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RATIONAL HOMOTOPY TYPE OF MAPPING SPACES

BETWEEN COMPLEX PROJECTIVE SPACES AND

THEIR EVALUATION SUBGROUPS

Jean-Baptiste Gatsinzi

Abstract. We use L∞ models to compute the rational homotopy type
of the mapping space of the component of the natural inclusion in,k :

CPn ↪→ CPn+k between complex projective spaces and show that it has
the rational homotopy type of a product of odd dimensional spheres and a

complex projective space. We also characterize the mapping aut1 CPn →
map(CPn,CPn+k; in,k) and the resulting G-sequence.

1. Introduction

Let f : X → Y be a map between simply connected CW-complexes of
finite type. We denote by map(X,Y ; f) the path component of f in the space
of continuous mappings from X to Y . The study of the rational homotopy
type of map(X,Y ; f) was initiated by Haefliger [10] who describes its Sullivan
model. Afterwards there were attempts to find a Quillen model of map(X,Y ; f)
from either a Sullivan or a Quillen model of f . Chain complexes of which
the homology coincides with rational homotopy groups of function spaces were
investigated [8,12,13]. Those chain complexes were later developed into models
of function spaces [2–5].

Following [5] we describe in this paper an L∞ model of the inclusion in,k :
CPn ↪→ CPn+k. We shall use rational homotopy theory for which the standard
reference is [6].

The notion of L∞-algebra was introduced by Lada [11] and we remind here
the definition.

Definition 1. A permutation σ ∈ Sn is called an (i, n − i)-shuffle if σ(1) <
· · · < σ(i) and σ(i + 1) < · · · < σ(n), where i = 1, . . . , n. For graded objects
x1, . . . , xn, the Koszul sign ε(σ) is determined by

x1 ∧ · · · ∧ xn = ε(σ)xσ(1) ∧ · · · ∧ xσ(n).
It depends not only of the permutation σ but also of degrees of x1, . . . , xn.
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We assume that all vector spaces are over the field of rational numbers Q.

Definition 2. An L∞-algebra or a strongly homotopy Lie algebra is a graded

vector space L = ⊕i≥0Li with maps `k : L⊗
k → L of degree k − 2 such that

(1) `k is graded skew symmetric, that is, for a k-permutation σ

`k(xσ(1), . . . , xσ(k)) = sgn(σ)ε(σ)`k(x1, . . . , xk),

where sgn(σ) is the sign of σ.
(2) There are some generalized Jacobi identities∑
i+j=n+1

∑
σ

ε(σ)(−1)i(j−1)`j(`i(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0,

where the summation extends to all (i, n− i) shuffles of the symmetric
group Sn.

If `k = 0 for k ≥ 3, one retrieves the definition of a graded differential Lie
algebra (L, d) where d = `1 and `2 is the Lie bracket.

Let (L, `k) be an L∞ algebra and sL the suspension of L, and C∞(L) =
(∧sL, d) the generalized Cartan-Chevalley-Eilenberg functor (see [6, §22]). One
gets linear mappings dk : ∧k(sL)→ sL defined by

dk(sx1 ∧ · · · ∧ sxk) = (−1)
k(k−1)

2 `k(x1, . . . , xk),

each of which extends into a codifferential on the coalgebra ∧sL. This gives
an equivalence between L∞ structures on L and codifferentials on ∧sL [11].
Moreover if L is of finite type, then C∞(L) = (∧(sL)#, d) is a commutative
differential graded algebra (cdga for short). The differential d = d1 + · · ·+dk +
· · · is defined by

〈dkv, sx1 ∧ · · · ∧ sxk〉 = (−1)ε〈v, `k(x1, . . . , xk)〉,

where v ∈ (sL)# and ε =
∑k−1
i=1 (k − i)|xi|.

Definition 3. Two cdga’s (A, d) and (B, d) have the same homotopy type if
they are linked by a sequence of quasi-isomorphisms

(A, d) = A0 → A1 ← A2 · · · → An−1 ← An = (B, d).

Let V be a graded vector space. A Sullivan algebra (∧V, d) is the free graded
commutative algebra generated by V together with a filtration V (0) ⊂ V (1) ⊂
· · · ⊂ V such that dV (i) ⊂ ∧V (i − 1). It is called minimal if dV ⊂ ∧≥2V . A
Sullivan model of a simply connected space X is a Sullivan algebra (∧V, d) such
that there exists a quasi-isomorphism ϕ : (∧V, d) → APL(X), where APL(X)
denotes the cdga of piecewise linear forms of X [16]. A cdga model of X is a
cdga (A, d) which has the same homotopy type as APL(X).

Definition 4. If f : X → Y is a map between simply connected spaces of
finite type, then there is a cdga map φ : (∧V, d)→ (B, d), called a model of f ,
where (B, d) and (∧V, d) are respective cdga models of X and Y , respectively.
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Definition 5. Let L be an L∞-algebra of finite type. Then L is called an
L∞ model of a topological space X if C∞(L) is a Sullivan model of X. It is
minimal if `1 = 0. In this case π∗(ΩX)⊗Q ∼= L.

In this note, we give another proof of the following result using L∞ models
of function spaces (see [15], Example 3.4).

Theorem 6. The function space map(CPn,CPn+k; in,k) has the rational ho-

motopy type of CP k × S2k+3 × · · · × S2(n+k)+1.

Moreover we study evaluation subgroups of the mapping aut1 CPn → CPn+k
and prove the following result.

Theorem 7. The G-sequence associated with the inclusion

aut1 CPn → map(CPn,CPn+k; in,k)

is not exact.

2. L∞-models of function spaces

Definition 8. Let φ : (∧V, d) → (B, d) be a morphism of cdga’s. A φ-
derivation of degree k is a linear mapping θ : (∧V )n → Bn−k such that
θ(ab) = θ(a)φ(b) + (−1)k|a|φ(a)θ(b). We denote by Der(∧V,B;φ) the Z-graded
vector space of all φ-derivations. The differential on Der(∧V,B;φ) is defined
by δθ = dθ − (−1)kθd.

Define D̃er(∧V,B;φ) as

D̃er(∧V,B, φ)i =

{
Der(∧V,B;φ)i, i > 1,
{θ ∈ Der(∧V,B;φ)1 : δθ = 0}, i = 1.

If ϕ1, . . . , ϕk ∈ D̃er(∧V,B;φ) are φ-derivations of respective degrees n1, . . . , nk,
define

[ϕ1, . . . , ϕk](v)

= (−1)n1+···+nk−1
∑

(
∑

i1,...,ik

εφ(v1 · · · v̂i1 · · · v̂ik · · · vm)ϕ1(vi1) · · ·ϕk(vik)),

where dv =
∑
v1 · · · vm and ε is the corresponding Koszul sign of the permu-

tation

(ϕ1, . . . , ϕk, v1, . . . , vm)→ (v1, . . . , v̂i1 , . . . , v̂ik , . . . , vm, ϕ1, vi1 , . . . , ϕk, vik).

We note that [ϕ1, . . . , ϕk] is of degree n1 + · · ·+nk−1. Now define linear maps

`k of degree k − 2 on s−1D̃er(∧V,B, φ) by

`1(s−1ϕ) = −s−1δϕ, `k(s−1ϕ1, . . . , s
−1ϕk) = (−1)εks−1[ϕ1, . . . , ϕk],

where εk =
∑k−1
i=1 (k − i)|ϕi|.

Proposition 9 (Lemma 3.3,[5]). If φ : (∧V, d) → (B, d) is a Sullivan model
of a mapping f : X → Y between simply connected spaces and V is finite

dimensional, then (s−1D̃er(∧V,B;φ), `k) is an L∞ model of map(X,Y ; f).
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3. Component of the inclusion CPn → CPn+k

Recall that the minimal Sullivan model of CPn is given by (∧(x2, x2n+1), d)
where dx2 = 0, dx2n+1 = xn+1

2 . Our objective is to compute an L∞ model
of the component of the inclusion CPn → CPn+k. For k = 0, one gets
a model of aut1 CPn = map(CPn,CPn; Id) from the differential Lie alge-
bra (L, δ) of derivations of (∧(x2, x2n+1), d), of which H∗(L, δ) is spanned by
{z3, z5, . . . , z2n+1} [7, §3]. Therefore aut1 CPn has the rational homotopy type
of the product S3 × S5 × · · · × S2n+1. This result was also proved by Møller
and Raussen using another method [15, Example 3.4].

Let f : (∧V, d)→ (B, d) be a morphism of differential graded algebras. For
v ∈ V and b ∈ B we denote by (v, b) the unique f -derivation θ such that
θ(v) = b and zero on the remaining generators of ∧V .

From now on we assume that k ≥ 1. A model of the inclusion

in,k : CPn → CPn+k

is given by

ψ : (A, d) = (∧(x2, x2n+2k+1)→ (∧(y2, y2n+1), d) = (B, d),

where ψ(x2) = y2, ψ(x2n+2k+1) = yk2y2n+1. We consider the composition

φ : A = (∧(x2, x2n+2k+1)
ψ→ (∧(y2, y2n+1), d) = B ' (∧(y2)/(yn+1

2 ), 0).

Hence φ(x2) = y2 and φ(x2n+2k+1) = 0. The induced map

(Der(A,B;ψ), δ)→ (Der(A,H∗(B);φ), δ)

is a quasi-isomorphism [1]. In the sequel we compute

D̃er(∧(x2, x2n+2k+1),∧(y2)/(yn+1
2 );φ)

and determine its brackets. As a vector space

D̃er(∧(x2, x2n+2k+1),∧(y2)/(yn+1
2 );φ)

is spanned by

{β2, α2k+2i−1, i = 1, . . . , n+ 1},
where α2k+2i−1 = (x2n+2k+1, y

n−i+1
2 ) and β2 = (x2, 1). Note that |β2| = 2 and

|α2k+2i−1| = 2k + 2i− 1. Computations show that the only non zero brackets
are given by [β2, . . . , β2]︸ ︷︷ ︸

k+i

= α2k+2i−1 for i = 1, . . . , n+ 1.

We deduce the following result (see [15] for a different proof).

Proposition 10. The function space map(CPn,CPn+k; in,k) has a Sullivan
model of the form

(∧(z2, z2k+1, . . . , z2k+2n+1), d),

where dz2 = 0, dz2k+1 = zk+1
2 , . . . , dz2k+2n+1 = zk+n+1

2 .



MAPPING SPACES BETWEEN COMPLEX PROJECTIVE SPACES 263

Proof. An L∞ model (L, `k) of map(CP (n),CP (n+ k); in,k) is spanned by

〈s−1β2, s−1α2k+2i−1, i = 1, . . . , n+ 1〉.

Moreover `j = 0 for j = 1, . . . , k and `k+i(s
−1β2, . . . , s

−1β2) = s−1α2k+2i−1,
for i = 1, . . . , n+ 1. Therefore

C∞(L) = ∧(z2, z2k+1, z2k+3, . . . , z2k+2n+1), d), dz2 = 0, dz2k+2i+1 = zk+i+1
2 ,

where 0 ≤ i ≤ n. �

Theorem 11. The function space map(CPn,CPn+k; in,k) has the rational ho-

motopy type of CP k × S2k+3 × · · · × S2(n+k)+1.

Proof. By the above result, a Sullivan model of map(CPn,CPn+k; in,k) is given
by

(∧(x2, x2k+1, x2k+3, . . . , x2n+2k+1),

where dx2 = 0, dx2i+1 = xi+1
2 , i = k, k+ 1, . . . , k+ n. We consider the relative

Sullivan model

(∧(x2, x2k+1), d)→ (∧(x2, x2k+1)⊗ ∧x2k+3, D),

where

dx2 = 0, dx2k+ = xk+1
2 , Dx2 = dx2, Dx2k+1 = dx2k+1, Dx2k+3 = xk+2

2 .

It is a Sullivan model of the fibration S2k+3 → E
p→ CP k, where p is classified

by a map f : CP k → B aut1 S
2k+3. Using the algebra of derivations on the

minimal Sullivan model of S2k+3 [16], it is easily seen that B aut1 S
2k+3 has

the rational homotopy type of K(Q, 2k + 4) [7, Proposition 2.1].
Moreover equivalence classes

[CP k, K(Q, 2k + 4)]

are in a bijective correspondence with H2k+4(CP k,Q) = {0}. Therefore the
classifying map f is rationally trivial. So we deduce that the fibration is trivial.
Hence the cdga

(A, d) = (∧(x2, x2k+1, x2k+3), d), dx2 = 0, dx2k+1 = xk+1
2 , dx2k+3 = xk+2

2

and

(∧(x2, x2k+1)⊗ ∧z2k+3, d), dx2 = 0, dx2k+1 = xk+1
2 , dz2k+3 = 0

are isomorphic. We deduce that the cdga (A, d) is a Sullivan model of CP k ×
S2k+3. It follows from an induction argument that map(CP k,CPn+k; in,k) has

the rational homotopy type of CP k × S2k+3 × · · · × S2(n+k)+1. �
Recall that a Sullivan algebra (∧V, d) is called formal if there is a quasi-

isomorphism (∧V, d)→ H∗(∧V, d). Spheres and complex projective spaces are
formal. Moreover a product of formal spaces is also formal. We deduce that:

Corollary 12. The function space map(CPn,CPn+k; in,k) is formal.
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4. Evaluation subgroups of the inclusion in,k : CPn → CPn+k

We consider the inclusion in,k : CPn → CPn+k and the corresponding
Sullivan model φ of the previous section given by the composition

φ : A = (∧(x2, x2n+2k+1), d)
ψ // ∧(y2, y2n+1), d) = B

γ

'
// H∗(B).

Forgetting the desuspension, a model of the inclusion (in,k)∗ : aut1 CPn →
map(CPn,CPn+k; in,k) is given by

φ∗ : (Der(B,H∗(B); γ), δ)→ (Der(A,H∗(B);φ), δ).

We now characterize the map φ∗ when k > n.

Theorem 13. If k > n, then the induced map

φ∗ : (Der(B,H∗(B); γ), δ) −→ (Der(A,H∗(B), φ), δ))

is homotopy trivial.

Proof. We note that L = Der(B,H∗(B); γ) is spanned by

{δ2, θ1, θ3, . . . , θ2n+1},

where δ2 = (y2, 1), θ2i+1 = (y2n+1, y
n−i
2 ), i = 0, . . . , n. The differential is given

by δδ2 = (n+ 1)θ1 and zero otherwise. Therefore

π∗(aut1 CPn)⊗Q = H∗(L, δ) = 〈[θ3], . . . , [θ2n+1]〉.
Hence aut1 CPn has the rational homotopy type of S3×S5× · · · ×S2n+1. Let

L′ = (Der(A,H∗(B), φ), δ) = (〈β2, α2k+1, . . . , α2n+2k+1〉, δ).
The mapping φ∗ : L → L′ is defined by φ∗(δ2), φ∗(θ2i+1) = 0 for i < k, and
φ∗(θ2i+1) = α2i+1 for i ≥ k. If k > n, then φ∗(δ2) = β2 and zero otherwise.
Moreover

C∞(s−1L) = (∧(x2, y1, . . . , y2i−1, . . . , y2n+1), d),

where dx2 = 0 and dy2i−1 = xi2. In particular dy1 = x2. In the same way

C∞(s−1L′) = (∧(u2, v2k+1, . . . , v2n+2k+1), d),

where du2 = 0, dv2i+1 = ui+1
2 . Hence

Φ = C∞(φ∗) : C∞(s−1L′)→ C∞(s−1L)

is defined by Φ(u2) = x2 and vanishes on other generators. As C∞(s−1L′) is
quasi-isomorphic to

(∧(w2, w2k+1), d)⊗ (∧(w2k+3, . . . , w2n+2k+1), 0),

where dw2 = 0, dw2k+1 = wk+1
2 and, C∞(s−1L) is quasi-isomorphic to

(∧(z3, . . . , z2n+1), 0),

then induced map

Φ̃ : (∧(w2, w2k+1, w2k+3, . . . , w2n+2k+1), d)→ (∧(z3, . . . , z2n+1), 0)
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between minimal Sullivan models is zero. �

Definition 14. Let X be a topological space. We say α ∈ πn(X) is a Gottlieb
element if the map: f∨1X : Sn∨X → X extends to Sn×X, where f represents
the homotopy class α [9].

Gottlieb elements form a subgroup of π∗(X) which will be denoted by
G∗(X). It comes from the definition that G∗(X) is the image of π∗(ev) :
π∗(aut1X, 1X)→ π∗(X,x0), where ev is the evaluation map at x0. If f : X →
Y , then G∗(Y,X; f) is the image of π∗(ev) where ev : map(X,Y ; f)→ Y is the
evaluation map at the base point.

Let (∧V, d) be the minimal Sullivan model of a simply connected space X.
Define the Gottlieb group of (∧V, d)

Gn(∧V, d) = {[θ] ∈ Hn(Der∧V, δ) : θ(v) = 1, v ∈ V n}.

Hence G∗(∧V, d) ∼= imH∗(ε∗), where ε∗ : Der∧V → Der(∧V,Q; ε) is the post
composition with the augmentation map ε : ∧V → Q. Then Gn(∧V ) ∼=
Gn(XQ), where h : X → XQ is the rationalization [6, Propostion 29.8]. There
are also relative Gottlieb groups Grel∗ (Y,X; f) and a G-sequence

· · · → Greln+1(Y,X; f)→ Gn(X)→ Gn(Y,X; f)→ · · ·

which was introduced by Lee and Woo. The sequence is exact in some cases,
for instance if f has a left homotopy inverse [17]. We follow the description of
rational evaluation homotopy groups as given by Lupton and Smith [12].

Using augmentation maps we obtain the commutative diagram.

Der(B,H∗(B); γ)
φ∗ //

ε∗

��

Der(A,H∗(B);φ)

ε∗

��
Der(B,Q; ε)

φ̂∗ // Der(A,Q; ε)

In the same way we define G∗(A,H
∗(B);φ) as the image of H∗(ε∗) in

H∗(Der(A,Q, ε)).
In order to define relative rational Gottlieb groups, we recall that if φ :

(C, dC) → (C ′, dC′) is a map of chain complexes, the mapping cone of φ,
denoted by Rel(φ), is the complex of which the underlying graded vector space
is sC⊕C ′ and the differential is given by D(sx, y) = (−sdC(x), φ(x)+dC′y) [12]
or [14, p. 46]. Define chain maps J : C ′n → Reln(φ) and P : Reln(φ) → Cn−1
by J(y) = (0, y) and P (sx, y) = x. This yields an exact sequence of chain
complexes

0→ C ′∗
J→ Rel∗(φ)

P→ C∗−1 → 0,

which induces a long exact sequence in homology [14, Proposition 4.3]. We
consider the mapping cone Rel(φ∗) of

φ∗ : (Der(B,H∗(B), γ), δ)→ (Der(A,H∗(B), φ), δ),
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Rel(φ̂∗) the mapping cone of φ̂∗ : Der(B,Q; ε)→ Der(A,Q; ε) and the induced

map (ε∗, ε∗) : Rel(φ∗)→ Rel(φ̂∗). The relative Gottlieb group Grel∗ (A,B;φ) is
the image of H∗(ε∗, ε∗). From the tower

0 // Der(A,H∗(B);φ)
J //

ε∗

��

Rel(φ∗)
P //

(ε∗,ε∗)
��

Der(B,H∗(B); γ)

ε∗

��

// 0

0 // Der(A,Q; ε)
Ĵ // Rel(φ̂∗)

P̂ // Der(B,Q; ε) // 0

one gets a sequence

· · · → Gk+1(B,H∗(B), γ)→ Gk(A,H∗(B), φ∗)→ Grelk (A,H∗(B), φ∗)→ · · ·
called G-sequence of φ.

Proposition 15. The G-sequence associated to the inclusion aut1 CPn →
map(CPn,CPn+k; in,k) is not exact.

Proof. Clearly G∗(B,H
∗(B); γ) = 〈[(y2n+1, 1)]〉 and similarly

G∗(A,H
∗(B), φ) = 〈[(x2, 1)], [(x2n+2k+1, 1)]〉.

We consider first the case where k > n. Then the only non zero differential
on Rel(φ∗) = (sL⊕ L′, d) is given by

d(sδ2, 0) = (−sθ1, 0) + (0, φ∗(δ2)) = (−sθ1, 0) + (0, β2).

Similarly the only non zero differential on

Rel(φ̂∗) = 〈(sy∗2 , 0), (sy∗2n+1, 0), (0, x∗2), (0, x∗2n+2k+1)〉
is d(sy∗2 , 0) = (0, x∗2). We conclude that

Grel∗ (A,H∗(B), φ) = 〈[(sy∗2n+1, 0)], (0, x∗2n+2k+1)〉
∼= sG∗(CPn)⊕G∗(CPn+k).

Hence in the G-sequence reduces to fragments

0→ Grel2n+2(A,H∗(B);φ∗)
∼=→ G2n+1(B,H∗(B); γ)→ 0,

0→ G2n+2k+1(A,H∗(B);φ∗)
∼=→ Grel2n+2k+1(A,H∗(B);φ∗)→ 0

and terminates with

0→ G2(A,H∗(B);φ∗)→ 0.

As G2(A,H∗(B);φ∗) ∼= Q, we conclude that the last fragment of the G-
sequence is not exact.

If k ≤ n, then φ∗(θ2n+1) = α2n+1, hence d(sθ2n+1, 0) = (0, α2n+1), therefore

[(sy∗2n+1, 0)] ∈ H∗(Rel(φ̂∗)) is not in the image of H∗(ε∗, ε∗). The only change
in the G-sequence is the fragment

0→ Grel2n+2(A,H∗(B);φ∗)→ 0,

which in not exact as well, as Grel2n+2(A,H∗(B)) ∼= Q. �
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