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SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3

IN A COMPLEX SPACE FORM IN TERMS OF

THE STRUCTURE JACOBI OPERATOR

U-Hang Ki and Hiroyuki Kurihara

Abstract. Let M be a semi-invariant submanifold of codimension 3
with almost contact metric structure (φ, ξ, η, g) in a complex space form

Mn+1(c), c 6= 0. We denote by A and Rξ the shape operator in the

direction of distinguished normal vector field and the structure Jacobi
operator with respect to the structure vector ξ, respectively. Suppose

that the third fundamental form t satisfies dt(X,Y ) = 2θg(φX, Y ) for a

scalar θ(< 2c) and any vector fields X and Y on M . In this paper, we
prove that if it satisfies RξA = ARξ and at the same time ∇ξRξ = 0 on

M , then M is a Hopf hypersurface of type (A) provided that the scalar
curvature s of M holds s− 2(n− 1)c ≤ 0.

1. Introduction

A submanifold M is called a CR submanifold of Kaehlerian manifold M̃
with complex structure J if there exists a differentiable distribution ∆ : p →
∆p ⊂ TpM on M such that ∆ is J-invariant and the complementary orthogonal
distribution ∆⊥ is totally real, where TpM denotes the tangent space at each
point p in M ([1,25]). In particular, M said to be a semi-invariant submanifold
provided that dim ∆⊥ = 1. The unit normal in J∆⊥ is called the distinguished
normal to the semi-invariant submanifold ([3, 23]). In this case, M admits an
induced almost contact metric structure (φ, ξ, η, g). A typical example of semi-
invariant submanifold is real hypersurfaces. And new examples of nontrivial
semi-invariant submanifolds in a complex projective space PnC are constructed
in [14] and [20]. Therefore we may expect to generalize some results which are
valid in a real hypersurface to a semi-invariant submanifold.

An n dimensional complex space form Mn(c) is a Kaehlerian manifold of
constant holomorphic sectional curvature 4c. As is well known, complete and
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simply connected complex space forms are isometric to a complex projective
space PnC, or a complex hyperbolic space HnC according as c > 0 or c < 0.

For the real hypersurface of Mn(c), c 6= 0, many results are known. One of
them, Takagi [21, 22] classified all the homogeneous real hypersurfaces in PnC
as six model spaces which are said to be A1, A2, B, C, D and E, and Cecil
and Ryan [4] and Kimura [15] proved that they are realized as the tubes of
constant radius over Kaehlerian submanifolds when the structure vector field
ξ is principal.

On the other hand, real hypersurfaces in HnC have been investigated by
Berndt [2], Montiel and Romero [16] and so on. Berndt [2] classified all real
hypersurfaces with constant principal curvature in HnC and showed that they
are realized as the tubes of constant radius over certain submanifolds when the
structure vector field is principal. Also such kinds of tubes are said to be real
hypersurfaces of type A0, A1, A2 or type B.

Let M be a real hypersurface of type A1 or type A2 in a complex projective
space PnC or that of type A0, A1 or A2 in a complex hyperbolic space HnC.
Now, hereafter unless otherwise stated, such hypersurfaces are said to be of
type (A) for our convenience sake.

Characterization problems for a real hypersurface of type (A) in a complex
space form were studied by many authors ([6, 7, 10,11,16,18] etc.).

Two of them, we introduce the following characterization theorems due to
Okumura [18] for c > 0 and Montiel and Romero [16] for c < 0, respectively.

Theorem O ([18]). Let M be a real hypersurface in PnC, n ≥ 2. If it satisfies

(1.1) g((Aφ− φA)X,Y ) = 0

for any vector fields X and Y , then M is locally congruent to a tube of radius
r over one of the following Kaehlerian submanifolds:

(A1) a geodesic hyperplane of radius r, where 0 < r < π/2 and r 6= π/4,
(A2) a tube of radius r over a totally geodesic PkC for some k ∈ {1, . . . , n−

2}, where 0 < r < π/2 and r 6= π/4.

Theorem MR ([16]). Let M be a real hypersurface in HnC, n ≥ 2. If it
satisfies (1.1), then M is locally congruent to one of the following hypersurface:

(A0) a horosphere in HnC,
(A1) a geodesic hypersphere or a tube over a complex hyperplane Hn−1C,
(A2) a tube over a totally geodesic HkC for some k ∈ {1, . . . , n− 2}.
Denoting by R the curvature tensor of the submanifold, we define the Jacobi

operator Rξ = R(·, ξ)ξ with respect to the structure vector ξ. Then Rξ is a self
adjoint endomorphism on the tangent space of a CR submanifold.

Using several conditions on the structure Jacobi operator Rξ, characteri-
zation problems for real hypersurfaces of type (A) have recently studied (cf.
[7,10,11]). In the previous paper [6,7], Cho and one of the present authors gave
another characterization of real hypersurface of type (A) in a complex space
form Mn(c). Namely they prove following:
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Theorem CK ([7]). Let M be a connected real hypersurface in Mn(c) if it
satisfies RξA = ARξ and ∇ξRξ = 0, then M is of type (A), where A denotes
the shape operator of M .

On the other hand, semi-invariant submanifolds of codimension 3 in a com-
plex projective space Pn+1C have been studied in [5, 9, 12, 14] and so on by
using properties of induced almost contact metric structure and those of third
fundamental form of the submanifold.

Now, let M be a semi-invariant submanifold of codimension 3 in a complex
space form Mn+1(c), c 6= 0 such that the third fundamental form t satisfies
dt = 2θω for a scalar θ(6= 2c), where ω(X,Y ) = g(φX, Y ) for any vector fields
X and Y on M . We denote by A and S the shape operator in the direction of
the distinguished normal and the Ricci tensor of M , respectively.

In the preceding work [10], it is proved that the submanifold M above is a
Hopf hypersurface in PnC provided that Aξ = αξ and θ − 2c < 0 for c > 0.

Further, one of present authors and Song ([13]) proved that if it satisfies
Rξφ = φRξ and at the same time Sξ = g(Sξ, ξ)ξ, thenM is a Hopf hypersurface
of type (A) in Mn(c) provided that the scalar curvature s of M holds s−2(n−
1)c ≤ 0. This is a semi-invariant version of the main theorem stated in [11].

In this paper, we consider a semi-invariant submanifold of codimension 3 in
Mn+1(c) satisfying RξA = ARξ and at the same time ∇ξRξ = 0, that is, the
semi-invariant version of Theorem CK. In this case, M is a Hopf hypersurface
of type (A) in Mn(c) provided that θ − 2c < 0 for c > 0 or s − 2(n − 1)c ≤ 0
for c < 0.

All manifolds in the present paper are assumed to be connected and of class
C∞ and the semi-invariant are supposed to be orientable.

2. Preliminaries

Let M̃ be a real 2(n+1)-dimensional Kaehlerian manifold with parallel com-
plex structure J and Riemannian metric tensor G. Let M be a real (2n − 1)-

dimensional Riemannian manifold immersed isometrically in M̃ by the immer-
sion i : M → M̃ . In the sequel we identify i(M) with M itself. We denote by

g the Riemannian metric tensor on M from that of M̃ .
We denote by ∇̃ the operator of covariant differentiation with respect to

the metric tensor G on M̃ and by ∇ the one on M . Then the Gauss and
Weingarten formulas are given respectively by

∇̃XY = ∇XY +

3∑
i=1

g(ANi
X,Y )Ni,(2.1)

∇̃XNi = −ANi
X +

3∑
j=1

l
(i)
j (X)Nj(2.2)

for any vector fields X and Y tangent to M and any vector fields N1, N2 and
N3 normal to M , where ANi

is called a second fundamental form with respect
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to the normal vector Ni. Let ∇⊥ be the induced normal connection from ∇̃ to
T⊥M . Then above equation (2.2) implies that

(2.3) ∇⊥XNi =

3∑
j=1

l
(i)
j (X)Nj .

As is well-known, a submanifold M of a Kaehlerian manifold M̃ is said to
be a CR submanifold ([1,3]) if it is endowed with a pair of mutually orthogonal
and complementally differentiable distribution (∆,∆⊥) such that for any point
p ∈ M we have J∆p = TpM , J∆⊥p ⊂ T⊥p M , where TpM denotes the tangent
space of M at each point p on M . In particular, M is said to be a semi-invariant
submanifold ([3,23]) provided that dim ∆⊥ = 1 or to be a CR submanifold with
CR dimension n − 1 ([19]). In this case the unit normal vector field in J∆⊥

is called a distinguished normal to the semi-invariant submanifold and denote
this by C ([3, 23]).

In what follows we consider that M is a real (2n − 1)-dimensional semi-

invariant submanifold of codimension 3 in a Kaehlerian manifold M̃ of real
dimension 2(n + 1). Then we can choose a local orthonormal frame field
{e1, . . . , en−1, Je1, . . . , Jen−1, e0 = ξ, Jξ = C,C1 = JC2, C2} on the tangent

bundle TM̃ such that e1, . . . , en−1, Je1, . . . , Jen−1, ξ ∈ TM and C,C1 and
C2 ∈ T⊥M where T⊥M is the normal bundle. So, (2.1) can be written as

∇̃XY = ∇XY + g(AX,Y )C + g(KX,Y )C1 + g(LX, Y )C2

for any vector fields X and Y on M , where we put AC = A, AC1
= K, AC2

= L.

If we put l
(1)
2 = l, l

(1)
3 = m, l

(2)
3 = t, then the equations of Weingarten are also

given by

∇̃XC = −AX + l(X)C1 +m(X)C2,

∇̃XC1 = −KX − l(X)C + t(X)C2,

∇̃XC2 = −LX −m(X)C − t(X)C1

because C, C1 and C2 are mutually orthogonal.
Now, let φ be the restriction of J on M , then we have (cf. [23, 24])

(2.4) JX = φX + η(X)C, η(X) = g(ξ,X), JC = −ξ
for any vector field X on M . From this, we see, using Hermitian property of J ,
that the aggregate (φ, ξ, η, g) is an almost contact metric structure on M , that
is, we have

φ2X = −X + η(X)ξ, η(ξ) = 1, g(ξ,X) = η(X),

φξ = 0, g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X and Y on M .
In the sequel, we denote the normal components of ∇̃XC by ∇⊥XC. The

distinguished normal C is said to be parallel in the normal bundle if ∇⊥XC = 0
for any vector fields X on M , that is, from (2.3) l and m vanish identically.
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From the Kaehler condition ∇̃J = 0 and using the Gauss and Weingarten
formulas, we obtain from (2.4)

∇Xξ = φAX,(2.5)

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ,(2.6)

KX = φLX −m(X)ξ,(2.7)

LX = −φKX + l(X)ξ(2.8)

for any vector fields X and Y on M . From the last two relationships, we have

g(Kξ,X) = −m(X),(2.9)

g(Lξ,X) = l(X).(2.10)

Using the frame field {e0 = ξ, e1, . . . , en−1, en = φe1, . . . , e2n−2 = φen−1} on
M , it follows from (2.7)–(2.10) that

(2.11) TrK = η(Kξ) = −m(ξ), TrL = η(Lξ) = l(ξ).

Now we retake C1 and C2, there is no loss of generality such that we may
assume TrL = 0, that is, for example if TrL 6= 0, then there exists a ∈ R such
that TrK + aTrL = 0. We may retake C2 by C1 + aC2.

So we have

(2.12) l(ξ) = 0.

Notation. To write our formulas in a convention from, in the sequel we denote
by α = η(Aξ), β = η(A2ξ), γ = η(A3ξ), h = TrA, k = TrK, h(2) = Tr(tAA),
and for a function f we denote by ∇f the gradient vector field of f .

From (2.11) we have

(2.13) m(ξ) = −k.
Using (2.7) and (2.8) we have

−m(X)η(Y ) +m(Y )η(X) = η(X)l(φY )− η(Y )l(φX).

If we put Y = ξ in this, and take account of (2.13), then we find

(2.14) l(φX) = m(X) + kη(X),

which tells us, using (2.12), that

(2.15) m(φX) = −l(X).

Taking the inner product with LY to (2.7) and using (2.10), we get

(2.16) g(KLX,Y ) + g(LKX,Y ) = −(l(X)m(Y ) + l(Y )m(X)).

In the rest of this paper we shall suppose that M̃ is a Kaehlerian manifold
of constant holomorphic sectional curvature 4c, which is called a complex space
form and denote by Mn+1(c), that is,

R̃(X̃, Ỹ )Z̃ = c(G(Ỹ , Z̃)X̃ −G(X̃, Z̃)Ỹ +G(JỸ , Z̃)JX̃

−G(JX̃, Z̃)JỸ − 2G(JX̃, Ỹ )JZ̃),
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where R̃ is the curvature tensor of Mn+1(c). Then the codimension reduction
theorem is given by

Theorem 2.1 ([8, 19]). Let N0(p) the orthogonal complement of first normal
space in T⊥p M , that is, N0(p) = {v ∈ T⊥p M ;Av = 0} and H0(p) be the max-
imal J-invariant subspace of N0(p). If the orthogonal complement H2(p) of
J-invariant subspace of H0(p) in T⊥p M is invariant under parallel translation
with respect to the normal connection and if q is the dimension of H2(p), then
there exists a real (2n− 1 + q) dimensional totally geodesic complex space form
M(2n−a+q)/2(c) in Mn+1(c) such that M ⊂M(2n−a+q)/2(c).

Moreover equations of Gauss and Codazzi are given by

R(X,Y )Z = c(g(Y, Z)X − g(X,Z)Y + g(φY,Z)φX

− g(φX,Z)φY − 2g(φX, Y )φZ)

+ g(AY,Z)AX − g(AX,Z)AY + g(KY,Z)KX

− g(KX,Z)KY + g(LY,Z)LX − g(LX,Z)LY,

(2.17)

(∇XA)Y − (∇YA)X − l(X)KY + l(Y )AX −m(X)LY +m(Y )LX

= c(η(X)φY − η(Y )φX − 2g(φX, Y )ξ),
(2.18)

(∇XK)Y − (∇YK)X = −l(X)AY + l(Y )AX + t(X)LY − t(Y )LX,(2.19)

(∇XL)Y − (∇Y L)X

= −m(X)AY +m(Y )AX − t(X)KY + t(Y )KX,
(2.20)

where R is the Riemannian curvature tensor of M , and those of the Ricci tensor
by

(∇X l)(Y )− (∇Y l)(X)

= g((AK −KA)X,Y )−m(X)t(Y ) +m(Y )t(X),
(2.21)

(∇Xm)(Y )− (∇Ym)(X)

= g((AL− LA)X,Y )− t(X)l(Y ) + t(Y )l(X),
(2.22)

(∇Xt)(Y )− (∇Y t)(X)

= g((KL− LK)X,Y ) + l(Y )m(X)− l(X)m(Y ) + 2cg(φX, Y ).
(2.23)

Now, we put ∇ξξ = U in the sequel. Then U is orthogonal to ξ because of
(2.5). We put

(2.24) Aξ = αξ + µW,

where W is a unit vector field orthogonal to ξ. Then we have

(2.25) U = µφW

by virtue of (2.5). So, W is also orthogonal to U . Further, we have

(2.26) µ2 = β − α2.
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From (2.24) and (2.25) we have

(2.27) φU = −Aξ + αξ.

If we take account of (2.5), (2.24) and the last equation, then we find

(2.28) g(∇Xξ, U) = µg(AW,X).

Since W is orthogonal to ξ, we see, using (2.5) and (2.25), that

(2.29) µg(∇XW, ξ) = g(AU,X).

Differentiating (2.27) covariantly along M and using (2.5) and (2.6), we find

(2.30) (∇XA)ξ = −φ∇XU + g(AU +∇α,X)ξ −AφAX + αφAX.

Taking the inner product with ξ to this and using (2.9), (2.10), (2.12), (2.18)
and (2.27), we have

(2.31) (∇ξA)ξ = 2AU +∇α+ η(Lξ)Kξ − 2η(Kξ)Lξ.

Applying (2.30) by φ and making use of (2.28), we obtain

(2.32) φ(∇XA)ξ = ∇XU + µg(AW,X)ξ − φAφAX − αAX + αg(Aξ,X)ξ,

which enables us to obtain

∇UU = φ(∇UA)ξ + φAφAU + αAU.

Finally, we introduce the structure Jacobi operator Rξ with respect to the
structure vector field ξ which defined by RξX = R(X, ξ)ξ for any vector field
X. Then we have from (2.17)

RξX = c(X − η(X)ξ) + αAX − η(AX)Aξ

+ η(Kξ)KX − η(KX)Kξ + η(Lξ)LX − η(LX)Lξ.

Since l and m are dual 1-forms of Lξ and −Kξ respectively because of (2.9)
and (2.10), the last equation can be written as

(2.33) RξX = c(X−η(X)ξ)+αAX−η(AX)Aξ+kKX+m(X)Kξ− l(X)Lξ,

where we have used (2.9)–(2.13).

3. The third fundamental form of semi-invariant submanifolds

In this section we will suppose that M is a semi-invariant submanifold of
codimension 3 in a complex space form Mn+1(c), c 6= 0 and that the third
fundamental form t satisfies

(3.1) dt = 2θω, ω(X,Y ) = g(φX, Y )

for any vector fields X and Y on M and a certain scalar θ, where d denotes
the exterior differential operator. Then (2.23) reformed as

g((LK −KL)X,Y ) + l(X)m(Y )− l(Y )m(X) = −2(θ − c)g(φX, Y ),

or, using (2.16)

(3.2) g(LKX,Y ) + l(X)m(Y ) = −(θ − c)g(φX, Y ),
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which together with (2.9), (2.10) and (2.12) gives

(3.3) l(KX) = kl(X), m(LX) = 0

for any vector X on M , that is

KLξ = kLξ, LKξ = 0.

Differentiating (3.1) covariantly alongM and using (2.6) and the first Bianchi
identity, we find

(Xθ)ω(Y,Z) + (Y θ)ω(Z,X) + (Zθ)ω(X,Y ) = 0,

which implies (n− 2)Xθ = 0. Thus, θ is constant if n > 2.
For the case where θ = c in (3.1) we have dt = 2cω. In this case, the normal

connection of M is said to be L-flat ([19]).
Replacing Y by φY in (3.2) and using (2.7) and (2.15), we have

g(K2X,Y ) +m(KX)η(Y ) + l(X)l(Y ) = (θ − c)(g(X,Y )− η(X)η(Y )).

Putting X = Y = ei in this and summing up to i = 0, 1, . . . , 2n− 2, we have

Tr(tKK)− ‖Kξ‖2 + ‖Lξ‖2 = 2(n− 1)(θ − c),
which together with (2.9) implies that

(3.4) ‖K − kη ⊗ ξ‖2 + ‖Lξ‖2 = 2(n− 1)(θ − c),
where ‖F‖2 = g(F, F ) for any tensor field F on M . Thus, θ− c is nonnegative.

In the same way, we have, using (2.8), (2.12), (2.15) and (3.2), that

(3.5) − Tr(tLL)− ‖Lξ‖2 + ‖Kξ − kξ‖2 = 2(n− 1)(θ − c),

Lemma 3.1. Let M be a semi-invariant submanifold with L-flat normal con-
nection in Mn+1(c), c 6= 0. If Aξ = αξ, then the distinguished normal C is
parallel in the normal bundle.

Proof. Since θ−c = 0 was assumed, we have L = 0 and KX = kη(X)ξ because
of (3.4) and (3.5). By virtue of (2.11), it follows that m(X) = −kη(X). We
also have l = 0 because of (2.10). Thus, it suffices to show that k = 0. Using
these facts, (2.21) reformed as

k(η(AX)η(Y )− η(X)η(AY )) = k(η(X)t(Y )− t(X)η(Y )),

which together with Aξ = αξ gives k(t(X)− t(ξ)η(X)) = 0. If we suppose that
k 6= 0 on M , then we have

(3.6) t(X) = t(ξ)η(X)

on this open subset. Differentiating this covariantly and using (2.5) and (3.1)
with θ = c, we find

2cg(φX, Y ) = t(ξ)g((Aφ− φA)X,Y )

by virtue of Aξ = αξ, which implies

2c(n− 1) = t(ξ)(h− α).
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On the other side, since (2.20), (3.6) and k 6= 0, we have

η(X)AY − η(Y )AX = 0,

and hence AY − η(Y )Aξ = 0, which implies h−α = 0, a contradiction. Hence
k = 0 on M . �

From (3.3) we have LKξ = 0 which together with (2.8) gives

(3.7) K2ξ = ‖Kξ‖2ξ.
Replacing Y by φY in (3.2) and using (2.7), (2.9) and (3.7), we have

(3.8) K2X + l(X)Lξ − ‖Kξ‖2η(X)ξ = (θ − c)(X − η(X)ξ).

In the same way replacing X by φX in (3.2) and using (2.8) we have

g(L2X,Y ) + η(X)l(LY ) +m(X)m(Y ) + kη(X)m(Y )

= (θ − c)(g(X,Y )− η(X)η(Y )).

If we put Y = ξ in this, we have

(3.9) g(L2ξ,X) = km(X) + (‖Lξ‖2 + k2)η(X).

Putting Y = Kξ in (3.2), from (2.15) and (3.3), we have

(3.10) (θ − c− ‖Kξ‖2)Lξ = 0.

On the other hand, taking an inner product Lξ to (3.8) and using (3.3), we
have

(3.11) (θ − c− ‖Lξ‖2 − k2)Lξ = 0.

Lemma 3.2. Let M be a semi-invariant submanifold of codimension 3 in
Mn+1(c), c 6= 0 satisfying dt = 2θω for a scalar θ( 6= 2c). Then l = 0 on
M .

Proof. Let Ω0 be a set of points such that ‖Lξ‖ 6= 0 on M and suppose that
Ω0 be nonvoid. From now on we discuss our arguments on the open set Ω0 of
M . Then, by (3.10) and (3.11) we have

(3.12) ‖Kξ‖2 = θ − c, ‖Lξ‖2 + k2 = θ − c.
Thus (3.8) turns out to be

(3.13) K2X = (θ − c)X − l(X)Lξ.

Differentiating (3.13) covariantly and using (2.19), (2.20) and other equa-
tions already obtained, we find (for detail, see (2.19) and (2.24) of [14])

(∇XK)Y = t(X)LY + l(Y )AX + g(AX,Y )Lξ + σl(X)l(Y )Lξ,(3.14)

(∇X l)(Y ) = t(X)m(Y )− g(AX,KY )− kg(AX,Y )(3.15)

for some smooth function σ.
By (2.11) we have η(Kξ) = k. Differentiating this covariantly and using

(3.14), we have

(3.16) Y k = 2l(AY ),
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which implies that σ = 0 (for detail, see [14]). Thus (3.14) reformed as

(3.17) (∇XK)Y = t(X)LY + l(Y )AX + g(AX,Y )Lξ.

If we differentiate (2.8) covariantly and use (2.5), (2.6), (2.7), (2.14) and the
last equation, then we find

(∇XL)Y = −t(X)KY +m(Y )AX − g(AX,Y )Kξ,

which implies that

(3.18) 0 = Tr∇XL = −kt(X) + 2m(AX).

Differentiating (3.16) covariantly and using (3.15), we have

X(Y k) = 2l((∇XA)Y ) + 2(t(X)m(AY )− g(KAX,AY )− kg(A2X,Y ))

+ 2l(A∇XY ).

From which, taking the skew-symmetric part and making use of (2.14), (2.18),
(3.3), (3.9), (3.12) and (3.18), we have

(θ − 2c)(m(X)η(Y )−m(Y )η(X)) = 0.

Thus, it follows that (θ−2c)(m(X)+kη(X)) = 0 and hence (θ−2c)l(X) = 0 by
virtue of (2.12) and (2.14). Therefore, by the assumption, we have l = 0. �

In the rest of this paper, we assume that M satisfies (3.1) with θ − 2c 6= 0.
Then we have l = 0 and hence

(3.19) m(X) = −kη(X)

because of (2.14). Hence (2.9) and (2.10) reformed respectively as

(3.20) Kξ = kξ, Lξ = 0.

It is, using (3.19), clear that (2.7), (2.8), (2.16) and (3.2) are reduced re-
spectively to

KX = φLX + kη(X)ξ,(3.21)

LX = −φKX,(3.22)

LK +KL = 0,(3.23)

g(LKX,Y ) = −(θ − c)g(φX, Y ).(3.24)

From the last relationship, we obtain

(3.25) L2X = (θ − c)(X − η(X)ξ).

Further, if we take account of (3.19) and the fact that l = 0, then the
structure equations (2.18)–(2.22) reformed respectively as

(∇XA)Y − (∇YA)X = k(η(Y )LX − η(X)LY )

+ c(η(X)φY − η(Y )φX − 2g(φX, Y )ξ),
(3.26)

(∇XK)Y − (∇YK)X = t(X)LY − t(Y )LX,(3.27)
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(∇XL)Y − (∇Y L)X

= k(η(X)AY − η(Y )AX)− t(X)KY + t(Y )KX,
(3.28)

g((KA−AK)X,Y ) = k(η(X)t(Y )− t(X)η(Y )),(3.29)

g((LA−AL)X,Y ) = (Xk)η(X)− (Y k)η(X) + k((φA−Aφ)X,Y ).(3.30)

Putting X = ξ in (3.29) and using (3.20), we find

(3.31) g(KAξ, Y ) = kg(Aξ, Y ) + k(t(Y )− t(ξ)η(Y )).

If we replace Y by φX in this and make use of (2.25) and (3.22), then we
get

(3.32) g(KU,X) = k(t(φX)− u(X)),

where u(X) = g(U,X) for any vector fields X.
Replacing X by ξ in (3.30) and using (2.5), (3.20) and (3.22), then we find

(3.33) KU = (ξk)ξ −∇k + kU,

which together with (3.32) gives

(3.34) Xk = (ξk)η(X) + k(2u(X)− t(φX)).

If we replace Y by φY in (3.30) and make use of (3.21) and the last rela-
tionship, then we find

g(φALX −KAX,Y )

= − k{(t(Y )− t(ξ)η(Y ))η(X) + 2η(X)(g(Aξ, Y )− αη(Y ))

+ 2g(Aξ,X)η(Y )− g(AX,Y + g(φAφX, Y )}.

Taking the skew-symmetric part of this, we have

(3.35) φALX = −LAφX.

Since θ is constant if n > 2, differentiating (3.25) covariantly, we get

L(∇XL)Y + (∇XL)LY = −(θ − c)(g(φAX, Y )ξ + η(Y )φAX).

Using the quite same method as that used to (3.17) from (3.13), we can derive
from the last equation the following:

(3.36)

2L(∇XL)Y = (θ − c){2t(X)φY − η(Y )(Aφ+ φA)X

+ g((Aφ− φA)X,Y )ξ − η(X)(φA−Aφ)Y }
− k{η(Y )(LA+AL)X − g((AL+ LA)X,Y )ξ

− η(X)(LA−AL)Y },

where we have used (3.24) and (3.28). Putting Y = ξ in this, taking the inner
product with Y and using (3.20) and (3.34), we have

(3.37)
(θ − c)g((Aφ− φA)X,Y ) + (k2 + θ − c)(η(X)u(Y ) + u(X)η(Y ))

+ k{g((LA+AL)X,Y )− k(t(φX)η(Y ) + η(X)t(φY ))} = 0.



240 U-H. KI AND H. KURIHARA

In the following we consider the case where (2.24) with µ = 0, that is,
we have Aξ = αξ. Differentiating this covariantly along M , taking the inner
product with Y and using (2.5), we find

g((∇XA)ξ, Y ) = −g(AφAX, Y ) + αg(φAX, Y ) + (Xα)η(Y ).

Taking the skew-symmetric part of this and using (3.20) and (3.26), we have

(3.38) − 2AφAX + α(Aφ+ φA)X + 2cφX = η(X)∇α− (Xα)ξ.

If we put X = ξ in this and using the fact that Aξ = αξ, then we have

(3.39) Y α = (ξα)η(Y ).

From this we have X(Y α) = X(ξα)η(Y ) + (ξα)g(φAX, Y ) + (ξα)g(ξ,∇XY ),
where we have used (2.5). Thus, if we take the skew-symmetric part of this,
then we get

X(ξα)η(Y )− Y (ξα)η(X) + (ξα)g((Aφ+ φA)X,Y ) = 0.

Putting Y = ξ in this, we get X(ξα) = ξ(ξα)η(X). Thus, the last equation
can be written as

(3.40) (ξα)(Aφ+ φA) = 0.

In the next place, differentiating (3.19) covariantly and using (2.5), we find
∇Xm = −(Xk)ξ + kφAX, from which taking the skew-symmetric part and
making use of (2.22) with l = 0,

LAX −ALX − k(Aφ+ φA)X = (Xk)ξ − η(X)∇k.

Since Aξ = αξ was assumed, we then have

(3.41) ∇k = (ξk)ξ

because of (3.20). From the last two relationships, it follows that

(3.42) LAX −ALX = k(Aφ+ φA)X.

Differentiating (3.41) covariantly, and taking the skew-symmetric part ob-
tained, we get

(3.43) (ξk)(Aφ+ φA)X = 0,

where we have used (2.5). From this and (3.39), we can write (3.38) as

(3.44) (ξk)(A2φX + cφX) = 0.

In the previous paper [14], the following proposition was proved for the case
where c > 0.

Proposition 3.3. Let M be a real (2n−1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 in a complex space form Mn+1(c), c 6= 0. If it
satisfies dt = 2θω for a scalar θ 6= 2c and µ = g(Aξ,W ) = 0, then k = 0.
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Sketch of Proof. This fact was proved for c > 0 (see Proposition 3.5 of [14]).
But, regardless of the sign of c this one is established. However, according to
[14], only ξk = 0 and ξα = 0 need to be proved. We are now going to prove,
using (3.41), that ξk = 0.

Now, let Ω1 be a set of points such that ξk 6= 0 on M and suppose that Ω1

be nonvoid. Then we have

(3.45) Aφ+ φA = 0, LA = AL

on Ω1 because of (3.42) and (3.43). We discuss our arguments on Ω1.
From (3.44), we have A2φX + cφX = 0, which connected to properties of

the almost contact metric structure yields

(3.46) A2X + cX = (α2 + c)η(X)ξ.

Since Aξ = αξ was assumed, we can write (3.37) as (θ − c)AφX + kALX = 0.
Applying this by φ and using (3.21), we obtain

(θ − c)AX − kAKX = α(θ − c− k2)η(X)ξ.

Combining this to (3.46), we find −kKX+(θ−c)X = (θ−c−k2)η(X)ξ, which
shows (n − 1)(θ − c) = 0. Thus we have θ − c = 0 if n > 2. This contradicts
Lemma 3.1. Therefore we conclude that Ω1 = ∅.

By the same way as above we can prove ξα = 0 by virtue of (3.40) and
(3.45). This completes the proof. �

4. The structure Jacobi operator satisfying RξA = ARξ

We will continue our arguments under the same hypotheses dt = 2θω for
a scalar θ( 6= 2c) as in Section 3. Further, we assume that RξA = ARξ on a
semi-invariant submanifold of codimension 3 in Mn+1(c), c 6= 0.

By virtue of (3.19) and (3.20) we can write (2.33) as

RξX = c(X − η(X)ξ) + αAX − η(AX)Aξ + kKX − k2η(X)ξ.

Thus, RξA = ARξ gives

g(A2ξ,X)g(Aξ, Y )− g(A2ξ, Y )g(Aξ,X)

+ (k2 + c){g(Aξ,X)η(Y )− g(Aξ, Y )η(X)}
= k2(t(Y )η(X)− t(X)η(Y )),

where we have used (3.29). Putting X = ξ in this, we find

(4.1) − αA2ξ + (β − k2 − c)Aξ = k2t− {k2t(ξ) + α(k2 + c)}ξ.

Combining the last two equations, we obtain

g(A2ξ,X)(Aξ − αξ)− (g(Aξ,X)− αη(X))A2ξ = β(η(X)Aξ − g(Aξ,X)ξ).

If we put X = Aξ in this, and take account of (2.26), then we have

(4.2) µ2A2ξ = (γ − βα)Aξ + (β2 − αγ)ξ.
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Now, let

Ω = {p ∈M ; k(p) 6= 0}.
In the rest of this section, we suppose that Ω is nonvoid. Then from Propo-

sition 3.3 and (4.2) we have

(4.3) A2ξ = ρAξ + (β − ρα)ξ,

where we have defined the function ρ by µ2ρ = γ−βα. Hence, (4.1) is reformed
as

(β − ρα− k2 − c)(g(Aξ,X)− αη(X)) = k2(t(X)− t(ξ)η(X)),

which shows

(4.4) (c+ ρα− β + k2)u(X) = k2t(φX)

From this and (3.32) we have

(4.5) KU = τU

on Ω, where we have put

(4.6) kτ = c+ ρα− β.

Accordingly (4.3) turns out to be

(4.7) A2ξ = ρAξ + (c− kτ)ξ.

Applying (4.5) by φ and using (3.22), we find

(4.8) LU = µτW.

Because of (3.24) and taking account of (4.5) and (4.8), we see that

(4.9) τ2 = θ − c.

Thus, τ is constant on Ω if n > 2. From (3.22) we have

(4.10) LX = KφX

because L is a symmetric tensor. If we put X = µW in (4.10) and make use of
(2.25) and (4.5), then we obtain

(4.11) µLW = τU.

In the next step, we see from (2.24) and (4.7) that

(4.12) AW = µξ + (ρ− α)W

since we have µ 6= 0 on Ω, where we have used (2.26). Differentiating this
covariantly along Ω, we find

(4.13) (∇XA)W +A∇XW = (Xµ)ξ + µ∇Xξ +X(ρ− α)W + (ρ− α)∇XW.

If we take the inner product W to this and using (2.29) and (4.12), we find

(4.14) g((∇XA)W,W ) = −2g(AU,X) +Xρ−Xα
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because W is orthogonal to ξ. Taking the inner product with ξ to (4.13) and
using (2.29), we also find

(4.15) µg((∇XA)W, ξ) = (ρ− 2α)g(AU,X) + µ(Xµ),

or, using (3.26)

(4.16) µ(∇ξA)W = (ρ− 2α)AU + µ∇µ− kµLW − cU.

From this and (3.26) we verify that

(4.17) µ(∇WA)ξ = (ρ− 2α)AU − 2cU + µ∇µ.

Putting X = ξ in (4.14) and using (4.15), we get

(4.18) Wµ = ξρ− ξα.

Replacing X by ξ in (4.13) and using (4.11) and (4.16), we find

(4.19)
(ρ− 2α)AU − kτU − cU + µ∇µ+ µ(A∇ξW − (ρ− α)∇ξW )

= µ(ξµ)ξ + µ2U + µ(ξρ− ξα)W.

Now, it is, using (3.32) and (4.5), verified that

(4.20) t(φX) =
(

1 +
τ

k

)
u(X).

Replacing X by φX and using properties of the almost contact metric structure,
we obtain

(4.21) t(X) = t(ξ)η(X)− µ
(

1 +
τ

k

)
w(X),

where w(X) = g(W,X) for any vector fields X.
Using (2.24) and (3.20), we can write (3.31) as

µg(KW,X) = kµw(X) + k(t(X)− t(ξ)η(X)),

which together with (4.21) implies that

(4.22) KW = −τW

because of µ 6= 0 on Ω.
Because of (3.20), we can write (2.31) as

(4.23) (∇ξA)ξ = 2AU +∇α.

If we put X = ξ in (2.32) and make use of (2.24) and (2.26), then we find

φ(∇ξA)ξ = ∇ξU + βξ − αAξ − φAU,

which together with (4.23) yields

(4.24) ∇ξU = 3φAU + αAξ − βξ + φ∇α.

Differentiating (4.5) covariantly along Ω, we find

(4.25) (∇XK)U +K∇XU = τ∇XU.
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Taking the inner product with Y to this, and taking the skew-symmetric part
with respect to X and Y , we obtain

(4.26)
µτ(t(X)w(Y )− t(Y )w(X)) + g(K∇XU, Y )− g(K∇Y U,X)

= τ(g(∇XU, Y )− g(∇Y U,X)),

where we have used (3.27) and (4.8).
On the other hand, from (2.25) we have φU = −µW . Differentiating this

covariantly and using (2.6), we find

(4.27) g(AU,X)ξ − φ∇XU = (Xµ)W + µ∇XW.

Putting X = ξ in this and using (4.24), we get

(4.28) µ∇ξW = 3AU − αU +∇α− (ξα)ξ − (ξµ)W,

which together with (4.12)

(4.29) Wα = ξµ.

Substituting (4.28) and (4.29) into (4.19), we obtain

(4.30)
3A2U − 2ρAU + (αρ− β − kτ − c)U +A∇α+

1

2
∇β − ρ∇α

= 2µ(Wα)ξ + (2α− ρ)(ξα)ξ + µ(ξρ)W.

5. Semi-invariant submanifolds satisfying ∇ξRξ = 0

We will continue our arguments under the same hypotheses dt = 2θω for
a scalar θ( 6= 2c) and RξA = ARξ as in Section 4. Further, we assume that
∇ξRξ = 0 holds on a semi-invariant submanifold of codimension 3 in Mn+1(c),
c 6= 0.

Differentiating the first equation of Section 4 covariantly along M and using
(2.5), we find

g((∇XRξ)Y,Z)

= − (k2 + c)(η(Z)g(∇Xξ, Y ) + η(Y )g(∇Xξ, Z)) + (Xα)g(AY,Z)

+ αg((∇XA)Y, Z)− g(Aξ,Z)(g((∇XA)ξ, Y )− g(AφAY,X))

− g(Aξ, Y )(g((∇XA)ξ, Z)− g(AφAZ,X)) + (Xk)g(KY,Z)

+ kg((∇XK)Y,Z)− 2k(Xk)η(Y )η(Z).

Replacing X by ξ in this and using (2.5) and (4.23), we find

g((∇ξRξ)Y,Z)

= − (k2 + c)(u(Y )η(Z) + u(Z)η(Y )) + (ξα)g(AY,Z) + αg((∇ξA)Y, Z)

− g(Aξ,Z)(3g(AU, Y ) + Y α)− g(Aξ, Y )(3g(AU,Z) + Zα)

+ (ξk)g(KY,Z) + kg((∇ξK)Y, Z)− 2k(ξk)η(Y )η(Z),
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which shows

(∇ξRξ)X = − (k2 + c)(u(X)ξ + η(X)U) + (ξα)AX + α(∇ξA)X

− (3AU +∇α)g(Aξ,X)− (3g(AU,X) +Xα)Aξ + (ξk)KX

+ k(∇ξK)X − 2k(ξk)η(X)ξ.

Thus, ∇ξRξ = 0 gives

(5.1)

α(∇ξA)X + k(∇ξK)X + (ξα)AX + (ξk)KX

= (k2 + c)(u(X)ξ + η(X)U) + (3AU +∇α)g(Aξ,X)

+ (3g(AU,X) +Xα)Aξ + 2k(ξk)η(X)ξ.

Replacing X by ξ in this and using (3.20), we find

(5.2) α(∇ξA)ξ + k(∇ξK)ξ = (k2 + c)U + α(3AU +∇α) + k(ξk)ξ.

Differentiating (3.20) covariantly with respect to ξ and using (2.5) and (4.5),
we have (∇ξK)ξ = (ξk)ξ + (k − τ)U . Thus, the equation (5.2) can be written
as

(5.3) αAU + (kτ + c)U = 0,

where we have used (3.20) and (4.23).
In the rest of this section, we suppose that Ω is nonvoid.

Remark 5.1. α 6= 0 on Ω.

In fact, if not, then we have α = 0 on this subset. We discuss our arguments
on such a place. Then (4.6) and (5.3) are reformed respectively as β−c+kτ = 0,
kτ + c = 0 and hence β − 2c = 0. Therefore we have c > 0.

On the other hand, from (3.33) and (4.5) we have

(5.4) ∇k = (ξk)ξ + (k − τ)U.

Since kτ + c = 0 and τ is some constant, we have k = const. on the set.
Thus, k− τ = 0 and consequently τ2 + c = 0, a contradiction because of c > 0.
Therefore α = 0 is not impossible on Ω.

From (5.3) and Remark 5.1 we have

(5.5) AU = λU, αλ+ kτ + c = 0.

Remark 5.2. τ 6= 0 on Ω.

In fact, if not from (4.9) we have θ − c = 0. So (3.25) yields L = 0.
Consequently (3.21) is reformed as KX = kη(X)ξ. From (3.28) we also have

k(η(X)g(AY, ξ)− η(Y )g(AX, ξ) + η(X)t(Y )− η(Y )t(X)) = 0.

Putting Y = ξ and σ = α+ t(ξ) in this, we have t(X) + g(Aξ,X)−ση(X) = 0.
Combining the last two equations, it follows that

AX = η(X)Aξ + g(Aξ,X)ξ − αη(X)ξ,

which tells us that AU = 0, which together with (5.3) gives kτ + c = 0, a
contradiction. Thus, Remark 5.2 is established.
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Lemma 5.3. ξλ = 0 and Wλ = 0 on Ω.

Proof. Differentiating AU = λU covariantly along Ω, we find

g((∇XA)U, Y ) + g(A∇XU, Y ) = (Xλ)u(Y ) + λg(∇XU, Y ),

from which, taking the skew-symmetric part,

µ(kτ − c)(η(Y )w(X)− η(X)w(Y )) + g(A∇XU, Y )− g(A∇Y U,X)

= (Xλ)u(Y )− (Y λ)u(X) + λ(g(∇XU, Y )− g(∇Y U,X)),

where we have used (2.27), (3.26) and (4.8). Replacing X by U in this and
taking account of AU = λU , we get

(5.6) A∇UU − λ∇UU = (Uλ)U − µ2∇λ.

If we take the inner product with W and remember (4.12), then we have

(5.7) µg(∇UU, ξ) + µ2(Wλ) + (ρ− α− λ)g(∇UU,W ) = 0.

By the way, (4.25) implies that g((∇XK)U,U) = 0. Because of (3.27),
(4.8), (4.21) and the last equation gives (∇UK)U = 0, which connected to
(4.4), (4.22) and Remark 5.2 yields g(W,∇UU) = 0. Thus, (5.7) reformed as
µg(∇UU, ξ) + µ2(Wλ) = 0. However, the first term of this vanishes identically
by virtue of (2.28), (4.12) and Remark 5.2, which shows µ(Wλ) = 0 and hence

Wλ = 0.

In same the way, we verify, using (2.28) and (4.12), that

ξλ = 0. �

Now, if we take account of (4.9), (4.20) and Lemma 5.3, then (3.37) turns
out to be

τ2(Aφ− φA)X + τ(τ − k)(u(X)ξ + η(X)U) + k(AL+ LA)X = 0.

Putting X = Aξ in this and using (4.7), (4.11), (4.12) and (5.5), we find

(5.8) (k − τ)(ρ− α) + λ(k + τ) = 0

because τ 6= 0 on Ω.

Lemma 5.4. ξk = 0 on Ω.

Proof. Applying (5.4) by W , we have Wk = 0. Differentiating the second
equation of (5.5) with respect to W and using Lemma 5.3 and above fact, we
find λWα = 0, which together with (5.5) yields (kτ + c)Wα = 0.

Now, ξk 6= 0 on Ω, then we have kτ + c 6= 0. Thus, Wα = 0 on this subset.
We discuss our arguments on such a place. Differentiating (5.8) with respect to
W and using Lemma 5.3 and these facts, we find (k− τ)Wρ = 0. Since ξk 6= 0,
we have k − τ 6= 0 and hence Wρ = 0. Differentiation (4.6) with respect to
W gives Wβ = 0. Since Wα = 0, we see from (2.26) that Wµ = 0 which
connected to (4.18) yields ξρ− ξα = 0.
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If we differentiate (5.8) with respect to ξ and remember Lemma 5.3 and
the last relationship, then we obtain λ+ ρ− α = 0, which together with (5.8)
yields ρ − α = 0. Hence (5.8) becomes λ(k + τ) = 0, which implies λ(ξk) = 0
and therefore λ = 0. Thus (5.5) is reformed as kτ + c = 0, a contradiction.
Accordingly we proved that ξk = 0 on Ω. �

Lemma 5.5. k − τ 6= 0 on Ω.

Proof. If not, then we have k − τ = 0 on an open subset of Ω. We discuss our
argument on such a place. Then we have λ = 0 because of (5.8) and Remark
5.2. So (4.6) and (5.5) turns out respectively to

β − ρα+ 2τ2 = 0,(5.9)

AU = 0, τ2 + c = 0(5.10)

which together with (4.9) gives θ = 0.
In the next step, differentiating (4.22) covariantly, we find

g((∇XK)W,Y ) + g(K∇XW,Y ) + τg(∇XW,Y ) = 0,

from which, taking the skew-symmetric part and using (3.27) and (4.11),

(5.11)

τ

µ
(t(X)u(Y )− t(Y )u(X)) + g(K∇XW,Y )− g(K∇YW,X)

= τ((∇YW )X − (∇XW )Y ).

By the way, differentiating (2.24) covariantly and using (2.5), we find

(∇XA)ξ +AφAX = (Xα)ξ + αφAX + (Xµ)W + µ∇XW.

If we put X = µW in this and make use of (4.12), (4.17) and (5.10), then we
find

µ2∇WW − µ∇µ = (α2 − αρ− 2c)U − µ(Wα)ξ − µ(Wµ)W.

By (4.21) we have t(W ) = −2µ. Thus, replacing X by W in (5.11) and
making use of the last equation, we have

µ(K∇µ+ τ∇µ) = 2τ(µ2 − α2 + ρα+ 2c)U + 2µτ(Wα)ξ.

If we take the inner product with U to this and take account of (4.5), then
we obtain Uµ = (µ2 − α2 + ρα + 2c)µ, which together with (2.26) and (5.9)
gives

(5.12) Uµ = 2(µ2 + τ2 + c)µ.

On the other hand, differentiating (5.10) covariantly with respect to ξ, we
find (∇ξA)U +A∇ξU = 0, which together with (4.3), (4.24) and (5.10) implies
that

(∇ξA)U + (αρ− β)Aξ + α(β − ρα)ξ +Aφ∇α = 0.

Applying by φ, we have

(5.13) φ(∇ξA)U + (αρ− β)U + φAφ∇α = 0.
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Putting X = U and Y = ξ in (3.26), we see

(5.14) (∇UA)ξ = (∇ξA)U

by virtue of (2.27), (3.20), (4.8) and (5.10).
From (2.30) we have

∇XU + g(A2ξ,X)ξ = φ(∇XA)ξ + φAφAX + αAX − αη(AX)ξ,

which connected to (5.10) gives ∇UU = φ(∇UA)ξ. Thus, (5.14) becomes
∇UU = φ(∇ξA)U . If we take account (5.9), (5.10) and this, then (5.13) can
be written as

∇UU = 2cU − φAφA∇α.
Now, taking the inner product with U to this and making use of (2.24),

(2.25), (2.27) and (4.12), then we obtain

µ(Uµ) = 2cµ2.

From (5.12) and this, we see that µ2 = c. It follows from (5.10) that τ2+µ2 =
0 and hence τ = 0, a contradiction by virtue of Remark 5.2. This completes
the proof of Lemma 5.5. �

By Remark 5.2 and Lemma 5.5, we may only discuss our arguments where
τ 6= 0 and k − τ 6= 0 on Ω.

By virtue of Lemma 5.4, (5.4) is reduced to

(5.15) Xk = (k − τ)u(X)

for any vector fields X. Differentiating (5.15) covariantly along Ω, we find

Y (Xk) = (Y k)u(X) + (k − τ)(g(∇Y U,X) + u(∇YX)).

If we take the skew-symmetric part and take account of (5.15) and Lemma 5.5,
then we obtain

(5.16) g(∇Y U,X) = g(∇XU, Y ).

Putting Y = ξ in this, we find g(∇ξU,X) + g(U,∇Xξ) = 0, which together
with (2.28) and (4.24) implies that

3φAU + αAξ − βξ + φ∇α+ µAW = 0.

By virtue of (2.24), (2.27), (4.12) and (5.5), this is reformed as

φ∇α+ (ρ− 3λ)µW = 0,

which tells us that

(5.17) ∇α = (ξα)ξ + (ρ− 3λ)U.

Differentiating the second equation of (5.5) with respect to ξ and taking
account of Lemma 5.3 and Lemma 5.4, we find λξα = 0. But the function λ
dose not vanish by virtue of (5.5), (5.15), Lemma 5.5 and Remark 5.2. Thus,
we have ξα = 0 on Ω. Accordingly (5.17) turns out to be

(5.18) ∇α = (ρ− 3λ)U.
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In the next step, from (4.26) and (5.16) we have

g(K∇XU, Y )− g(K∇Y U,X) + µτ{t(X)w(Y )− t(Y )w(X)} = 0.

Putting X = ξ in this and using (2.28), (4.24) and the fact that AU = λU , we
find

K(3λφU + αAξ − βξ + φ∇α) + kµAW + µτt(ξ)W = 0,

which connected to (2.24), (2.27), (4.12), (4.22) and (5.18) gives

(5.19) τt(ξ) + (ρ− α)(k + τ) = 0.

On the other hand, differentiating (4.21) covariantly along Ω, and taking
account of (2.5), (2.6), (4.27), (5.5) and (5.15), we find

X(t(Y )) =X(t(ξ))η(Y ) + t(ξ)g(φAX, Y ) +
τ

k2
(k − τ)µu(X)w(Y )

−
(

1 +
τ

k

)
(λu(X)η(Y )− g(φ∇XU, Y )) + t(∇XY ),

from which taking the skew-symmetric part and using (3.1),

2θg(φX, Y ) +
τ

k2
(k − τ)µ(u(Y )w(X)− u(X)w(Y ))

= X(t(ξ))η(Y )− Y (t(ξ))η(X) + t(ξ)(g(φAX, Y )− g(φAY,X))

−
(

1 +
τ

k

)
{λ(u(X)η(Y )− u(Y )η(X))− (g(φ∇XU, Y )− g(φ∇Y U,X))}.

By the way, taking the inner product with Y to (2.30) and taking the skew-
symmetric part, we get

g(φ∇XU, Y )− g(φ∇Y U,X)− (ρ− 2λ)(u(X)η(Y )− u(Y )η(X))

= 2cg(φX, Y )− 2g(AφAX, Y ) + α(g(φAX, Y )− g(φAY,X)),

where we have used (3.20), (3.26), (5.5) and (5.18).
Combining the last two equations, it follows that

(5.20)

2θg(φX, Y ) +
τ

k2
(k − τ)µ(u(Y )w(X)− u(X)w(Y ))

− t(ξ)(g(φAX, Y )− g(φAY,X))

= X(t(ξ))η(Y )− Y (t(ξ))η(X)

+
(

1 +
τ

k

)
{2cg(φX, Y ) + (ρ− 3λ)(u(X)η(Y )− u(Y )η(X))

− 2g(AφAX, Y ) + α(g(φAX, Y )− g(φAY,X))}.

Putting Y = ξ in this and using (2.5) and (5.5), we find

(5.21) X(t(ξ)) = ξ(t(ξ))η(X) +
{
t(ξ) +

(
1 +

τ

k

)
(λ+ α− ρ)

}
u(X).

Differentiating (5.19) and using (5.15), we have

τX(t(ξ)) = (α− ρ)(k − τ)u(X) + (k + τ)(Xα−Xρ).
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From this and (5.8) it follows that

(5.22) τX(t(ξ)) = (k + τ)(Xα−Xρ+ λu(X)).

By the way, if we differentiate (5.8) with respect to ξ and make use of Lemma
5.3, Lemma 5.4, Lemma 5.5 and the fact that ξα = 0, then we obtain ξρ = 0
and hence ξ(t(ξ)) = 0 because of (5.19) and Remark 5.2. Thus, (5.21) reformed
as

kτX(t(ξ)) = (k + τ) {τ(λ+ α− ρ)− k(ρ− α)}u(X),

where we have used (5.19). From this and (5.22) we have

(k + τ)(∇α−∇ρ+ λU) =
(

1 +
τ

k

)
{(k + τ)(α− ρ) + τλ}U,

where we have used (5.8). According to Lemma 5.5 and (5.15), it is clear that
k + τ 6= 0 on Ω. Thus, the last equation turns out to be

k(∇α−∇ρ) = {(k + τ)(α− ρ) + λ(τ − k)}U,

or, using (5.8),

(5.23) (k − τ)(∇α−∇ρ) = 4τλU.

On the other hand, differentiating (5.8) covariantly and using (5.15) and
itself, we obtain (k − τ)(∇ρ−∇α) + (k + τ)∇λ− 2τλU = 0, or using (5.23),

(5.24) (k + τ)∇λ = 6τλU.

Finally, we are going to prove that Ω is empty. If we put X = U and Y = W
in (5.20), then by (4.12), (5.5) and (5.8), we have

2θk(k− τ)+
τ

k
(k− τ)2µ2 +2τλkt(ξ) = 2c(k2− τ2)+2λ2(k+ τ)2−2τ(k+ τ)αλ.

By (2.26), (4.6), (4.9), (5.5) and (5.8), we have (k − τ)µ2 = 2kθ. Thus, from
this, using (4.9), (5.19) and the fact that k + τ 6= 0, we have

θ(k − τ)− λk(ρ− α) = kθ + λ2(k + τ),

which implies that

−τθ(k − τ)− λk(ρ− α)(k − τ) = λ2(k2 − τ2).

It follows from (5.8) that

θ(k − τ) = λ2(k + τ).

Differentiating this covariantly along Ω, and using (5.4) and (5.24), we have
τλ2 = 0, which connected to Remark 5.2 gives λ = 0 on Ω. Thus, kτ + c = 0
because of (5.5) and consequently k is constant on Ω. Hence U = 0 by virtue of
(5.15) and Lemma 5.5. By Proposition 3.3, we conclude that k = 0 and hence
Ω = ∅.

Developed above, we have:
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Lemma 5.6. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 in Mn+1(c), c 6= 0 such that dt = 2θω for a
scalar θ( 6= 2c). If M satisfies RξA = ARξ and at the same time ∇ξRξ = 0,
then k = 0 on M .

6. Theorems

In this section we will suppose that M be a real (2n− 1)-dimensional (n >
2) semi-invariant submanifold of codimension 3 in Mn+1(c), c 6= 0 such that
dt = 2θω for a scalar θ(6= 2c). If M satisfies RξA = ARξ and at the same time
∇ξRξ = 0. Then by Lemma 5.6, we have k = 0 on M and hence m(X) = 0 for
any vector fields X on M because of (3.19). We also have Kξ = 0 by virtue of
(3.20).

Because of (4.9), we can write (3.37) and (3.8) as

(θ − c){g((Aφ− φA)X,Y ) + η(X)u(Y ) + η(Y )u(X)} = 0,(6.1)

K2X = (θ − c)(X − η(X)ξ),(6.2)

respectively.
Because of (3.33) and Lemma 5.6, we have KU = 0, which together with

(6.2) gives (θ − c)U = 0. Thus, (6.1) reformed as

(6.3) (θ − c)(Aφ− φA)X = 0.

In what follows we assume that θ − c 6= 0 on M , then from (6.3) we have
Aφ = φA. From this fact and (3.39), the equation (3.38) can be written as

(6.4) A2X = αAX + c(X − η(X)ξ).

Further, (3.36) turns out to be

(6.5) L(∇XL)Y = (θ − c)(t(X)φY − η(Y )AφX − η(X)φAY ).

From (3.24), (3.25) and the assumption, we have

(6.6) LφX = −KX,

which together with (3.21) gives

(6.7) Lφ = −φL, Kφ = −φK.

Differentiating (2.8) covariantly, we have η((∇XL)Y ) = g(AX,KY ). If we
take account (3.35), (6.6) and this, then (6.5) can be written as

(6.8)
g((∇XL)Y, Z)=− t(X)g(KY,Z) + η(X)g(AKY,Z)

+ η(Y )g(AKX,Z) + g(AX,KY )η(Z).

In the same way using the differentiation of (6.2), we have

(6.9)
g((∇XK)Y, Z)= t(X)g(LY,Z)− η(X)g(ALY,Z)

− η(Y )g(ALX,Z)− g(AX,LY )η(Z).
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By Theorem 4.3 of [17], we have

(6.10) (∇XA)Y = −c(η(Y )φX + g(φX, Y )ξ).

Differentiating (6.9) covariantly along M and making use of (2.5), (3.20),
(6.4), (6.8), (6.10) and itself, we find

(∇Z∇XK)(Y )= Z(t(X))− c(η(X)g(Z,KY )ξ + η(X)η(Y )KZ) + T (Z,X, Y )

− α(η(X)η(Y )AKZ + g(AZ,KY )η(X)ξ)

− g(∇ZX, ξ)ALY − g(X,φAZ)ALY − η(Y )AL∇ZX
− g(Y, φAZ)ALX − g(A∇ZX,LY )ξ − g(AX,LY )φAZ,

where T (Z,X, Y ) is a certain vector field with T (Z,X, Y ) = T (X,Z, Y ), from
which, taking the skew-symmetric part with respect to Z and X, and making
use of (3.1), (6.3) with τ 6= 0 and the Ricci identity for K,

(6.11)

(R(Z,X) ·K)(Y )

= 2θg(φZ,X)LY

− c(η(X)g(Z,KY )ξ − η(Z)g(X,KY )ξ

+ η(Y )(η(X)KZ − η(Z)KX))

− α{η(Y )(η(X)AKZ − η(Z)AKX)

+ g(AZ,KY )η(X)ξ − g(AX,KY )η(Z)ξ}
+ 2g(Z, φAX)ALY − g(Y, φAZ)ALX + g(Y φAX)ALZ

− g(AX,LY )φAZ + g(AZ,LY )φAX.

Putting Z = φei and X = ei and summing for i, and using (3.1), (3.21), (3.22),
(6.3) and (6.4), we find

(6.12)

2n−1∑
i=0

(R(φei, ei) ·K)(Y ) = 4{c− (n− 1)θ}LY + 2(h+ α)LAY.

On the other hand, from (2.17) we see, using (3.22), (6.2)–(6.4), (6.6) and
(6.7), that

2n−1∑
i=0

(R(φei, ei) ·K)(Y ) = 4{2θ − (2n+ 3)c}LY − 4αLAY,

which connected to (6.12) implies that

(h+ 3α)LAX = 2{(n+ 1)θ − 2(n+ 2)c}LX,

which together with (3.25) yields

(h+ 3α)(g(AX,Y )− αη(X)η(Y )) = 2{(n+ 1)θ − 2(n+ 2)c}(X − η(X)η(Y )).

If we put X = Y = ei and summing up to i = 0, 1, . . . , 2n− 2, we have

(h+ 3α)(h− α) = 4(n− 1){(n+ 1)θ − 2(n+ 2)c},
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which implies

(6.13) (h− α)2 + 4α(h− α) = δ,

where we have put δ = 4(n− 1){(n+ 1)θ − 2(n+ 2)c}.
Since we have TrL = 0 = TrK, Kξ = 0 = Lξ and Aξ = αξ, if we put X = ξ,

Y = Z = ei in (6.8) and (6.9), and summing up to i = 0, 1, . . . , 2n− 2, then we
have

(6.14) Tr(AK) = 0, Tr(AL) = 0,

respectively, and hence

(6.15) Tr(A2K) = 0, Tr(A2L) = 0

by virtue of (6.4).
If we put Y = ei, Z = Aei in (6.11) and summing up to i = 0, 1, . . . , 2n− 2,

then from (6.14) and (6.15) we have

2n−1∑
i=0

(R(Aei, X) ·K)(ei) = (2θ − 3α2 − 4c)AKX − 3cαKX.

By (2.17), (6.14) and (6.15) we have

2n−1∑
i=0

(R(Aei, X) ·K)(ei) = (8c− 2θ + h(2))AKX − {(θ − 2c)(h− α)− cα}KX.

Thus, above two equations gives

(4θ − 12c− h(2) − 3α2)AKX = {4cα− (θ − 2c)(h− α)}KX,

which connected to (6.2) yields

(6.16) (4θ − 12c− h(2) − 3α2)(h− α) = 2(n− 1){4cα− (θ − 2c)(h− α)}.

Since we have from (6.4)

(6.17) h(2) = αh+ 2(n− 1)c,

if we combine (6.13) to (6.16), then we obtain

(6.18) (θ − 3c)(h− α) = 2α(n− 1)(θ − 2c).

If c < 0 or θ−2c < 0 for c > 0, then θ−3c 6= 0 because θ− c is nonnegative.
So we can write (6.18) as

h− α =
2(n− 1)

θ − 3c
(θ − 2c)α.

Substituting this into (6.13), we have

4(n− 1)(θ − 2c)α2{(n+ 1)θ − 2(n+ 2)c} = δ(θ − 3c)2.

Thus, it follows that

(6.19) {α2(θ − 2c)− (θ − 3c)2}{(n+ 1)(θ − 2c)− 2c} = 0.
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For the case where c > 0 if θ− 2c < 0, then we have (n+ 1)(θ− 2c)− 2c < 0
and hence it follows from (6.19) that θ = 3c and α = 0, a contradiction. Hence,
we conclude that θ = c on M because our discussions were in the case where
θ 6= c, that is, the normal connection of M is L-flat. Therefore from (3.25) and
(6.2) we have K = L = 0. Thus, we have

Lemma 6.1. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 satisfying dt = 2θω for a certain scalar θ(< 2c)
in a complex projective space Pn+1C. If M satisfies ∇ξRξ = 0 and at the same
time ARξ = RξA, then K = L = 0 and the normal connection of M is L-flat.

From (2.17), the Ricci tensor S is given by

SX = c{(2n+ 1)X − 3η(X)ξ}+ hAX −A2X,

because of k = 0. Thus, the scalar curvature s of M is given by

s = 4(n2 − 1)c+ h2 − h(2) − 4(n− 1)(θ − c),
where we have used (3.25) and (6.2), which together with (6.17) gives

(6.20) s = 2(n− 1)(2n+ 1)c− 4(n− 1)(θ − c) + h(h− α).

If we assume c < 0, then by (3.5) we have (n + 1)(θ − 2c) − 2c > 0. Thus,
it follows from (6.19) that α2(θ − 2c) = (θ − 3c)2, which connected to (6.18)
gives α(h− α) = 2(n− 1)(θ − 3c). Hence (6.13) is reformed as

h(h− α) = 2(n− 1)(2n− 1)(θ − c)− 2(n− 1)c.

Thus, the scalar curvature s is given by

(6.21) s = 2(n− 1)(2n− 3)(θ − c) + 2(n− 1)c.

Hence if we assume s − 2(n − 1)c ≤ 0, then by (3.4) we have θ − c = 0, a
contradiction.

Therefore we conclude that:

Lemma 6.2. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 satisfying dt = 2θω for a scalar θ in a complex
hyperbolic space Hn+1C. If M satisfies ∇ξRξ = 0 and at the same time ARξ =
RξA, then K = L = 0 and the normal connection of M is L-flat provided that
the scalar curvature s of M holds s− 2(n− 1)c ≤ 0.

As a consequence of Lemma 6.1, we have K = L = 0 and ∇⊥C = 0, namely
∇⊥XC = 0 for any vector field X on M . Hence, H2(p) appeared in Theorem 2.1
is spanned by the distinguished normal C, and C is parallel in normal bundle.
Thus, by Theorem 2.1 we have:

Theorem 6.3. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 in a complex space form Mn+1(c), c 6= 0 such
that the third fundamental form t satisfies dt = 2θω for a scalar θ, where
ω(X,Y ) = g(φX, Y ) for any vector fields X and Y on M . If M satisfies
RξA = ARξ and at the same time ∇ξRξ = 0, then M is a real hypersurface
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in a complex space form Mn(c), c 6= 0 provided that θ − 2c < 0 for c > 0, or
s ≤ 2(n− 1)c for c < 0.

From Lemma 6.1, 6.2 we can write (5.1) as

(6.22)
α(∇ξA)X + (ξα)AX = c(u(X)ξ + η(X)U) + η(AX)(3AU +∇α)

+ (3g(AU,X) +Xα)Aξ.

Here, the distinguished normal C can be regarded as a unit normal vector field
N on M in Mn(c). Thus, the second fundamental form A with respect to C
can also be regarded as that of N . Using (3.26) with k = 0 and (6.22), we can
verify that U = 0, that is, Aξ = αξ (see [7]). So α is a constant and hence
α(∇ξA)X = 0 because of (6.22), which together with (2.6) and (3.36) yield
α(Aφ− φA) = 0 and hence Aξ = 0 or Aφ = φA. Therefore, owing to Theorem
6.3 and Theorem O, we have:

Theorem 6.4. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 in a complex projective space Pn+1C such that the
third fundamental form t satisfies dt = 2θω for a certain scalar θ(< 2c), where
ω(X,Y ) = g(φX, Y ) for any vector fields X and Y on M , and M satisfies
RξA = ARξ if η(Aξ) 6= 0. Then ∇ξRξ = 0 holds on M if and only if M is
locally congruent to one of the following hypersurface:

(A1) a geodesic hyperplane of radius r, where 0 < r < π/2 and r 6= π/4,
(A2) a tube of radius r over a totally geodesic PkC for some k ∈ {1, . . . , n−

2}, where 0 < r < π/2 and r 6= π/4.

In the same way as above, we verify from Lemma 6.2 and Theorem MR

Theorem 6.5. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 satisfying dt = 2θω for a scalar θ in a complex
hyperbolic space Hn+1C, where ω(X,Y ) = g(φX, Y ) for any vector fields X
and Y on M , and satisfies RξA = ARξ. Then ∇ξRξ = 0 holds on M if and
only if M is locally congruent to one of the following hypersurface provided that
the scalar curvature s of M holds s− 2(n− 1)c ≤ 0:

(A0) a horosphere in HnC,
(A1) a geodesic hypersphere or a tube over a complex hyperplane Hn−1C,
(A2) a tube over a totally geodesic HkC for some k ∈ {1, . . . , n− 2}.
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