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RATIONAL HOMOTOPY TYPE OF MAPPING SPACES
BETWEEN COMPLEX PROJECTIVE SPACES AND
THEIR EVALUATION SUBGROUPS

JEAN-BAPTISTE GATSINZI

ABSTRACT. We use Lo, models to compute the rational homotopy type
of the mapping space of the component of the natural inclusion i, j :
CP™ «— CP"t* between complex projective spaces and show that it has
the rational homotopy type of a product of odd dimensional spheres and a
complex projective space. We also characterize the mapping aut; CP™ —
map(CP™, (CP”Jrk;in’k) and the resulting G-sequence.

1. Introduction

Let f : X — Y be a map between simply connected CW-complexes of
finite type. We denote by map(X,Y; f) the path component of f in the space
of continuous mappings from X to Y. The study of the rational homotopy
type of map(X,Y’; f) was initiated by Haefliger [10] who describes its Sullivan
model. Afterwards there were attempts to find a Quillen model of map(X,Y’; f)
from either a Sullivan or a Quillen model of f. Chain complexes of which
the homology coincides with rational homotopy groups of function spaces were
investigated [8,12,13]. Those chain complexes were later developed into models
of function spaces [2-5].

Following [5] we describe in this paper an L., model of the inclusion 4, j :
CP™ — CP™*. We shall use rational homotopy theory for which the standard
reference is [6].

The notion of Ly-algebra was introduced by Lada [11] and we remind here
the definition.

Definition 1. A permutation o € S, is called an (i,n — 4)-shuffle if o(1) <
o< o(i)and o(i +1) < --- < o(n), where i = 1,...,n. For graded objects
Z1,...,%n, the Koszul sign €(o) is determined by

TN N = €(0)To(1) A A To(n)-

It depends not only of the permutation ¢ but also of degrees of x1,...,z,.
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We assume that all vector spaces are over the field of rational numbers Q.

Definition 2. An L.-algebra or a strongly homotopy Lie algebra is a graded
vector space L = @;>¢L; with maps ¢, : L2 5 L of degree k — 2 such that

(1) ¢ is graded skew symmetric, that is, for a k-permutation o

Ce(To(1y, s To(ry) = sgn(o)e(o)lp (1, ..., T8),

where sgn(o) is the sign of o.
(2) There are some generalized Jacobi identities

Z Z 6(0’)(—1)i(j_1)fj (fi(l‘g(l), e ,xg(i)), xa(i+1)7 P ,.’L’U(n)) = 0,
i+j=n+1 o
where the summation extends to all (¢, n — ) shuffles of the symmetric
group S,.

If £, = 0 for k > 3, one retrieves the definition of a graded differential Lie
algebra (L, d) where d = ¢; and {5 is the Lie bracket.

Let (L,¢) be an Lo, algebra and sL the suspension of L, and C (L) =
(AsL, d) the generalized Cartan-Chevalley-Eilenberg functor (see [6, §22]). One
gets linear mappings dy : AF(sL) — sL defined by

dk(S.%'l VANRERAN S$k> = (—1)@&@(,@1, R ,xk)7
each of which extends into a codifferential on the coalgebra AsL. This gives
an equivalence between Lo structures on L and codifferentials on AsL [11].
Moreover if L is of finite type, then C°°(L) = (A(sL)#,d) is a commutative
differential graded algebra (cdga for short). The differential d = dy +-- - +dj +
- is defined by

(drpv,sx1 A+ Asz) = (=), b (z1, ..., xk)),
where v € (sL)# and € = Zi:ll(k: — )| z4].

Definition 3. Two cdga’s (4, d) and (B, d) have the same homotopy type if
they are linked by a sequence of quasi-isomorphisms

(A,d):Ao—)Al (—AQ"-—)An_l (—An:(B,d)

Let V be a graded vector space. A Sullivan algebra (AV,d) is the free graded
commutative algebra generated by V' together with a filtration V'(0) C V(1) C
.-+ C V such that dV (i) C AV (i — 1). Tt is called minimal if dV C AZ2V. A
Sullivan model of a simply connected space X is a Sullivan algebra (AV, d) such
that there exists a quasi-isomorphism ¢ : (AV,d) — Apr(X), where App(X)
denotes the cdga of piecewise linear forms of X [16]. A cdga model of X is a
cdga (A, d) which has the same homotopy type as Apr(X).

Definition 4. If f : X — Y is a map between simply connected spaces of
finite type, then there is a cdga map ¢ : (AV,d) — (B, d), called a model of f,
where (B, d) and (AV,d) are respective cdga models of X and Y, respectively.
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Definition 5. Let L be an L,-algebra of finite type. Then L is called an
Lo, model of a topological space X if C*°(L) is a Sullivan model of X. Tt is
minimal if ¢; = 0. In this case m,(Q2X) ® Q = L.

In this note, we give another proof of the following result using L., models

of function spaces (see [15], Example 3.4).

Theorem 6. The function space map(CP", (CPnJrk; in,k) has the rational ho-
motopy type of CPF x §2k+3 x ... x §2(ntk)+1,

Moreover we study evaluation subgroups of the mapping aut; CP™ — CP"t*
and prove the following result.

Theorem 7. The G-sequence associated with the inclusion
aut; CP™ — map(CP", CPntk. in,k)

s not exact.

2. Lo.-models of function spaces

Definition 8. Let ¢ : (AV,d) — (B,d) be a morphism of cdga’s. A ¢-
derivation of degree k is a linear mapping 6 : (AV)" — B"* such that
0(ab) = 0(a)p(b) + (—1)*1%lp(a)(b). We denote by Der(AV, B; ¢) the Z-graded
vector space of all ¢-derivations. The differential on Der(AV, B; ¢) is defined
by 60 = df — (—1)*6d.

Define lsg}(AV,B; ¢) as

Der(AV, B; ¢);, 1> 1,

Dex(AV, B.¢); = { {6 € Der(AV, Big)y : 60 =0}, i=1.

Ifpr,...,0k € f)\é}(/\V, B; ¢) are ¢-derivations of respective degrees ny, ..., ng,
define

[901, BERE) @k}(v)
= ()M HEEIEN TN e By iy vm) @1 (Vi) - 0k (v3),
T geeey 1k
where dv = > vy -+ - vy, and € is the corresponding Koszul sign of the permu-
tation
(1o ey Phy Uy e Um) = (U1, ooy Digy e ey Digy e vy Urny @15 Vig s« -+ Py Vi)
We note that [¢1, ..., ¢k] is of degree ny + - - - +ny — 1. Now define linear maps
¢y, of degree k — 2 on s~ !Der(AV, B, ¢) by
U(s7hp) = =500, Lu(shpr,e s ior) = (1) ons . ond,
where ¢ = Y07k — )|l
Proposition 9 (Lemma 3.3,[5]). If ¢ : (AV,d) — (B,d) is a Sullivan model
of a mapping f : X — Y between simply connected spaces and V is finite
dimensional, then (s 1Der(AV, B; ¢),€x) is an Lo, model of map(X,Y; f).
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3. Component of the inclusion CP™ — CP™tk

Recall that the minimal Sullivan model of CP™ is given by (A(x2, T2,+1),d)
where dxo = 0, drop+1 = x;““l. Our objective is to compute an L, model
of the component of the inclusion CP"* — CP"*k. For k = 0, one gets
a model of aut; CP" = map(CP™ CP™;Id) from the differential Lie alge-
bra (L,d) of derivations of (A(x2,xa,+1),d), of which H,(L,d) is spanned by
{23,25,...,2an+1} [7, §3]. Therefore auty CP™ has the rational homotopy type
of the product S x S® x --- x 827! This result was also proved by Mgller
and Raussen using another method [15, Example 3.4].

Let f: (AV,d) — (B,d) be a morphism of differential graded algebras. For
v € V and b € B we denote by (v,b) the unique f-derivation 6 such that
6(v) = b and zero on the remaining generators of AV.

From now on we assume that k& > 1. A model of the inclusion

ink : CP" — CP™ "k
is given by
P (A7d) = (/\(x2’x2n+2k+1) — (/\(yQay2n+1)ad) = (Bvd)v

where ¥(22) = y2, ¥(T2n12k+1) = Y5Y2n+1. We consider the composition

¢ A= (A2, @antoks1) 2 (MY, gani1)sd) = B = (Alya)/(y5+1),0).
Hence ¢(z2) = y2 and ¢(x2n42k+1) = 0. The induced map
(Der(A, B;¢),6) — (Der(A, H*(B); ¢),6)

is a quasi-isomorphism [1]. In the sequel we compute

Der(A(23, Tant2b4+1)s Ay2)/ (y5 )5 )

and determine its brackets. As a vector space

Der(A(22, Tant2k+1)s Ay2)/ (y5 1) )
is spanned by
{527 A2k+2i—1, 1= 17 s+ 1}5
where A2k 4+2i—1 = (£E2n+2k+1,yg_i+1) and ,82 = (JCQ, 1). Note that |ﬁ2| = 2 and
|aogt2i—1] = 2k + 2¢ — 1. Computations show that the only non zero brackets
are given by [Ba,...,82] = aggtoi—1 fori=1,...,n+1.
——

ki
We deduce the following result (see [15] for a different proof).

Proposition 10. The function space map(CP™ CP"**;i, ) has a Sullivan
model of the form

(A(22, 226415 - - - s 22k 2n41), ),

k+1 k4+n+1
where dzo =0, dzok11 = 25, ..., d22kton+1 = 22+ +1
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Proof. An Lo, model (L, {y) of map(CP(n),CP(n + k);in,k) is spanned by

(s7'B2,s tagpinii1, i=1,...,n+1).
Moreover ¢; = 0 for j = 1,...,k and {4;(s7 B2, ...,s7 B2) = s aogiai1,
fori=1,...,n+ 1. Therefore
C™(L) = N (22, 22k41, 22643, - - - y 22k+2n+1),d), dza =0, dzogi2i11 = Z§+i+1’
where 0 < i < n. [l

Theorem 11. The function space map(CP™, Cprtk, inx) has the rational ho-
motopy type of CPF x §2k+3 « ... x §2(ntk)+1

Proof. By the above result, a Sullivan model of map(CP", CP"**:4,, ;) is given
by

(A(z2, Tokt1, Tok13, - -+ s Tont2kt1),
where dxo = 0, dzo;11 = xéﬂ, 1=k, k+1,...,k+n. We consider the relative
Sullivan model

(AMz2, Zok+1),d) = (A (22, Tokt1) ® ATagys, D),

where
d(EQ = 0, d$2k+ = xé“, D{L‘Q = d$2, D.’Egk+1 = diEQkJrl, D$2k+3 = 1'12€+2.
It is a Sullivan model of the fibration S2*+3 — E % CP¥, where p is classified
by a map f : CP*¥ — Baut; S?**3. Using the algebra of derivations on the
minimal Sullivan model of S$2¥*3 [16], it is easily seen that Baut; S?%*3 has
the rational homotopy type of K(Q, 2k + 4) [7, Proposition 2.1].
Moreover equivalence classes

[CP* K(Q,2k+4))

are in a bijective correspondence with H?*+4(CP* Q) = {0}. Therefore the
classifying map f is rationally trivial. So we deduce that the fibration is trivial.
Hence the cdga

(A,d) = (N2, T2k 41, Vopt3), d), dvs = 0, dwop1 = 25T, dropys = 25 +?

and
(/\(1‘2,I2k+1) X /\ng_;,_g,d),dl’g =0, dl’gk+1 = I§+1, d22k+3 =0

are isomorphic. We deduce that the cdga (A, d) is a Sullivan model of CP* x
S2k+3 Tt follows from an induction argument that map(CP*, CP" ¥4, 1) has
the rational homotopy type of CP¥ x §2k+3 x ... x §2(nth)+1, O
Recall that a Sullivan algebra (AV,d) is called formal if there is a quasi-
isomorphism (AV,d) — H*(AV,d). Spheres and complex projective spaces are
formal. Moreover a product of formal spaces is also formal. We deduce that:

Corollary 12. The function space map(CP"™,CP"*;i, ) is formal.
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4. Evaluation subgroups of the inclusion i, : CP™ — Cpntk

We consider the inclusion 4, : CP™* — CP™* and the corresponding
Sullivan model ¢ of the previous section given by the composition

&1 A= (A(w2,an12k41), ) — > A2, Yn1), d) = B —2= H*(B).
Forgetting the desuspension, a model of the inclusion (i, %)« : aut; CP™ —
map(CP", CP"**;i, ;) is given by
¢* : (Der(B, H*(B);7v),d) = (Der(A, H*(B); ¢), 9).
We now characterize the map ¢* when k£ > n.
Theorem 13. If k > n, then the induced map
¢" : (Der(B, H*(B);7),0) — (Der(A, H"(B), ¢),0))
is homotopy trivial.
Proof. We note that L = Der(B, H*(B);) is spanned by
{02,01,03,...,02,11},

where d3 = (y2,1), O2i1 = (Yans1,y5" "), i =0,...,n. The differential is given
by dd2 = (n + 1)6; and zero otherwise. Therefore

W*(autl (CP”) ® Q = H*(L,(S) = <[93]7 ey [02n+1}>-
Hence aut; CP" has the rational homotopy type of $% x §% x -+ x §27+1, Let
L' = (Der(A, H*(B), $),9) = ({B2, @2k 41, - -, Q2nt2k41),0).-

The mapping ¢* : L — L' is defined by ¢*(d2), ¢*(02;4+1) = 0 for i < k, and
@*(02i41) = agitq for i > k. If k > n, then ¢*(d2) = B2 and zero otherwise.
Moreover

COO(S_IL> = (/\(x27y13 s Y201, 7y2n+1)’d)7
where dry = 0 and dy;_1 = x%. In particular dy; = z2. In the same way
C®(s7'L') = (A(u2, vak+1s - - -, Vangart1): d),
where dug = 0, dvg;41 = ué“. Hence
d=C®(p*): C®(s L") = C>®(s7'L)
is defined by ®(uz) = x2 and vanishes on other generators. As C*°(s~1L’) is
quasi-isomorphic to

(AM(wa, wag11), d) @ (AN(Wak43, - - - s Want2k+1),0),
where dwy = 0, dwagr1 = w’;"'l and, C*°(s71L) is quasi-isomorphic to
(A (23, 22n41),0),
then induced map

P 1 (A (W2, Wok+1, Wakt3, - - -y Want2k11)sd) = (A(23, -+, 22n11),0)
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between minimal Sullivan models is zero. O

Definition 14. Let X be a topological space. We say a € 7, (X) is a Gottlieb
element if the map: fV1yx : S"VX — X extends to S™ x X, where f represents
the homotopy class « [9].

Gottlieb elements form a subgroup of m,(X) which will be denoted by
G.(X). It comes from the definition that G,.(X) is the image of m.(ev) :
me(auty; X, 1x) — m.(X, zp), where ev is the evaluation map at xg. If f : X —
Y, then G, (Y, X; f) is the image of 7, (ev) where ev : map(X,Y; f) — Y is the
evaluation map at the base point.

Let (AV,d) be the minimal Sullivan model of a simply connected space X.
Define the Gottlieb group of (AV,d)

Gn(AV,d) ={[f] € H,(Der AV,0) : 0(v) =1, v e V"}.

Hence G,(AV,d) = im H,(e,), where €, : Der AV — Der(AV,Q;¢) is the post
composition with the augmentation map € : AV — Q. Then G,(AV)
Gn(Xg), where h : X — Xg is the rationalization [6, Propostion 29.8]. There
are also relative Gottlieb groups G7¢ (Y, X; f) and a G-sequence

= G (Y X f) = G(X) = Gu(Y, X f) — -

which was introduced by Lee and Woo. The sequence is exact in some cases,

for instance if f has a left homotopy inverse [17]. We follow the description of

rational evaluation homotopy groups as given by Lupton and Smith [12].
Using augmentation maps we obtain the commutative diagram.

Der(B, H*(B);v) A Der(A, H*(B); ¢)

|

Der(B, Q;¢€) . Der(A, Q;¢)

In the same way we define G.(A, H*(B);®) as the image of H,(e.) in
H,(Der(4,Q,e)).

In order to define relative rational Gottlieb groups, we recall that if ¢ :
(C,dc) — (C',der) is a map of chain complexes, the mapping cone of ¢,
denoted by Rel(¢), is the complex of which the underlying graded vector space
is sSC®C" and the differential is given by D(sxz,y) = (—sdc(z), d(x)+dery) [12]
or [14, p. 46]. Define chain maps J : C/, — Rel,,(¢) and P : Rel,,(¢) — Cr—1
by J(y) = (0,y) and P(sz,y) = x. This yields an exact sequence of chain
complexes

0—C. 5 Rely(¢) 5 Oy =0,

which induces a long exact sequence in homology [14, Proposition 4.3]. We
consider the mapping cone Rel(¢*) of

¢" : (Der(B, H*(B),7),0) = (Der(A, H*(B), ¢),0),



266 J.-B. GATSINZI

Rel(@*) the mapping cone of q@* : Der(B,Q;€) — Der(A,Q;¢) and the induced
map (e, €) : Rel(¢*) — Rel(¢*). The relative Gottlieb group G7¢(A, B; ¢) is
the image of H,(ex,€,). From the tower

0 — Der(A, H*(B); ¢) —L> Rel(¢*) —2= Der(B, H*(B);y) — 0

J{G* l(e*,e*) \LE*

0 —— Der(4,Q; €) —2— Rel(¢*) —=—> Der(B,Q;¢) —— 0
one gets a sequence

-+ = Gy (B, H*(B),v) — Gr(A, H*(B), ¢*) — Gi*'(A, H*(B),¢*) — - --
called G-sequence of ¢.

Proposition 15. The G-sequence associated to the inclusion aut; CP™ —
map(CP", CP"**;i, 1) is not evact.

Proof. Clearly G.(B, H*(B);v) = {[(y2n+1,1)]) and similarly
G.(A, H*(B),¢) = ([(x2, V], [(x2nt2r+1, 1)])-

We consider first the case where k > n. Then the only non zero differential
on Rel(¢*) = (sL ® L', d) is given by

d(8527 0) = (_80170) + (07 ¢*(62)) = (_8017 O) + (0752)
Similarly the only non zero differential on
Rel(¢*) = <(5y;a 0)7 (sy;n—o—la O)a (07 x;)a (07 x;n+2k+1)>
is d(sy3,0) = (0,23%). We conclude that
GLN A H*(B), ) = ([(s93011, 0)]; (0,23, 9341))
>~ 5G.(CP") @ G, (CP™tF),
Hence in the G-sequence reduces to fragments

0 — Ghel5(A, H(B); ) = Gany1 (B, H* (B);y) = 0,

0= Gangarir (A, H*(B);¢") = Goeligp i1 (A H*(B);¢%) > 0
and terminates with
0 — Ga2(A, H*(B); ¢*) — 0.
As Gy(A,H*(B);¢*) =2 Q, we conclude that the last fragment of the G-
sequence is not exact.

If kK < n, then ¢*(0an4+1) = aant1, hence d(s025,41,0) = (0, a2,11), therefore
[(5Y5,41,0)] € H, (Rel(¢*)) is not in the image of H,(e,,e,). The only change
in the G-sequence is the fragment

0 = Ghpo(A, H*(B); ¢° )

which in not exact as well, as G52, ,(A, H*(B))
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