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RINGS IN WHICH EVERY IDEAL CONTAINED IN THE SET

OF ZERO-DIVISORS IS A D-IDEAL

Adam Anebri, Najib Mahdou, and Abdeslam Mimouni

Abstract. In this paper, we introduce and study the class of rings in

which every ideal consisting entirely of zero divisors is a d-ideal, consid-
ered as a generalization of strongly duo rings. Some results including the

characterization of AA-rings are given in the first section. Further, we
examine the stability of these rings in localization and study the possible

transfer to direct product and trivial ring extension. In addition, we de-

fine the class of dE-ideals which allows us to characterize von Neumann
regular rings.

1. Introduction

Throughout this article, all rings are commutative with identity and all
modules are unital. If R is a ring and E is an R-module, Z(E) = ZR(E) := {r ∈
R | re = 0 for some nonzero element e ∈ E}, denotes the set of zero-divisors of
R on E and Z(R) := ZR(R), denotes the set of zero-divisors of the ring R;
Nil(R) denotes the set of nilpotent elements of R; T (R) := RR\Z(R), the total
quotient ring of R; (N :E I) := {e ∈ E | Ie ⊆ N}, denotes the residual of a
submodule N of E by an ideal I of R; (J : I) := (J :R I), denotes the residual
of an ideal J of R by an ideal I; AnnE(I) := (0 :E I), denotes the annihilator
of an ideal I of R on E; I−1 denotes the set (R :T (R) I); AnnR(N) := {r ∈
R | rN = 0}, denotes the annihilator of a submodule N of E on R; Ann(E) :=
AnnR(E) denotes the annihilator of E; Ann2(x) := Ann(Ann(x)) denotes the
annihilator of the annihilator (or, colloquially speaking, the double-annihilator)
of an element x of R. If R is an integral domain, we will usually denote its
quotient field by qf(R).

An ideal I of R is called a d-ideal if for each x ∈ I, Ann2(x) ⊆ I. These
ideals that will be the subject of study in this paper have appeared in various
guises with different names. They were first studied by Speed [16] in 1972 in
the context of Baer rings (a ring R is called Baer, if for each r ∈ R there
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exists an idempotent e ∈ R such that Ann(r) = Re). He called them “Baer
ideals”. In [3], Bernau studied them as z-ideals. In [11], Khabazian, Safaeeyan
and Vedadi extended the concept of d-ideals to the category of modules and
introduced strongly duo modules as follows: An R-module E is called strongly
duo module if Tr(N,E) := {

∑
Imf | f ∈ HomR(N,E)} = N for all submodule

N of E; and a ring R is said to be a strongly duo ring if it is a strongly duo as
an R-module. Additional information about strongly duo modules and rings
can be found in the interesting article [15]. In [8, Theorem 1], Jayaram proved
that if R is a reduced ring, then R is von Neumann regular if and only if R is
strongly duo.

Let A be a ring and E be an A-module. Then R = A n E, the trivial
(ring) extension of A by E, is the ring whose additive structure is that of the
external direct sum A⊕E and whose multiplication is defined by (a, e)(b, f) :=
(ab, af + be) for all a, b ∈ A and all e, f ∈ E. (This construction is also known
by other terminology, such as the idealization.) The basic properties of trivial
ring extensions are summarized in the books [6, 7]. Trivial ring extensions
have been studied or generalized extensively, often because of their usefulness
in constructing new classes of examples of rings satisfying various properties
(cf. [1, 2, 10]).

The aim of this paper is to study rings in which every ideal contained in the
set of zero-divisors is a d-ideal that we call AA-rings. In Section 2, we observe
that in the context of total ring of quotients, the notion of an AA-ring coincides
with the definition of a strongly duo ring. Also, recall from [5] that a ring R is
said to be a quasi-regular ring if its classical ring of quotients is von Neumann
regular. We show that reduced AA-rings are exactly quasi-regular rings. As
a corollary, we provide that every ideal consisting entirely of zero divisors of
a hereditary ring is idempotent. Moreover, we introduce and investigate the
concept of a dE-ideal of a ring R for an R-module E. An ideal I of R is said to
be a dE-ideal for an R-module E if for each x ∈ I, AnnR(AnnE(x)) ⊆ I. From
this notion, we prove that a ring R is von Neumann regular if and only if there
exists a reduced R-module E such that every ideal of R is a dE-ideal (according
to [12], an R-module E is said to be reduced if for any e ∈ E and r ∈ R, re = 0
implies Re∩ rE = 0 and it can be easily verified that E is a reduced R-module
if and only if for any e ∈ E and r ∈ R, r2e = 0 implies re = 0). Finally, in
Section 3 we give several results on the transfer of the AA-property to direct
product, localization and to various contexts of trivial extension.

2. Basic results

We will be using the following definition (which agrees with the classical
one if R is a domain). An R-module E is said to be a torsion R-module if,
for each e ∈ E, there exists r ∈ R \ {0} such that re = 0. We will also use
the following three standard definitions: A regular element of a ring R is any
element of R \ Z(R); an R-module E is divisible if, for each e ∈ E and each
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regular element r of R, there exists f ∈ E such that e = rf ; an R-module
E is (a) torsion-free (R-module) if r ∈ R, e ∈ E, re = 0 implies that either
r ∈ Z(R) or e = 0.

We shall begin with the following definition:

Definition. A ring R is said to be an AA-ring if every ideal contained in the
set of zero-divisors is a d-ideal.

The first main result establishes a characterization of AA-rings:

Theorem 2.1. Let R be a ring. The following statements are equivalent:

(1) R is an AA-ring.
(2) If I and J are ideals of R such that I ⊆ Z(R) and f : I → J is an

epimorphism of R-modules, then J ⊆ I.
(3) Tr(I,R) = I for every ideal I contained in Z(R).
(4) For each x, y ∈ Z(R), Ann(x) ⊆ Ann(y) implies that y ∈ Rx.
(5) Every principal ideal contained in Z(R) is a d-ideal.

Proof. (1) ⇒ (2) Let I and J be two ideals of R such that I ⊆ Z(R) and let
f : I → J be an epimorphism of R-modules. It is easy to see that for each
x ∈ I, Ann(x) ⊆ Ann(f(x)) and so f(x) ∈ I since I is a d-ideal. Hence J ⊆ I.

(2)⇒ (3) It is clear to see that I ⊆ Tr(I,R). For the reverse inclusion, we
have by hypothesis Imf ⊆ I for every f ∈ HomR(I,R). So Tr(I,R) = I.

(3)⇒ (4) It is similar to the proof of [11, Theorem 2.1].
(4)⇒ (5) It is obvious since Ann(x) ⊆ Ann(ax) for each a ∈ R.
(5)⇒ (1) Let I be an ideal of R such that I ⊆ Z(R). Let x ∈ I and y ∈ R

such that Ann(x) ⊆ Ann(y). Therefore, the hypothesis ensures that Rx is
d-ideal and hence y ∈ I. �

According to [11], a ring R is a strongly duo ring if and only if every ideal of
R is a d-ideal. The next proposition identifies an important class of AA-rings
and then shows that, within the context of total rings, AA-rings coincide with
strongly duo rings.

Proposition 2.2. Let R be a ring. Then R is a strongly duo ring if and only
if R is a total AA-ring.

Proof. Assume that R is a strongly duo ring and let x be a regular element of
R. Then the principal ideal Rx is a d-ideal and so R = Ann2(x) ⊆ Rx. Thus
x ∈ U(R) and therefore R = T (R) as desired.

Conversely, let I be an ideal of R. Since R is a total ring, I ⊆ Z(R); and
since R is an AA-ring, I is a d-ideal. Thus R is a strongly duo ring. �

Remark 2.3. By the above result, a non strongly duo AA-ring contains neces-
sary a regular element. For example, every domain which is not a field is a non
strongly duo AA-ring.

The following corollary is an immediate consequence of Proposition 2.2.
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Corollary 2.4. Let R be a ring in which every maximal ideal is a d-ideal.
Then R is a strongly duo ring if and only if R is an AA-ring.

Proof. It suffices to prove that R is a total ring. Let x be a regular element
of R. If x is not a unit of R, then there exists a maximal ideal M of R such
that x ∈ M . But since M is a d-ideal, R = Ann2(x) ⊆ M , which is absurd.
Thus x ∈ U(R) and so R = T (R). Now, the result follows immediately by
Proposition 2.2. �

Recall from [9], that a finitely generated R-module E is said to be a von
Neumann regular module if for each e ∈ E, there exists a weakly idempotent
x ∈ R (i.e., x− x2 ∈ Ann(E)) such that Re = xE.

Theorem 2.5. Let R be a ring and E be a finitely generated R-module. Then
E is a von Neumann regular module if and only if E is a multiplication reduced
strongly duo module.

Proof. Assume that E is a von Neumann regular module. Then, by [4, Propo-
sition 1.1] and [9, Lemma 10], E is a multiplication reduced module. We
need only to prove that E is a strongly duo module. Let e, f ∈ E such that
AnnR(e) ⊆ AnnR(f). By [9, Lemma 5], there exists a weakly idempotent
x ∈ R such that Re = xE. Moreover e = xm = x2m for some m ∈ E. Thus
(1− x) ∈ AnnR(e) and so f = xf ∈ xE. Thus f ∈ Re. Conversely, let x ∈ R.
Since E is a reduced module, AnnR(x2e) ⊆ AnnR(xe) for each e ∈ E. Thus
xE = x2E and, by [9, Theorem 2], E is a von Neumann regular module. �

As an immediate consequence, we obtain the following result of Jayaram
[8, Theorem 1].

Corollary 2.6. A ring R is von Neumann regular if and only if R is a reduced
strongly duo ring.

Recall from [8], an ideal of R is a 0-ideal if I = O(S) := {r ∈ R | rs = 0
for some s ∈ S}, for some multiplicative subset S of R. A ring R is called
quasi-regular if its classical ring of quotients T (R) is a von Neumann regular
ring.

Proposition 2.7. Let R be a ring. Then the following statements are equi-
valent:

(1) R is a reduced AA-ring.
(2) For each x ∈ Z(R), x ∈ Rx2.
(3) R is a quasi-regular ring.
(4) R is a reduced ring and every principal ideal contained in Z(R) is a

0-ideal.

Proof. (1)⇒ (2) Assume that R is a reduced AA-ring and let x ∈ Z(R). Then
Ann(x2) ⊆ Ann(x) and therefore x ∈ Rx2.
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(2)⇒ (3) Let x/s ∈ T (R). If x ∈ R \ Z(R), then x/s is invertible in T (R).
If x ∈ Z(R), by hypothesis, x ∈ Rx2 and x/s ∈ R(x2/s2). Consequently, R is
a quasi-regular ring.

(3) ⇒ (4) Since R is a quasi-regular ring, then for each x ∈ Z(R), there
exist r ∈ R and d ∈ R \ Z(R) such that dx = rx2. Then if x2 = 0, we have
dx = 0 and so x = 0. Thus R is reduced. Let x ∈ Z(R) and set S := {y ∈
R |Ann(x) ⊆ Ann2(y)}. It is easy to see that S is a multiplicative subset of R.
On the other hand, (d − rx) ∈ Ann(x) and also (d − rx) ∈ S. It follows that
Rx = O(S).

(4) ⇒ (1) R is an AA-ring by Theorem 2.1 since every 0-ideal is a d-ideal.
The proof is completed. �

Remark 2.8. In the case of reduced rings, we can now find more examples of
AA-rings that are not strongly duo. For instance, every semi-hereditary ring
that is not a von Neumann regular ring is a non strongly duo AA-ring.

Recall that a commutative ring is a hereditary ring if every ideal is projective.

Corollary 2.9. Let R be a hereditary ring. Then every ideal of R contained
in Z(R) is an idempotent ideal.

Proof. Let I be an ideal of R such that I ⊆ Z(R). Since R is a hereditary
ring, R is a quasi-regular ring. By Proposition 2.7, R is an AA-ring. Thus I
is a d-ideal and so I = Tr(I,R). Since I is projective, by [17, Result 18.7],
I2 = Tr(I,R)2 = Tr(I,R) = I and therefore I is an idempotent ideal, as
desired. �

Next, we extend the notion of d-ideals to d-ideals with respect to modules
by introducing the following definition.

Definition. Let R be a ring and E be an R-module. An ideal I of R is said
to be a dE-ideal if for each x ∈ I, AnnR(AnnE(x)) ⊆ I.

Note that an ideal I of a ring R is a d-ideal if and only if I is a dR-ideal.
Furthermore, if R is a ring and E is an R-module, then it is easy to show that
a proper ideal I of R is a dE-ideal implies that Ann(E) ⊆ I and I ⊆ Z(E).

Proposition 2.10. Let R be a ring and E be an R-module. An ideal I of R
is a dE-ideal if and only if for any x, y ∈ R, AnnE(x) ⊆ AnnE(y) and x ∈ I
imply that y ∈ I.

Proof. Suppose that I is a dE-ideal of R and let x ∈ I and y ∈ R such that
AnnE(x) ⊆ AnnE(y). Then y ∈ AnnR(AnnE(x)) ⊆ I and so y ∈ I.

Conversely, assume that whenever AnnE(x) ⊆ AnnE(y) and x ∈ I. Then
y ∈ I. Let x ∈ I and y ∈ AnnR(AnnE(x)). Then yAnnE(x) = 0 and so
AnnE(x) ⊆ AnnE(y). By the assumption, y ∈ I, and therefore
AnnR(AnnE(x)) ⊆ I, as desired. �

Proposition 2.11. Let R be a ring and E be an R-module. Then:
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(1) Ann(E) is a dE-ideal of R.
(2) The zero ideal of R is a dE-ideal if and only if Ann(E) = 0.
(3) The intersection of all dE-ideals is a dE-ideal.

Proof. Straightforward. �

Example 2.12. Let R := Z. Consider the Z-module E :=
⊕∞

k=1 Z/2kZ. Then
every ideal of R which has the form I = 2nZ is a dE-ideal.

Proof. One checks easily that Z(E) = 2Z and Ann(E) = 0. Let I be an ideal
of R such that I = 2nZ for some integer n ≥ 1. Therefore, for each x ∈ I,
AnnE(x) =

⊕∞
k=1 Nk with Nk = Z/2kZ if k ≤ n and Nk = 2k−nZ/2kZ if

k > n. Hence AnnR(AnnE(x)) = 2nZ for each x ∈ I and so I is a dE-ideal of
R. �

Proposition 2.13. Let R be a ring and E be an R-module. Let I be a dE-ideal
of R. Then the following statements hold:

(1) For every ideal J of R, (I : J) is a dE-ideal of R.
(2) Every minimal prime over I is a dE-ideal of R.

(3)
√
I is a dE-ideal of R.

We need the following lemma before proving Proposition 2.13.

Lemma 2.14. Let R be a ring and E be an R-module. If x, y ∈ R and
AnnE(x) ⊆ AnnE(y), then AnnE(xn) ⊆ AnnE(yn) for each n ≥ 2.

Proof. We proceed by induction on n. For n = 2, let e ∈ AnnE(x2). Then
x2e = 0 and hence yxe = 0. Therefore ye ∈ AnnE(x) ⊆ AnnE(y). Thus
y2e = 0, and therefore AnnE(x2) ⊆ AnnE(y2). Assume that n ≥ 3 and the
induction hypothesis for n − 1. Let e ∈ AnnE(xn). Then xne = 0 and so
xn−1e ∈ AnnE(x) ⊆ AnnE(y). Thus yxn−1e = 0 and so ye ∈ AnnE(xn−1) ⊆
AnnE(yn−1). Hence yne = 0 and therefore e ∈ AnnE(yn). It follows that
AnnE(xn) ⊆ AnnE(yn), as desired. �

Proof of Proposition 2.13. (1) Let x ∈ (I : J) and y ∈ R such that AnnE(x) ⊆
AnnE(y). Then for each a ∈ J , AnnE(xa) ⊆ AnnE(ya). Since I is a dE-
ideal and xa ∈ I, by Proposition 2.10, ya ∈ I and so y ∈ (I : J). Again, by
Proposition 2.10, (I : J) is a dE-ideal.

(2) Suppose that P ∈ Min(I). Let x ∈ P and y ∈ R such that AnnE(x) ⊆
AnnE(y). Then, there exist a ∈ R \ P and n ∈ N such that axn ∈ I. By
Lemma 2.14, AnnE(axn) ⊆ AnnE(ayn) which in turns implies that ayn ∈ I
since I is a dE-ideal. It follows that y ∈ P .

(3) It follows from Proposition 2.11 since
√
I is the intersection of all minimal

prime ideals over I which are dE-ideals by (2) as desired. �

Corollary 2.15. Let R be a ring and E be an R-module such that Ann(E) = 0.
Then the following conditions hold:

(1) Every annihilator ideal is a dE-ideal of R.
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(2) Every minimal prime ideal of R is a dE-ideal of R.

Proof. The fact that Ann(E) = 0 shows that the zero ideal is a dE-ideal of R.
We obtain by part (1) of Proposition 2.13 that Ann(J) = (0 : J) is a dE-ideal
of R for every ideal J , and by part (2) of Proposition 2.13 that every minimal
prime of R is a dE-ideal. �

Recall that two ideals I and J of a ring R are co-prime if I + J = R.

Proposition 2.16. Let R be a ring and E be an R-module. Let I1, . . . , In be
ideals of R such that for each i 6= j, Ii and Ij are co-prime. Then

⋂n
k=1 Ik is

a dE-ideal of R if and only if Ii is a dE-ideal for each i ∈ {1, . . . , n}.
Proof. It is enough to show the converse. Suppose that

⋂n
k=1 Ik is a dE-ideal of

R. Fix i ∈ {1, . . . , n} and let x ∈ Ii and y ∈ R such that AnnE(x) ⊆ AnnE(y).
By hypothesis, for each j 6= i, Ii and Ij are co-prime of R and so Ii and⋂n

k=1,k 6=i Ik are co-prime. Then, 1 = a+ b for some a ∈ Ii and b ∈
⋂n

k=1,k 6=i Ik.

Therefore y = ya + yb and AnnE(xb) ⊆ AnnE(yb). Since xb ∈
⋂n

k=1 Ik and⋂n
k=1 Ik is a dE-ideal of R, then yb ∈

⋂n
k=1 Ik. Thus y ∈ Ii since ya ∈ Ii. �

Corollary 2.17. Let R be an Artinian ring and E be an R-module such that
Ann(E) = 0. Then every maximal ideal of R is a dE-ideal of R.

Proof. Since R is an Artinian ring, R has a finite number of maximal ideals,
say M1, . . . ,Mn. Moreover, Nil(R) = J(R) and Nil(R) is a dE-ideal of R. We
know that Mi are pair-wise co-prime which implies by Proposition 2.16 that
each Mi is a dE-ideal. �

Theorem 2.18. Let R be a ring and I be a nonzero ideal of R. Then I is a
d-ideal of R if and only if I is a dE-ideal for every R-module E which has an
element with zero annihilator.

Proof. Assume that I is a d-ideal and let E be an R-module which has an
element with zero annihilator. Let x ∈ I and y ∈ AnnR(AnnE(x)). Then,
y ∈ Ann2(x). In fact, let a ∈ Ann(x). By hypothesis, there exists an element
e of E such that AnnR(e) = 0, thus ae ∈ AnnE(x) and so ae ∈ AnnE(y). It
follows that a ∈ Ann(y). However I is a d-ideal of R, we obtain finally that
y ∈ I and hence I is a dE-ideal of R. The converse is clear. �

The class of d-ideals and the class of dE-ideal are not necessarily comparable,
as is illustrated by the following example.

Example 2.19. Let (R,M) be a local domain which is not a field and E be
an R-module with ME = 0. Then:

(1) The zero ideal is a d-ideal of R, but it is not a dE-ideal.
(2) M is a dE-ideal of R which is not a d-ideal.

Proof. (1) It is obvious because Ann(E) 6= 0.
(2) Since M is a proper ideal which is not contained in Z(R), M is not a

d-ideal of R. On the other hand, ME = 0 implies that M is a dE-ideal. �
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Proposition 2.20. Let R be a ring and E be an R-module. Then the following
statements are equivalent:

(1) Every ideal I of R such that I ⊆ Z(E) is a dE-ideal.
(2) For each x, y ∈ Z(E), AnnE(x) ⊆ AnnE(y) implies that y ∈ Rx.

Proof. This is a routine argument. �

According to [13], an ideal of R is called invertible if II−1 = R.

Example 2.21. Let R be a domain which is not a field, K := qf(R) and
E := K/R. Then every ideal of R contained in Z(E) is a dE-ideal.

Proof. Note that Ann(E) = 0. In fact, let x ∈ Ann(E), then x /∈ U(R).
Assume that x 6= 0, it follows that x(1/x2) ∈ R and so x ∈ Rx2, that implies
x ∈ U(R), contradiction. On the other hand, we have Z(E) = R \ U(R) since
x(1/x) ∈ R for each x ∈ R \ U(R), with 1/x is a nonzero element of E. Now,
we show that every ideal of R contained in Z(E) is a dE-ideal. Without loss
of generality, let x, y ∈ Z(E) \ {0} such that AnnE(x) ⊆ AnnE(y) and set
I := Rx and J := Ry. One can see that AnnE(x) = I−1 and AnnE(y) = J−1 .
By [13, Lemma 3], I and J are invertible ideals. We obtain that J = II−1J ⊆
IJ−1J = IR = I, as desired. �

The following proposition gives a new characterization for von Neumann
regular rings.

Proposition 2.22. Let R be a ring. Then R is a von Neumann regular ring
if and only if there exists a reduced R-module E such that every ideal of R is a
dE-ideal.

Proof. If R is a von Neumann regular ring, then R is a strongly duo ring and so
R is reduced and every ideal of R is a d-ideal. Conversely, let E be a reduced
R-module such every ideal of R is a dE-ideal. Then, AnnE(x2) ⊆ AnnE(x) for
each x ∈ R and hence x ∈ Rx2, as desired. �

Corollary 2.23. Let R be a ring. Then R is a reduced AA-ring if and only if
there exists a reduced module E over T (R) such that every ideal of T (R) is a
dE-ideal.

3. AA-property for specific rings

In this section, we study the transfer of the AA-property to some several
classes of rings. We start by giving necessary and sufficient conditions for a
direct product of rings to be an AA-ring.

Proposition 3.1. Let (Ri)i=1,...,n be a family of rings and let R :=
∏n

i=1 Ri.
Then, the following statements are equivalent:

(1) R is an AA-ring.
(2) Ri is a strongly duo ring for each i ∈ {1, . . . , n}.
(3) R is a strongly duo ring.
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Proof. By induction on n, it suffices to prove the assertion for n = 2.
(2)⇔ (3) By [11, Proposition 4.4].
(3)⇒ (1) This is clear.
(1) ⇒ (2) Assume that R := R1 × R2 is an AA-ring. Let x ∈ R1 \ Z(R1).

Then, the ideal generated by (x, 0) is a d-ideal, otherwise x ∈ U(R1) since
Ann2(x, 0) = R1 × 0. Consequently, R1 is a total ring. On the other hand, let
x ∈ Z(R1) and r ∈ R1 such that Ann(x) ⊆ Ann(r). So, we have Ann(x, 0) ⊆
Ann(r, 0). Then, r ∈ R1x. Thus, R1 is an AA-ring and by Proposition 2.2, R1

is a strongly duo ring. By similar arguments, we obtain that R2 is a strongly
duo ring. �

Next, we study the stability of AA-property in localization.

Proposition 3.2. Let R be an AA-ring and S be a multiplicative subset of R.
Suppose that at least one of the following conditions holds:

(1) S ⊆ R \ Z(R).
(2) R is a reduced ring.
(3) For each x ∈ R, Ann(x) is a finitely generated ideal of R.

Then RS is an AA-ring.

Proof. Assume that the condition (1) holds. Let IS be an ideal of RS such that
IS ⊆ Z(RS). Then I ⊆ Z(R). Furthermore, let x/s ∈ IS . Since S ⊆ R \Z(R),
one checks easily that Ann (x/s) = (Ann(x))S and Ann2 (x/s) = (Ann2(x))S .
It follows that IS is a d-ideal of RS . Next, assume that R is a reduced ring,
then R is quasi-regular and so RS is quasi-regular by [5, Proposition 2] which
implies that RS is an AA-ring. Now, suppose that the condition (3) holds. Let
(x/s) ∈ Z(RS) and (r/t) ∈ RS such that Ann(x/s) ⊆ Ann(r/t). Replacing
x/s, r/t with (xt/st), (rs/st) respectively, we can suppose that s = t. By
hypothesis, there exists a finite subset {x1, . . . , xn} of R such that Ann(x) =∑n

i=1 Rxi. Then, xi/1 ∈ Ann(x/s) and so xisir = 0 for some si ∈ S. Hence,
Ann(x) ⊆ Ann(ur), with u := s1s2 · · · sn ∈ S. On the other hand, as x/s ∈
Z(RS), we have x ∈ Z(R). Furthermore, ur ∈ Rx and so r/s ∈ RS(x/s), as
desired. �

Remark 3.3. This remark shows that if RS is an AA-ring for some multiplicative
subset S ⊆ R\Z(R), then R is not necessarily an AA-ring. Indeed, let R be an
AA-ring which contains a regular element. By Proposition 3.2, we obtain that
T (R) is a strongly duo ring. Thus, T (R×R) is an AA-ring, however R×R is
not an AA-ring.

Theorem 3.4. Let R be a ring. Consider the following conditions:

(a) R is an AA-ring.
(b) RP is an AA-ring for each P ∈ Spec(R).
(c) RM is an AA-ring for each M ∈Max(R).

Then:
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(1) (b)⇒(c)⇒(a).
(2) If R is reduced, coherent or Z(R) = Nil(R), then the three conditions

are equivalent.

Proof. (1) (b)⇒(c) It is obvious.
(c)⇒(a) Let x ∈ Z(R) and r ∈ R such that Ann(x) ⊆ Ann(r), and set

J := (Rx : Rr). We will prove that J = R. Assume that J is a proper ideal
of R. Hence, J is contained in a maximal ideal M of R. It is easy to see that
Ann(x/1) ⊆ Ann(r/1) and x/1 ∈ Z(RM ), we must have (r/1) ∈ RM (x/1),
whence rst ∈ Rx for some s, t ∈ R \M . Consequently, st ∈ J \M, the desired
contradiction.

(2) By Proposition 3.2(2), if R is a reduced ring, then the AA-property is
locally. Next, suppose that R is a coherent ring, then for each x ∈ R, Ann(x)
is a finitely generated ideal of R and it is an immediate application of part (3)
of Proposition 3.2. Next, assume that every zero-divisor is a nilpotent element,
then Z(R) ⊆ P for every prime ideal P of R. By Proposition 3.2(1), we obtain
that RP is an AA-ring. �

We investigate the possible transfer of the AA-property to various trivial
extension contexts. Our results generate new families of examples of AA-rings
which are not strongly duo rings.

Theorem 3.5. Let A be an integral domain, E be a divisible A-module and
R := An E. Then:

(1) R is an AA-ring if and only if every ideal I of A contained in Z(E) is
a dE-ideal and E is a strongly duo module.

(2) If A \ (Z(E) ∪ U(A)) 6= ∅, then R is never a strongly duo ring.

Proof. (1) By [1, Corollary 3.4], every ideal of R has the form I nE or 0 nN
for some ideal I of A or submodule N of E. Now, let I be an ideal of A such
that I ⊆ Z(E). The ideal J := I n E is a d-ideal of R if and only if for each
x ∈ I, AnnA(AnnE(x)) ⊆ I. In fact, the necessity is clear since Ann2(x, 0) =
AnnA(AnnE(x))nE, for any element x ∈ I. Conversely, let (x, e) ∈ J . If x = 0,
either Ann2(0, e) = 0nAnnE(AnnA(e)) or Ann2(0, e) = 0nE. If x 6= 0, then
AnnE(x) 6= 0 (since I ⊆ Z(E)) and so Ann2(x, e) = AnnA(AnnE(x)) n E.
In both cases Ann2(x, e) ⊆ J. Thus, J is a d-ideal of R. Next, for every A-
submodule N of E, 0 n N is a d-ideal of R if and only if E is a strongly
duo module. Indeed, let N and N ′ be two A-submodules of E such that N ′

is a homomorphic image of N . There exists an epimorphism of R-modules
0 n N → 0 n N ′. It follows that N ⊆ N ′ since 0 n N ⊆ Z(R) and R is an
AA-ring. Similarly we can prove the converse.

(2) Let x ∈ A \ (Z(E) ∪ U(A)) and set I := Ax the principal ideal gener-
ated by x. Then, I is not contained in Z(E) and so is not a dE-ideal of A.
Consequently, J := I n E is not a d-ideal of R. �



A GENERALIZATION OF STRONGLY DUO RINGS 55

If A is a principal ideal domain (PID) and E is a divisible A-module, The-
orem 3.5(1) specializes to the following result.

Corollary 3.6. Let A be a PID, E be a divisible A-module and R := A n E.
Then, R is an AA-ring if and only if every ideal I of A contained in Z(E) is
a dE-ideal.

Proof. It is enough to show the converse. Since A is a PID, then E is injective
and hence E is strongly duo by [11, Proposition 2.7] and [14, Examples p.
1685]. Thus R is an AA-ring, as desired. �

Corollary 3.7. Let A be an integral domain and E be a divisible A-module
which is torsion-free. Then, R := A n E is an AA-ring if and only if E is a
simple module.

Proof. Assume that R is an AA-ring. Then, E is a strongly duo module which
implies that E is simple since it is torsion-free. For the converse, one can see
that 0 n E is the unique nonzero ideal of R contained in Z(R) and it is a
d-ideal. �

Using Example 2.21 and Theorem 3.5, we can construct a non-trivial exam-
ple of an AA-ring.

Example 3.8. Let A be a Dedekind domain, K := qf(A) and E := K/A.
Then R := An E is an AA-ring.

Proof. By hypothesis, E is an injective module. Then E is both a divisible
module and a strongly duo module. Moreover, every ideal of A contained in
Z(E) is a dE-ideal, Theorem 3.5 gives that R is an AA-ring. This completes
the proof. �

Proposition 3.9. Let (A,M) be a local ring which is not a field, E be a
nonzero A-module with ME = 0, and R := AnE the trivial ring extension of
A by E. Then R is never an AA-ring.

Proof. Let I be a proper ideal of A, then because ME = 0, In0 is an ideal of R
contained in Z(R). Let x ∈ I. It obvious to show that Ann(x, 0) = Ann(x)nE
and so Ann2(x, 0) = Ann2(x) n E. Thus, I n 0 is not a d-ideal. �
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