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SEMICASCADES OF TORIC LOG DEL PEZZO SURFACES

DongSeon Hwang

Abstract. A cascade of toric log del Pezzo surfaces of Picard number

one was introduced as a language of classifying all such surfaces. In this

paper, we introduce a generalized concept, a semicascade of toric log del
Pezzo surfaces. As applications, we discuss Kähler–Einstein toric log del

Pezzo surfaces and derive a bound on the Picard number in terms of the
number of singular points, generalizing some results of Dais and Suyama.

1. Introduction

Classification problem of toric log del Pezzo surfaces was considered in [1,
2, 4, 7]. As a result, toric log del Pezzo surfaces are completely classified up to
index 16 ([7]). Recently, [3] completely classifies all toric log del Pezzo surfaces
with 1 singular point, and [11] provides the complete classification of all those
surfaces with 2 or 3 singular points. In particular, for a singular toric log
del Pezzo surface S of Picard number ρ with t singular points, if t ≤ 3, then
ρ ≤ t+ 2 and the equality holds if and only if S is the blow up of the weighted
projective plane P(1, 1, n) at the two smooth torus-fixed points where n ≥ 2.
We shall generalize this observation.

Theorem 1.1. Let S be a singular toric log del Pezzo surface of Picard number
ρ with t singular points. Then ρ ≤ t+ 2 and the equality holds if and only if S
is the blow up of P(1, 1, n) at the two smooth torus-fixed points where n ≥ 2.

On the other hand, recall that we always have ρ ≥ t − 2. We observe that
singular Kähler–Einstein toric log del Pezzo surfaces attain the lower bound.

Theorem 1.2. Let S be a singular Kähler–Einstein toric log del Pezzo surface
of Picard number ρ with t singular points. Then we have ρ = t− 2. Moreover,
S admits a semicascade to one of S1(2, 2), S2(2, 3), or S2(2, 4). See Notation
2.15 for the notation.

Corollary 1.3. Let S be a Kähler–Einstein toric log del Pezzo surface. Then
the maximal cones of the corresponding fan are either all smooth or all singular.
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The proofs of both theorems use a generalization of cascades of toric log del
Pezzo surfaces of Picard number one, which was introduced in [6] as a language
to describe the classification of all such surfaces. Unfortunately, this notion
cannot be extended to those with higher Picard number. See Subsection 3.4
for more explanation. Nevertheless, we introduce the following generalization.

Definition 1.4. Let S be a toric log del Pezzo surface. We say that S admits
a semicascade if there exists a diagram as follows:

S′ = S′t
φt−−−−→ S′t−1

φt−1−−−−→ · · · φ1−−−−→ S′0

πt

y πt−1

y π0

y
St := S St−1 · · · S0

where for each k

(1) φk is a (toric) blow-down.
(2) πk is the minimal resolution,
(3) Either ρ(Sk) = ρ(Sk−1) or ρ(Sk) = ρ(Sk−1) + 1,
(4) S0 is a basic surface (See Definition 3.2).

In this case, we also say that S admits a semicascade to S0.

Note that, unlike the Picard number one case, we do not require that Sk is
a log del Pezzo surface for each k.

Theorem 1.5. Every singular toric log del Pezzo surface admits a semicascade.

We introduce the notion of toric graphs to prove Theorem 1.5 by using a
graph-theoretic argument. One can immediately read off the information of
the P1-fibration structure on the corresponding smooth toric surface S′k. See
Section 2 for toric graphs.

Conversely, by inverting the semicascade process, one can obtain all toric
log del Pezzo surfaces.

Theorem 1.6. Except for P(1, 1, n), the minimal resolution of every toric log
del Pezzo surface is obtained from a basic toric surface by a semiinverting (See
Definition 3.4 for semiinverting).

As an illustration, we recover some results of [3] and [11]. See Theorem 4.1
and Theorem 4.2.

2. Toric graphs

For convenience, we use the following notation in this paper.

Notation 2.1. (1) The vertex-weighted graph
n1◦ −n2◦ −· · ·−nk◦ is denoted

by [n1, n2, . . . , nk].
(2) The vertex-weighted cycle with weights n1, n2, . . . , nk in order is de-

noted by [[n1, n2, . . . , nk]].
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Remark 2.2. (1) The toric graph [[1, 1, 1]] corresponds to the projective
plane.

(2) The toric graph [[−n, 0, n, 0]] corresponds to the Hirzebruch surface of
degree n.

2.1. Toric graphs

We will use the following notion of a toric graph to describe a smooth pro-
jective toric surface.

Definition 2.3. (1) A blowup at an edge e of a vertex-weighted cycle G
is a vertex-weighted cycle G′ obtained by the following procedure.
(a) Add a new vertex v of weight −1 and new edges between v and

wi for i = 1, 2 where w1 and w2 are the adjacent vertices of e.
(b) Delete the edge e.
(c) Decrease each of the weights of w1 and w2 by 1.

(2) A blowdown at a vertex v of a vertex-weighted cycle G is a vertex-
weighted cycle G′ obtained by the following procedure.
(a) Add an edge between the adjacent vertices v1 and v2 of v.
(b) Delete the vertex v and its adjacent edges.
(c) Increase each of the weights of v1 and v2 by 1.

(3) A toric graph G is either [[1, 1, 1]], [[−n, 0, n, 0]] for some n ≥ 0, or
a vertex-weighted cycle obtained from them by a finite sequence of
blowups.
(a) G is said to be of type (O) if all the adjacent vertices of every

(−1)-vertex have weight at least −2.
(b) G is said to be of type (I) if it is not of type (O) and there is a

(−1)-vertex one of whose adjacent vertices has the weight −2.
(c) G is said to be of type (II) if it is neither of type (O) nor of type

(I).
(4) We say that there is a map G → G′ from a toric graph G to a toric

graph G′ if G can be obtained from G′ by a finite sequence of blowups,
or equivalently, G′ can be obtained from G by a finite sequence of
blowdowns.

Remark 2.4. The toric graph can be regarded as a ‘minimal resolution’ of a
wve2c-graph introduced in [1].

Note that every toric graph is either of type (O), of type (I), or of type (II).
The following lemma immediately follows from the standard theory of rational
surfaces.

Lemma 2.5. Let G be a toric graph. Then N = 12− 3n where N is the sum
of all weights and n is the number of vertices.

Definition 2.6. Let H be a subgraph of a toric graph G.

(1) H is said to be contractable if each of its vertices has weight at most
−2.
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(2) The length of H is defined to be the number of vertices of H.
(3) The weight of the vertex v of G is denoted by wt(v). A vertex of weight

n is said to be an (n)-vertex.
(4) A contractable subgraph H of G is said to be maximally connected if

wt(a) ≥ −1 and wt(b) ≥ −1 where a and b are the adjacent vertices of
H.

(5) G is said to be singular if it contains a contractible subgraph.
(6) We say that G has t singular points if G has t maximally connected

contractible subgraphs.

The following easy observation is useful.

Lemma 2.7. (1) Taking a blowup monotonically decreases each weight.
(2) Taking a blowup monotonically increases the number of maximally con-

nected contractable subgraphs of a toric graph.

2.2. Fibers of a toric graph

Definition 2.8. A vertex-weighted graph H = [n1, n2, . . . , nk] is said to be a
fiber of a toric graph G if it satisfies the following three conditions.

(1) H is a subgraph of G.
(2) Every vertex of H has a non-positive weight, i.e., ni ≤ 0 for each i.

(3) ((n1, n2, . . . , nk)) = 0 where ((n1, n2, ..., nk)) = n1 −
1

n2 −
1

. . . − 1

nk
denotes the Hirzebruch-Jung continued fraction.

Definition 2.9. Let F = [n1, n2, . . . , nk] be a fiber of a toric graph G.

(1) F is said to be of type (O) if its length is at most two.
(2) F is said to be of type (I0) if F = [−2,−1,−2].
(3) F is said to be of type (I) if there is a map from F to a fiber of type

(I0).
(4) F is said to be of type (II0) if F is of the form [−1,−2, . . . ,−2,−1],
(5) F is said to be of type (II) if there is a map from F to a fiber of type

(II0).

Example 2.10. There are exactly two fibers [0] and [−1,−1] of type (O).

Remark 2.11. The fiber indeed corresponds to the fiber of a P1-fibration on the
smooth toric surface corresponding to the toric graph. See Notation 2.15.

Lemma 2.12. (1) Being a fiber is invariant under taking a blowup or a
blowdown.

(2) Let G be a toric graph that is not [[1, 1, 1]]. Then there is a map G→ G′

to a dual graph G′ of a Hirzebruch surface.
(3) If H = [n1, . . . , nk] is a fiber of a toric graph G, then there exists

another fiber H ′ = [m1, . . . ,mt] of G such that G = [[s1, n1, . . . , nk, s2,
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m1, . . . ,mt]] for some s1 and s2. In this case, we also denote G by
[[s1, H, s2, H

′]].
(4) If G is a toric graph that is neither [[1, 1, 1]] nor [[−n, 0, n, 0]] for some

integer n ≥ 0, then there exist at most two vertices of nonnegative
weights.

(5) Let v be a vertex of a toric graph G that is not [[1, 1, 1]]. If wt(v) > 0,
then there exist two fibers H1 and H2 of G such that G = [[v,H1, v

′, H2]]
with wt(v′) < 0.

Proof. These are well known facts from P1-fibrations on rational surfaces. See
[5] and [9] for the details. (1) is an easy exercise on the finite negative continued
fraction. (2) follows from the standard theory of rational surfaces or the toric
Mori theory. (3) and (5) follow from (1) and (2). (4) follows from (1), (2) and
the fact that taking a blowup decreases weights. �

2.3. Toric graphs of type (O)

Notation 2.13. (1) G(P2) = [[1, 1, 1]].
(2) Gn(0, 0) = [[−n, 0, n, 0]].
(3) Gn(0, 1) = [−n, 0, n− 1,−1,−1]].
(4) Gn(1, 1) = [−n,−1,−1, n− 2,−1,−1]].
(5) Gn(0, 2) = [[−n, 0, n− 1,−2,−1,−2]].
(6) Gn(1, 2) = [[−n,−1,−1, n− 2,−2,−1,−2]].
(7) Gn(2, 2) = [[−n,−2,−1,−2, n− 2,−2,−1,−2]].
(8) G2(2, 3) = [[−2,−2,−1,−2,−1,−1,−2,−1]].
(9) G2(2, 4) = [[−2,−2,−1,−2,−2,−1,−2,−2,−1]].

Proposition 2.14. A toric graph of type (O) is one of the following graphs:
G(P2), Gn(0, 0), Gn(0, 2), Gn(2, 2) for every n; Gn(0, 1), Gn(1, 1), Gn(1, 2) for
n = 0, 1, 2; G2(2, 3) and G2(2, 4).

G(P2)

+1+1

+1

Gn(0, 0)

0

−n

0

n

Gn(0, 1), n = 0, 1, 2

−1−n

0

n−1 −1

Gn(1, 1), n = 0, 1, 2

−1−n−1

−1 n−2 −1

Gn(0, 2)

−2−n

0

n−1 −2

−1

Gn(1, 2), n = 0, 1, 2

−2−n−1

−1 n−2 −2

−1

Gn(2, 2)

−2−n−2

−1

−2 n−2 −2

−1

Gn(2, 3), n = 2

−1−n−2

−1

−2 n− 3 −1

−2

Gn(2, 4), n = 2

−1−n−2

−1

−2 n− 4 −1

−2

−2

Figure 1. Toric graphs of type (O)
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Proof. Let G be a toric graph of type (O). If there is no (−1)-vertex, G is either
G(P2) or Gn(0, 0) with n 6= 1. So we may assume that G has a (−1)-vertex. If
every vertex of G has weight at least −1, then it is easy to see that G is either
G1(0, 0), G1(1, 1) or Gn(0, 1) with n = 0, 1 by Lemma 2.7(1). Thus we may
assume that there also exists a vertex v of G with wt(v) ≤ −2.

We claim that except for Gn(0, 0) there exists a (−1)-vertex e adjacent to
a maximally connected contractible subgraph of G. Assume the claim is not
true. Then there exists an adjacent vertex e of v1 with wt(e) 6= −1 where v1

is an end vertex of a maximally connected contractible subgraph of G. Then
wt(e) ≥ 0. If wt(e) > 0, by Lemma 2.12(5), there exists a fiber F adjacent to e
containing the vertex v1. Since G is of type (O), we see that F = [−2,−1,−2],
which is a contradiction to the assumption. Thus wt(e) = 0. By Lemma
2.12(3), there exists a fiber containing the other adjacent vertex w of v1. By a
similar argument as above, we see that G = Gn(0, 0) with n = −wt(v1). This
completes the proof of the claim.

Let e be a (−1)-vertex adjacent to a vertex v1 of a maximally connected
contractible subgraph of G. Let w be the other adjacent vertex of e. Since G
is of type (O), wt(w) ≥ −2. Assume first that wt(w) = wt(v1) = −2. Since
[v1, e, w] is a fiber of type (I), by Lemma 2.12(3), there exists another fiber F
such that G = [[s, v1, e, w, s

′, F ]] for some s and s′. It is easy to see that the
fiber F is of type (O), (I0) or (II0) since G is of type (O). Then, by Lemma 2.5
and considering the effect of the symmetric shape of the graph with respect to
s and s′, G is one of the following 5 graphs: Gn(2, 3), Gn(2, 4), Gn(1, 2) with
n = 0, 1, 2, Gn(0, 2) and Gn(2, 2) for every n.

Now we may assume that wt(w) = −1 and there is no (−1)-vertex such that
both of its adjacent vertices have weight −2. In particular, there is no fiber of
type (I). Since [e, w] forms a complete fiber, by Lemma 2.12(3), there exists
another fiber F such that G = [[v1, e, w, s, F ]] for some s. Since G is of type
(O), by assumption, we see that the fiber F is either [0] or [−1,−1]. By Lemma
2.5, we see that G = G2(0, 1) in the first case and G = G2(1, 1) in the latter
case.

Finally, we may assume that the other adjacent vertex of every (−1)-vertex
adjacent to a maximally connected contractible subgraph ofG have nonnegative
weights. Let e be a (−1)-vertex adjacent to a maximally connected contractible
subgraph G′ of G and w be the other adjacent vertex of e. By assumption,
wt(w) ≥ 0. If wt(w) > 0, by Lemma 2.12(5), there exists two fibers H1 and
H2 such that G = [[w,H1, s,H2]] for some s where H1 contains e. Since G
is of type (O), H1 is of type (II0), so wt(s) ≥ 0 by assumption, which is
a contradiction by Lemma 2.12(5). If wt(w) = 0, by Lemma 2.12(3), there
exists another fiber F such that G = [[s, w, e, F ]] for some s. By assumption
we see that F is of type [−1,−1] or of type (II0). In the first case, we have
G = G1(0, 1), a contradiction since G has a vertex v with wt(v) ≤ 2. In
the latter case, e is adjacent to a (−1)-vertex that is adjacent to a maximally
connected contractible subgraph of G, a contradiction. �
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See Figure 2 for the maps between some toric graphs of type (O).

Gn(2, 4)

−1−n−2

−1

−2 n−4 −1

−2

−2

−→

Gn(2, 3)

−1−n−2

−1

−2 n−3 −1

−2

@@
Gn(2, 2)

−2−n−2

−1

−2 n−2 −2

−1 −→

Gn(1, 2)

−1−n−2

−1

−2 n−2 −1

−→

Gn(0, 2)

0

−n−2

−1

−2 n−1

��

Gn(1, 1)

−1−n−1

−1 n−2 −1

−→

Gn(0, 1)

0

−n−1

−1 n−1

−→

Gn(0, 0)

0

−n

0

n

Figure 2. Maps between toric graphs of type (O)

2.4. Ray generators of the fan

In this section, we present explicit coordinates for the ray generators of the
fans corresponding to toric graphs of type (O).

Notation 2.15. For each toric graph G in Notation 2.13, we denote by S′

the corresponding smooth toric surface and by S the contraction of all rational
curves with self-intersection number at most −2. We denote by P ′ the lattice
polytope corresponding to S′ and by P the lattice polytope corresponding to
S.

See Table 1 for the explicit coordinates in R2. Note that P0(0, 2) = P1(0, 2),
P0(1, 1) = P2(1, 1), P0(1, 2) = P2(1, 2), and P0(2, 2) = P2(2, 2).

Table 1. Ray generators of the fans of type (O)

P (P2) {(0, 1), (−1,−1), (1, 0)}
Pn(0, 0) {(0, 1), (−1, 0), (n,−1), (1, 0)}
Pn(0, 1) {(0, 1), (−1, 1), (−1, 0), (n,−1), (1, 0)}

P ′n(1, 1), n ≥ 1 {(0, 1), (−1, 1), (−1, 0), (n− 1,−1), (n,−1), (1, 0)}
P ′n(0, 2), n ≥ 1 {(1, 1), (−n,−n+ 1), (−1,−1), (0,−1), (1,−1), (1, 0)}
P ′n(1, 2), n ≥ 1 {(1, 1), (−n+ 1,−n+ 2), (−n,−n+ 1), (−1,−1), (0,−1), (1,−1), (1, 0)}

P ′1(2, 2) {(1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1), (1, 0)}
P ′n(2, 2), n ≥ 2 {(−1,−1), (1, 0), (3, 1), (2, 1), (1, 1), (n− 2, n− 1), (2n− 5, 2n− 3), (n− 3, n− 2)}

P ′2(2, 3) {(1, 1), (0, 1), (−1, 0), (−2,−1), (−1,−1), (0,−1), (1,−1), (1, 0)}
P ′2(2, 4) {(1, 2), (0, 1), (−1, 0), (−2, 1), (−1,−1), (0,−1), (1,−1), (1, 0), (1, 1)}

See Figure 3 for the drawings of some Fano polygons of type (O). See [8]
for more about Fano polytopes.
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P (P2) P0(0, 0) P2(0, 0) P2(0, 1)

P2(0, 2) P2(1, 1) P2(1, 2) P2(2, 2)

P2(2, 3) P2(2, 4)

Figure 3. Some Fano polygons of type (O)

3. Cascades of toric log del Pezzo surfaces

Note that the set of all toric graphs has a one-to-one correspondence with
the set of all smooth projective toric surfaces up to natural isomorphisms. In
this correspondence, a toric graph with n vertices corresponds to a smooth
projective toric surface of Picard number n− 2.

Example 3.1. Note that S′ = S for smooth toric del Pezzo surfaces. The
cascades for five smooth toric del Pezzo surfaces can be written as follows:

S1(1, 1)→ S1(0, 1)→ S1(0, 0) = F1 → S(P2) = P2, S0(0, 0) = F0.

Note that for a toric graph G of type (O) the corresponding toric surface
S is a toric log del Pezzo surface since the morphism S′ → S is a minimal
resolution. For example, S2(2, 4) is the cubic surface with three cusps, i.e., the
toric log del Pezzo surface of Picard number one with 3 singular points of type
A2.

3.1. Semicascades of toric log del Pezzo surfaces

Definition 3.2. The toric log del Pezzo surface is said to be of type (O) if the
corresponding toric graph is of type (O). A singular toric log del Pezzo surface
of type (O) is called a basic toric log del Pezzo surface (or a basic surface in
short) if it is not isomorphic to Sn(0, 0).



SEMICASCADES OF TORIC LOG DEL PEZZO SURFACES 187

Definition 3.3. Let S′ be the minimal resolution of a toric log del Pezzo
surface. A point of S′ is said to be invertible if it is the intersection point of
two negative rational curves, not both of them being (−1)-curves.

Definition 3.4. Let S be a toric log del Pezzo surface.

(1) We say that S admits a one-step semicascade if there exists a diagram
as follows:

S′
φ−−−−→ S̄′

π

y π̄

y
S S̄

where
(a) φ is a blow-down of a (−1)-curve,
(b) π and π̄ are minimal resolutions, and
(c) S̄ is a projective toric surface with ρ(S) = ρ(S̄) or ρ(S) = ρ(S̄)+1.

(2) A one-step semicascade is said to be of type (I) if ρ(S) = ρ(S̄).
(3) A one-step semicascade is said to be of type (II) if ρ(S) = ρ(S̄) + 1.
(4) A one-step semicascade is said to be a one-step cascade if S̄ is a log del

Pezzo surface.
(5) We say that a toric log del Pezzo surface S̄ admits a one-step semiin-

verting if there exists a diagram in (1) exists where (c) is replaced by
(c’) S is a projective toric surface with ρ(S) = ρ(S̄) or ρ(S) = ρ(S̄)+1.

(6) We say that a toric log del Pezzo surface S̄ admits a one-step inverting
if it admits a one-step semiinverting such that S is a toric log del Pezzo
surface.

Proposition 3.5. The number of singular points is monotonely increasing
under a one-step semicascade.

3.2. Existence of a semicascade (=Proof of Theorem 1.5)

Let S be a toric log del Pezzo surface and S′ be its minimal resolution. Let
G be the corresponding toric graph of S′. Then G is either of type (O), of type
(I), or of type (II). Note that a toric graph of type (I) (or (II), resp.) induces
a one-step semicascade of type (I) (or (II), resp.) to the corresponding toric
log del Pezzo surface. Now Proposition 2.14 completes the proof.

3.3. Semiinverting (=Proof of Theorem 1.6)

As we already saw in the proof of Theorem 1.5, a toric graph of type (I)
(or (II), resp.) induces a one-step semicascade of type (I) (or (II), resp.). In
this process, the blowing-up locus of each one-step semiinverting is exactly one
of the invertible points. Note that P(1, 1, n) for some integer n ≥ 0 is not a
basic surface but the corresponding toric graph Gn(0, 0) is of type (O) with no
invertible points. This completes the proof.
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P P1 P2

Figure 4.

3.4. An example

Consider the toric log del Pezzo surface S corresponding to P in Figure 4.
By Theorem 1.5, S admits a one-step semicascade. However, one can see that
S does not admit a one-step cascade since any one-step semicascade results in
a nonconvex lattice polygon, hence is not Fano, as P1 and P2 in Figure 4 show.
Note that S has 3 singularities of type [2, 4, 2], [5], [2, 3, 3, 2] and ρ(S) = 2.

4. Applications

4.1. Bounds on the Picard number: Proof of Theorem 1.1

Let s be the number of smooth torus-fixed points. Then it is easy to see
that t+ s = ρ+ 2, so ρ− t = s− 2. Since S is singular, by Theorem 1.6, it is
enough to count the number of maximal dimensional smooth cones of the fan
corresponding to basic surfaces. Now, by looking at Figure 1, it is easy to see
that s ≤ 4 and s = 4 if and only if S = Sn(1, 1) with n ≥ 2 since S is singular.
This completes the proof.

4.2. Kähler–Einstein toric log del Pezzo surfaces: Proof of Theorem
1.2

By Theorem 1.6, it is enough to consider the basic surfaces and its semi-
invertings. Recall that a toric log del Pezzo surface admits a Kähler–Einstein
metric if and only if the moment polygon has the origin as its barycenter by
[10]. A Fano polygon is said to be Kähler–Einstein if the corresponding toric
log del Pezzo surface admits a Kähler–Einstein metric.
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Let T be the toric log del Pezzo surface whose corresponding Fano polygon
has vertices (2, 1), (−1,−1), (−2,−1), and (1,−1) as in the above figure. Note
that T can be obtained from S2(2, 3) by two one-step invertings. Then we can
easily see that S2(2, 3), S1(2, 2) and T are Kähler–Einstein. By looking at their
Fano polygons, it is easy to find infinitely many Kähler–Einstein Fano polygons
by taking suitable semiinvertings of S2(2, 3), S1(2, 2), S2(2, 4), or T .

For the other basic surfaces, by using the coordinates of the corresponding
Fano polygons from Table 1, we see that none of them or their semiinvert-
ings are Kähler–Einstein since the y-coordinate of the dual polygon is always
negative. This completes the proof.

4.3. Toric log del Pezzo surfaces with at most two singular points

We recover the classification results in [3] and [11].

Theorem 4.1 ([3]). Let S be a toric log del Pezzo surface with one singular
point. Then S is one of the following: (1) Sn(0, 0), (2) Sn(0, 1), (3) Sn(1, 1), for
some integer n ≥ 2. In particular, the singularity type of S is always 1

n (1, 1).

Proof. By Theorem 1.6 and Proposition 3.5, we only need to consider basic
surfaces with 1 singular point, i.e., Sn(0, 0), Sn(0, 1), Sn(1, 1) for n ≥ 2. Note
that any one-step semiinverting results in a toric surface with at least two
singular points. This completes the proof. �

Theorem 4.2 (cf. [11]). Let S be a toric log del Pezzo surface with two sin-
gular points. Then S admits a semicascade, only consisting of finitely many
semicascades of type (I), to one of the following: (1) Gn(0, 1) with n ≥ 2,
(2) Gn(1, 1) with n ≥ 2, (3) Gn(0, 2) with n ≥ 1, (4) Gn(1, 2) with n ≥ 1.
Moreover, the toric graph of S is one of the following: [[−n − 1, 0, n − 1, F2]],
[[−n− 1,−1,−1, n− 2, F2]], [[−n, 0, n− 1, F1]], [[−n,−1,−1, n− 2, F1]] where
F1 is a fiber of type (I) and F2 is a fiber of type (II).

Proof. By Proposition 3.5, we see that S is obtained by semiinverting from
Sn(0, 1), Sn(1, 1), Sn(0, 2), Sn(1, 2). Consider the first two cases. If n = 1, it
has no singular points and no invertible points. Assume that n ≥ 2. Taking
a one-step semiinverting at any invertible point produces a toric log del Pezzo
surface with 2 singular points, and the minimal resolution has a P1-fibration
with a fiber of type (II). Consider the remaining two cases. In this case, S
already has two singular points. Note that a semiinverting at some invertible
point leads to a toric surface with three singular points. For instance, S1(0, 2)
has 3 invertible points but one of them induces a semiinverting that produces
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a toric surface with three singular points. Avoiding such invertible points, the
semiinverting preserves the fiber of type (I). This completes the proof. �

Remark 4.3. One can further classify toric log del Pezzo surfaces with more
singular points by a similar but more detailed analysis.
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