2,))0; be a derivation
of Klz] with a; € K, b; € K[ziy1,...,x,] for all 1 < i < n. Ifa; # 0 for
some i € {1,2,...,n}, then there exists o € Aut(K[z]) such that o' Do =
Z;;l(ai:pi +l;i(f1;l'+1, ooy xn))0; and lNJi(O, ...,0) =0 for somei € {1,2,...,n}.

Proof. Since a; # 0, we have
0 ' Do(w;) = aiwi + ai(bi(Tigr, .- 20) — ),

where o(z;) = a;z;+¢;, 0(z;) =x;for j #iforalll <j<n,¢ € K. Let¢; =
b;(0,...,0). Then o~ 'Do(x;) = a;w; + bi(Tix1,- .-, 2n) and b;(Tig1,. .., Tn) =
a;(bi(®it1, ..., ) — b;i(0,...,0)). Thus, the conclusion follows. O

Proposition 2.8. Let D = Z?Zl(aixi +bi(Tit1,...,2,))0; be a derivation of
K[z] with a; € K, b; € K[xiy1,...,2,] for all 1 < i < n and S the set of
positive integral solutions of the linear equation y ., a;y; = 0. If S =0, then
Im D is an ideal generated by x1,...,x,. In particular, if a1 = ag = -+ =
an :=a #0, then Im D is an ideal generated by x1,...,x,.

Proof. Since S = (), we have ajas---a, # 0. It follows from Proposition 2.7
that we can assume that b1 (0,...,0) = b2(0,...,0) =--- = b, = 0. We proceed
by induction according to the lexicographical order 1 > z9 > -+ > x,, on K|[z].
Since x,, = D(a; 'x,), we have z,, € Im D. Suppose that z}*z% - 2lr € Im D
for all 2 zl2 -zl < 2922 ... zin. Then we have

D(x?:réz .- :17;") = (i1a1 +igas + -+ inan)xzfscé? . xiL" +Q.
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By induction hypothesis, we have Q € Im D. Hence we have £t 2% - zir €

Im D for all 43 + 2+ -+ 4, > 1. Note that 1 ¢ Im D. Then the conclusion
follows. [l

Corollary 2.9. Let D be a linear derivation of K|x] and D(x) = Bx with
B € M, (K) and S the set of positive integral solutions of the linear equation
Yo miyi = 0, where pq, ..., pnyn are the eigenvalues of B. If S = 0, then
Im D is an ideal of K[x]. In particular, if p11 = fiog =+ = pipn = p # 0,
then Im D is an ideal of K[x].

Proof. Since D(z) = Bz, there exists T € GL,,(K) such that

M1l Hi12 - Hin

L 0 pa2 -+ pion

T BT = . . . . = B;r
0 0 R TI.

Let 6(x) = Tx. Then 6-'Dé(x) = B,z. Thus, the conclusion follows from
Proposition 2.8. O

3. The positive answer to Conjecture 1.1 for £-derivations with ¢
affine polynomial homomorphisms

Lemma 3.1. Let § = I—¢ be an E-derivation of K|x]. If ¢p(x2;—1) = Nixoi—1+
Zoi, O(x2;) = Nxo; for all1 < i<t and qS(xS) = Xs—t@s for all2t+1 < s <mn,
where 1 < t < [2], t € N*, then x2xy - ay Jog jaRtagt] - aly € Im6
for all igy > 1.

Proof. Note that

g0 in¢ . 02641 in
S(zgiwyt - oy Lott1 " T )

_ Qo yi4 oy \ 02t+1 in i g G0y B2t4+1 i
= (L= APAS - NN ATt wg g

in y i ine \i in . )
IEAPAS - AN - Ay # Land dg 444 + -+ + 49 > 1, then
’LQ i4 iz i2t+1 in
TG T Ty Toyyy - x, € Imd.

IF N2 AB - N2 N = 1 and dg + g + - - + g > 1, then, without loss
of generality, we can assume i > 1. Thus, we have

io—1 4 dor02e41 g
O(zr25’ ™y Lot Lott1 ")
_ in—11yi4 Qo4 \ 2641 in o d2, .04 Gt L2t+1 i
= = AT A AN ALy Ty gy

Qo 4 oy 02t41 i Qo 04 G0t B2¢4+1
Hence we have z’wy' -+ zoi @y [y - - 2pr € Imd, whence z’wy' -+ wiiw

; 2t+1
<oz € Imé for all 49 + -+ + 49 > 1.
i, int—2 loe—1 gy i ; ‘
Suppose that a2zt - a5y S wgy { xR wg - xlr € Tm6 for lop—y < i1
and 79; > 1. Then we have

Qo g G2t—2 12¢—1 dos 12¢41 i
O(zg @y« Ty Ty oy o Ty )
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_ Q2 \ 14 G2¢—2 yi2t—1+%2¢ \ 12641 in io g Q2t—2 92t—1 dop i2t+1
= (L=APA AN A1 A )T XY oS oy oy Loty
7
Tyt A+ Ql(xla s 7:1;71)'

By induction hypothesis, every monomial of Q1(x1,...,x,) is in Im 4.
TEARAB - AP T O A, £ 1 then

B2 .04 Got—2 f2t—1,_ d9s  02t+1 i
TRTY Ty g Ty XY Tyt oy € I
If M2 )\ ... >\i2t72 )\7;2t71+i2t )\i2t+1 ... )\n  — 1. th h
1 72 t—1 7't t+1 n—t — 1 en we nave
i2 .04 igt—2 g2t—1+1 _dg;—1 i2e41 i
d(wgwy' -y 5Ty @ o1 T Ty)

$g2q;i4 .. x;it:; .’L‘z;tt_]l xéitx;iill . x;n _ ()\11.2)1'2 ()\2.%4)i4
o (N1 @o—2) 2 (M@ + )2 T (M) 2!
(A1 @e41) 2 (A pmgn)'

_ . 12\ 4 G2¢t—2 yi2t—1t+i2e—1yi2t41 %, i2, 14
= — (ize—1 + DAPAS - 27N M1 o A Ty

G2t—2 12t—1, doy 12t4+1 in
Ty 3 ol By Ty g oy + Qa(@n, . ).
By induction hypothesis, every monomial of Qa(z1,...,2,) is in Im . Thus,
we have z2xyt -y Jag laitagt] - 2l € Im6 for all iy > 1. O

Theorem 3.2. Let 6 = I — ¢ be an E-derivation of K[x]. If p(x1) = M\x1+ xo
and ¢(xs) = As—1zs for all 2 < s < n, then Im§ is a Mathieu-Zhao space of
K|z].

Proof. Tt follows from Lemma 3.1 that %' 2% - - - 2» € Im 6 for all i5 > 1. Hence
the ideal I generated by xs is contained in Imd.

Note that
i1 43 in\ i1 %3 iy i1 43 12t+1, 02t +2 i
S(zitag’ -y ) = (L= AP AL - Ay )zt ag’ - oy g5 -y mod 1
_ S(.01 .08 in
- 5(11 ‘:CS “"rn )

for all 41, 43,...,i, € N, where 6=1- (,zAS is an &-derivation of the polyno-
mial algebra K[z1,x3,...,2,] and (,ZAS(Il) = \iz; and ngS(xg) = A\s_17, for all
2 < s < n. Thus, we have Im§/I = Imé. It follows from Lemma 3.2 and
Corollary 3.3 in [1] that Im§ is a Mathieu-Zhao space of the polynomial alge-
bra K[z1,3,...,2Zy]. Then it follows from Proposition 2.7 in [8] that Im§ is a
Mathieu-Zhao space of K|x]. O

Proposition 3.3. Let 6 = I — ¢ be an E-derivation of the polynomial alge-
bra Klxi,x2). If ¢ is a linear polynomial homomorphism of the polynomial
algebra K[z, 3], then Im ¢ is a Mathieu-Zhao space of the polynomial algebra
K[l‘l, 1'2] .
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Proof. Since ¢ is a linear polynomial homomorphism, we have that

() =2 (22):

where A € My(K). Hence there exists T € GLo(K) such that

. MO A1

(9o (1),
where \; # Xa. Let (0(21),0(22))" = T(x1,72)". Then we have o150 =
I — o~ 1¢o. Tt suffices to prove that Im(oc~160) is a Mathieu-Zhao space of
K[z, 22]. Let 6 =0 % = 1—¢. Then (5(3:1) = \iz21, ({)(xg) = A\aZ9 OT
d(x1) = >\~1’1 + x2, ¢(x2) = Azg.

(1) If ¢(x1) = Aiz1, ¢(x2) = Agwxa, then it follows from Lemma 3.2 and
Corollary 3.3 in [1] that Im 4 is a Mathieu-Zhao space of K|[x1,zs].

(2) If ¢(x1) = Azy 4 2, d(22) = Axo, then it follows from Theorem 3.2 that

Im é is a Mathieu-Zhao space of K [z1,z2]. Then the conclusion follows. (]

Corollary 3.4. Let 6 = I — ¢ be an E-derivation of the polynomial algebra
Kz, 22]. If ¢(x1) = Axy + 22, P(a2) = A\xa, then Imd is an ideal or v(Im )
is an ideal of the polynomial algebra K[x1,zs].

Proof. (1) If A is not a root of unity, then it follows from Corollary 2.3 that
Im¢ is an ideal of K[z1,x2].

(2) If X is a root of unity, then it follows from the proof of Theorem 3.2 that
2k € Imd for all iy € N, iy € N* and %' € ITm§ for all i; # ds, d € N,
where s is the least positive integer such that A\* = 1. That is, 2* ¢ Imd for
all d € N. Next we prove that t(Im ) is the ideal generated by x5. Clearly, the
ideal generated by zo is contained in t(Imé). Let G(x1,22) = oGy (21, 22) +
Ga2(x1) € t(Imd) and Ga(z1) € K[z1]. We claim that Ga(x1) = 0. Otherwise,
we have G™ € Imé for all m > 0. Thus, we have G5* € Im¢ for all m >
0. In particular, G2 € Imd for all d > 0. Suppose that z! is the leading
monomial of Ga(x1). Since ImJ is a homogeneous K-subspace of K[z1, 23],
we have zi45 € Im§ for all d > 0, which is a contradiction. Thus, we have
Go(xz1) = 0. Therefore, G belongs to the ideal generated by 3. Then the
conclusion follows. O

Proposition 3.5. Let 6 = I — ¢ be an E-derivation of K[x1,xs]. If ¢ is an
affine polynomial homomorphism of K[x1,xs], then Imd is a Mathieu-Zhao
space of Klx1,xa].

Proof. Since ¢ is an affine polynomial homomorphism, we have that

(G =a () + ().
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where A € My(K) and (c1,c2)! € K?. Hence there exists T € GLy(K) such

that \ \
1 (A0 1
T AT—(O )\2> or (O )\>’

where \; # Xa. Let (o(21),0(22))" = T(x1,72)". Then we have o~ 'do =
I — 0~ 1¢o. Tt suffices to prove that Im(oc~160) is a Mathieu-Zhao space of
K[z1,22]. Let 5 =010 =1- ¢. Then ¢(x1) = A1 + 1, (x2) = Aog + o
or ¢(x1) = A\x1 + 2 + 1, ¢(w2) = Ax2 + o, where (g, u2)t = T'(cy, c2)t.

(1) If Ay # 1, A2 # 1 and X # 1, then it follows from Lemma 2.1 that there
exists o € Aut(K|[z1,25]) such that =260 = I — ¢, where ¢ is a linear poly-
nomial homomorphism. Then it follows from Proposition 3.3 that Im(c~'60)
is a Mathieu-Zhao space of K[z1,x2]. Since ¢ is a polynomial automorphism,
we have that Im ¢ is a Mathieu-Zhao space of K[x1,xs].

(2) If Ay = 1, then (;3(3:1) =1 + W1, (];(332) = Xoxg + po. Thus, we have
6(z1) = —p1. If g # 0, then 1 € Imé. It’s easy to check that § is locally
finite. It follows from Proposition 1.4 in [12] that Im ¢ is a Mathieu-Zhao space
of K[z1,z2]. If p3 = 0, then g(lel) = 0 for all 43 € N. Since \s # A1, there
exists 7 € Aut(K[z1,25]) such that § := 77167 = I — ¢, where ¢(x1) = =1,
(;3(3:2) = Agxy. Then it follows from Proposition 3.3 that Im § is a Mathieu-Zhao
space of K[x1,x3]. Thus, Imé is a Mathieu-Zhao space of Kz, z2).

(3) If Ay = 1, then we have that Imd is a Mathieu-Zhao space of K|[x1, 5]
by following the arguments of Proposition 3.5(2).

(4) If A = 1, then qg(xl) =21 + T2 + p1, qz(xg) = x9 + pue. Thus, we have
6(z2) = —pa. If pg # 0, then 1 € Imé. Since 6 is locally finite, it follows
from Proposition 1.4 in [12] that Im é is a Mathieu-Zhao space of K|z, zs]. If
pi2 = 0, then 6(x22) = 0 for all iy € N. Thus, we have

i1—1
(@it ay) = —(w2 + pa) (Y a7 I @y + 2o + ) )

§=0
for i1, € N*, iy € N. It’s easy to check that (xo + ul)x’fxéz € Imd for all
i1, i2 € N. Since 1 ¢ ImJ, we have that Im J is the ideal generated by xo + p1.
Then the conclusion follows. O
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