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A NOTE ON DEFECTLESS EXTENSIONS OF

HENSELIAN VALUED FIELDS

Azadeh Nikseresht

Abstract. A valued field (K, v) is called defectless if each of its finite
extensions is defectless. In [1], Aghigh and Khanduja posed a question

on defectless extensions of henselian valued fields: “if every simple alge-

braic extension of a henselian valued field (K, v) is defectless, then is it
true that (K, v) is defectless?” They gave an example to show that the

answer is “no” in general. This paper explores when the answer to the

mentioned question is affirmative. More precisely, for a henselian valued
field (K, v) such that each of its simple algebraic extensions is defectless,

we investigate additional conditions under which (K, v) is defectless.

1. Introduction

In this paper, we consider fields equipped with (Krull) valuations. A valued
field will be denoted by (K, v), its value group by vK, its residue field by Kv,
and its valuation ring by OK . For elements a ∈ K, the value is denoted by v(a).
By a valued field extension (L|K, v) we mean a field extension L|K, where v
is a valuation of L and K is equipped with the restriction of v. The extension
(L|K, v) is called immediate if the corresponding value group and residue field
extensions are trivial, i.e., if [vL : vK] = [Lv : Kv] = 1.

We will denote the algebraic closure of a field K by K̃. By the degree of an

element α ∈ K̃, we mean the degree of the extension K(α)|K and denote it by
degα. Throughout this paper, whenever we have a valuation v on a field K,

we will fix an extension of v to K̃, and denote it again by v. We remark that
the valued field (K, v) is called henselian if the valuation v admits a unique

extension to K̃, or equivalently, to any algebraic extension of K. Hence for any
algebraic extension L|K of a henselian valued field (K, v), we consider (L|K, v)
to mean that L is endowed with the unique extension of v from K to L. An
algebraic extension of a henselian valued field is again henselian.
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Take a finite extension (L|K, v) of valued fields. It satisfies the fundamental
inequality [15, Theorem 3.3.4]

n ≥
g∑
i=1

eifi,(1.1)

where n = [L : K] is the degree of the extension, v1, v2, . . . , vg are the distinct
extensions of v from K to L, ei = [viL : vK] are the respective ramification
indices and fi = [Lvi : Kv] are the respective inertia degrees. The extension
is called defectless if equality holds in (1.1). A valued field (K, v) is called
defectless if each of its finite extensions is defectless, and inseparably defectless
if each of its finite purely inseparable extensions is defectless.

If in addition the extension of v from K to L is unique, then the Lemma of
Ostrowski (see [14, §18], [28, Ex. 32.17]) says that

n = pν [vL : vK][Lv : Kv]

for a nonnegative integer ν and p the characteristic exponent of Kv, that is,
p = charKv if it is positive and p = 1 otherwise. The factor d(L|K, v) := pν is
called the defect of the extension (L|K, v). If it is nontrivial, that is, if ν > 0,
then (L|K, v) is called a defect extension. Otherwise, as mentioned already in
the general case, (L|K, v) is called a defectless extension.

The notion of defectlessness plays an important role in several applications;
specially, it is helpful to have equivalent characterizations because it makes the
tight connection between valued fields and their invariants, value groups and
residue fields. So the task of finding workable criteria for a valued field to be
a defectless field is important in valuation theory. Let us first look at how the
question of this note has been raised.

In case of algebraic extension of valued fields, there are some invariants
associated to elements over a valued field (K, v) which play a large role in
the study of extensions of valued fields and irreducible polynomials (see for
example [10, 11, 17, 19]). One of the most important of such invariants is the
invariant δK(θ) referred to as the main invariant of an algebraic element θ over

K. By the main invariant of an element θ ∈ K̃ \K is defined the supremum

(for the sake of supremum, vK̃ may be viewed as a subset of its Dedekind order
completion as defined in [9, Chapter III, Sec. 1, Ex. 15]) of the set M(θ,K)
defined by

M(θ,K) = {v(θ − ξ) | ξ ∈ K̃, deg ξ < deg θ}.
It was first defined for algebraic elements when (K, v) is a complete discrete
rank one valued field [27]. Popescu and Zaharescu proved in [27] the constant
δK(θ) satisfies a Fundamental Principle (Theorem 2.1) which is similar to the
known Krasner’s Lemma [15, Theorem 4.1.7] satisfied by the Krasner constant
ωK(θ) (see the definition in Sec. 2.1).

For a complete discrete rank one valued field (K, v), they also introduced
in [27] the notions of distinguished pairs and complete distinguished chains
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which have recently been useful tools of valuation theory (see for example

[3,4,18]). Recall that a pair (θ, α) of elements of K̃ with deg θ > degα is called a
distinguished pair (more precisely a (K, v)-distinguished pair) if α is an element
of the smallest degree over K such that v(θ − α) = δK(θ). Distinguished pairs
give rise to distinguished chains in a natural manner. A chain θ = θ0, θ1, . . . , θs
of elements of K̃ is called a complete distinguished chain for θ (with respect to
(K, v)) if (θi, θi+1) is a (K, v)-distinguished pair for 0 ≤ i ≤ s− 1 and θs ∈ K.

As mentioned earlier, the paper [27] contained new concepts and important
results which all were satisfied for complete discrete rank one valued fields. In
[1,2], Aghigh and Khanduja generalized some of its results to henselian valued
fields of arbitrary rank. They utilized the concept of “defectlessness” to achieve

most of their results. For example, they characterized those elements θ ∈ K̃\K
for which there exist a distinguished pair and a complete distinguished chain
by using defectless extensions of henselian valued fields as follows:

Theorem 1.1 ([1, Theorem 1.1]). Let (K, v) be a henselian valued field, and

denote again by v the unique extension of v to the algebraic closure K̃ of K.
Then the following two statements are equivalent:

(i) To each α ∈ K̃ \K, there corresponds β ∈ K̃ with deg β < degα such
that δK(α) = v(α− β).

(ii) For each θ ∈ K̃, (K(θ)|K, v) is a defectless extension.

Theorem 1.2 ([2, Theorem 1.2]). Let K, v and K̃ be as in the above theo-

rem. An element θ ∈ K̃ \K has a complete distinguished chain if and only if
(K(θ)|K, v) is defectless.

Theorems 1.1 and 1.2 shown the importance of simple algebraic extensions
with the property of being defectless that in recent years have been useful
tools for the study of algebraic extensions of valued fields and some properties
of polynomials over valued fields (see for example [7, 8, 13, 18, 26]). In this
context, a question arose about the relation between defectless simple algebraic
extensions and finite defectless extensions as follows:

Question 1. For a henselian valued field (K, v), if (K(θ)|K, v) is defectless for

each θ ∈ K̃ \K, then is it true that (K, v) is defectless?

An example [1, Sec. 5] was given to show that the answer to the above
question is “no” in general. In this paper, it is investigated the conditions
under which the answer is affirmative. In fact, we suppose that (K, v) is a
henselian valued field for which every simple algebraic extension is defectless.
We provide additional conditions under which every finite extension of (K, v)
is defectless. It is emphasized that when K is a perfect field, the implication
holds since then every finite extension is simple.

Take (K, v) to be henselian and (K(θ)|K, v) defectless for every θ ∈ K̃ \K;
Theorem 3.1 shows that (K, v) is defectless whenever the Krasner constant
ωK(θ) of θ does not exceed the main invariant δK(θ) for purely inseparable



68 A. NIKSERESHT

elements θ over K; Theorem 3.2 proves the desired result under the additional
assumption that every finite purely wild extension (see the definition in Sec.
2.2) of (K, v) is immediate; replacing this assumption by the one that every
simple purely inseparable extension of (K, v) is immediate, one obtains the
result of Theorem 3.3; finally, in Theorem 3.6 we show that if (K, v) is of prime
characteristic and inseparably defectlee, then (K, v) is defectless.

2. Preliminaries

2.1. Invariants of algebraic elements over valued fields

Let (K, v) be any valued field and θ ∈ K̃ \ K. The Krasner constant of θ
over K is defined as

ωK(θ) = max{v(τ(θ)− σ(θ)) | τ, σ ∈ Gal(K̃|K) and τ(θ) 6= σ(θ)},
with the convention that ωK(θ) = ∞ for every purely inseparable element

θ ∈ K̃ over K. Since all extensions of v from K to K̃ are conjugate, this
definition does not depend on the choice of the particular extension of v. For
the same reason, over a henselain field (K, v) we have that

ωK(θ) = max{v(θ − σ(θ)) | σ ∈ Gal(K̃|K) and θ 6= σ(θ)}.
Another invariant associated with algebraic elements over valued fields is the
main invariant δK(θ) defined in the introduction. If (K, v) is henselian and

θ ∈ K̃ \ K, the main invariant of θ satisfies the Fundamental Principle as
follows:

Theorem 2.1 (Fundamental Principle [20, Theorem 1.1]). Let (K, v) be a

henselian valued field. Let θ, θ1 ∈ K̃ be such that v(θ− θ1) > v(θ−γ) for every

γ ∈ K̃ satisfying deg γ < deg θ. Then

vK(θ) ⊆ vK(θ1), K(θ)v ⊆ K(θ1)v.

It is noted that when every simple algebraic extension of a henselian field
K is defectless, one has the result of Lemma 2.3 about the main invariant
whose proof is on the same lines as that of Theorem 1.1, but for the sake
of completeness, we prove it here. Before this, we need to recall the relation
between immediate and defectless extensions of valued fields.

Lemma 2.2 ([21, Lemma 2.5]). Take an arbitrary immediate extension
(F |K, v) of valued fields and a finite defectless extension (L|K, v). Then the
extension of v from K to F.L is unique, (F.L|F, v) is defectless, and (F.L|L, v)
is immediate. Moreover, [F.L : F ] = [L : K].

Lemma 2.3. Let (K, v) be a henselian valued field and θ ∈ K̃ \ K. If
(K(θ)|K, v) is defectless, then δK(θ) ∈M(θ,K).

Proof. Consider (Kc, vc) as the completion of (K, v). Since the completion
of a henselian field is an immediate extension (see [15, Theorem 1.3.4]) and



DEFECTLESS EXTENSIONS OF HENSELIAN VALUED FIELDS 69

from the assumption that K(θ)|K is defectless, we deduce that [Kc(θ) : Kc] =
[K(θ) : K] by Lemma 2.2. Besides, from this fact that the completion of
a henselian field is again henselian (see [28, Theorem 32.19]) and by using

Corollary 3.10 from [5], we obtain that M(θ,K) has an upper bound in vK̃.

We may consider vK̃ as an ordered subgroup of its Dedekind order completion.
Hence δK(θ) is definable. Now assume, for the sake of obtaining a contradiction,
that δK(θ) 6∈ M(θ,K). It means that M(θ,K) does not have a maximum

element. Since M(θ,K) is a subset of totally ordered group vK̃ and without
last element, it contains a well-ordered cofinal subset (see [16, p. 68]). One may
choose a net {γi}i∈A in M(θ,K) satisfying

(i) {γi}i∈A is cofinal in M(θ,K) and γi < γj for each i < j, i, j ∈ A;

(ii) γi = v(θ− ξi), ξi ∈ K̃ is such that deg ξi < deg θ and whenever β ∈ K̃
has degree less than deg ξi, then v(θ − β) < γi.

It is noted that if necessary on replacing {γi}i∈A by a subnet, one can suppose
that all ξi are of the same degree (say r) over K. With the assumptions above,

v(ξi − ξj) ≥ γi and according to (ii), for every β ∈ K̃ with deg β < r, one has
v(θ−β) < γi = v(θ− ξi), hence v(ξi−β) < v(ξi− ξj). This inequality together
with Theorem 2.1 imply that for i < j, i, j ∈ A,

vK ⊆ vK(ξi) ⊆ vK(ξj),(2.1)

Kv ⊆ K(ξi)v ⊆ K(ξj)v.(2.2)

As all the extensions K(ξi)|K are of the same degree r < deg θ, it is clear from
(2.1) and (2.2) that there exists j0 ∈ A such that

vK(ξj) = vK(ξj0), K(ξj)v = K(ξj0)v for j ≥ j0.
Therefore, ⋃

i∈A
vK(ξi) = vK(ξj0),

⋃
i∈A

K(ξi)v = K(ξj0)v.(2.3)

We now claim that

vK(θ) =
⋃
i∈A

vK(ξi), K(θ)v =
⋃
i∈A

K(ξi)v.(2.4)

To prove the claim, let f(x) ∈ K[x] be any polynomial of degree less than
deg θ, and β be a root of f(x). Since v(θ − β) ∈M(θ,K) and the net {γi}i∈A
is cofinal in M(θ,K), there exists l ∈ A such that v(θ − β) < γl. Choosing l
sufficiently large, we may set

v(θ − βk) < γl(2.5)

for each root βk of f(x). Setting f(x) = c
∏

(x− βk) where c ∈ K, it implies
that

f(θ)

f(ξl)
=
∏
k

(
θ − βk
ξl − βk

)
=
∏
k

(
1 +

θ − ξl
ξl − βk

)
.(2.6)
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Using the strong triangle law, the inequality of (2.5) implies that v(ξl − βk) =

v(θ−βk). Consequently (2.6) shows that v
(
f(θ)
f(ξl)

− 1
)
> 0, namely there exists

l ∈ A such that v(f(θ)− f(ξl)) > v(f(ξl)), which proves the claim.
Finally since the extension K(θ)|K is of degree > r, (2.3) and (2.4) immedi-

ately imply that K(θ)|K is not defectless, giving the desired contradiction. �

2.2. Ramificarion theory of valued fields

For a field K, we denote by Ksep the separable closure of K. If K is of
characteristic p > 0, we denote by K1/p∞ the perfect hull of K. Further, we
set Kp = {ap | a ∈ K} and K1/p = {a1/p | a ∈ K}.

Let us now mention some notations and results of ramification theory (see
[14, §19-22] or [24, Chapter 7]). In ramification theory, some of subgroups of

Gal(K̃|K) and their corresponding fixed fields are of interest. In this regard,
we recall the concept of ramification fields.

Take a valued field (K, v). The fixed field of the closed subgroup

Gr = {σ ∈ Gal(Ksep|K) | v(σ(a)− a) > v(a) for all a ∈ OKsep \ {0}}

of Gal(Ksep|K) is called the absolute ramification field of (K, v) and is denoted
by (K, v)r or Kr if, as here, v is fixed.

Let (K, v) be henselian. The extension Kr|K is defectless (see [14, §20]). For
henselian valued fields Matthias Pank proved the existence of field complements

of Kr in K̃ which was published in [25]. Before recalling it, we need the
notion of purely wild extensions. If (K, v) is a henselian valued field with
charKv = p > 0, an algebraic extension (L|K, v) is called purely wild if vL/vK
is a p-group and Lv|Kv is a purely inseparable extension.

Theorem 2.4 ([25]). Let (K, v) be a henselian field with residue characteristic
p > 0. Then: (1) there exist field complements Ls of Kr in Ksep over K, i.e.,
Kr · Ls = Ksep and Ls is linearly disjoint from Kr over K. (2) the perfect

hull L = Ls
1/p∞ is a field complement of Kr over K, i.e., Kr · L = K̃ and

L is linearly disjoint from Kr over K, and (3) the valued fields (Ls, v) can be
characterized as the maximal separable purely wild extensions of (K, v), and
the valued fields (L, v) are the maximal purely wild extensions of (K, v).

3. Investigating defectlessness

As mentioned in the introduction, we discuss on this problem that when
being defectless of every simple algebraic extension of a henselian valued field
(K, v) implies that (K, v) is defectless (Question 1). We discuss some cases as
follows:
Case I. If the residue field of (K, v) is of zero characteristic, then (K, v) is
defectless (see [14, Corollary 20.23]).
Case II. If K is a perfect field; specially of zero characteristic, consider (K ′, v)
as a finite extension of (K, v). Since K ′|K is a simple extension, the property
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of defectlessness of simple algebraic extensions of K implies that (K ′|K, v) is
defectless.
Case III. In the last case, assuming the henselian valued field (K, v) has
equal prime characteristic, i.e., charK = charKv = p > 0, however some of the
following results and proofs remain valued even in the case of zero characteristic.

In the following theorem, we impose the relation δK(θ) ≥ ωK(θ) on the
invariants of purely inseparable elements θ to obtain the desired result.

Theorem 3.1. Suppose (K, v) is a henselian valued field for which every simple
algebraic extension is defectless. If for every purely inseparable element θ ∈
K̃ \K, the Krasner constant ωK(θ) does not exceed its main invariant δK(θ),
then (K, v) is defectless.

Proof. If θ ∈ K̃ \ K is purely inseparable over K, then ωK(θ) = ∞ by con-
vention. On the other hand, since K(θ)|K is defectless, the main invariant
δK(θ) is definable and δK(θ) ∈ M(θ,K) by Lemma 2.3. In fact, there cor-

responds ξ ∈ K̃ with deg ξ < deg θ such that v(θ − ξ) = δK(θ). Therefore,
δK(θ) ≥ ωK(θ) implies δK(θ) = ∞. This means that θ = ξ, which is impossi-
ble because deg ξ < deg θ. So there is no element θ that generates a nontrivial
purely inseparable extension of K; in other words, K is perfect. Hence by what
explained in Case II, (K, v) is defectless. �

Take a henselian valued field (K, v) of residue characteristic p > 0. We see
that every immediate algebraic extension of K is purely wild, but the converse
does not hold in general. For example, if vK is p-divisible and Kv is perfect,
then every purely wild extension of K is immediate (see [25, Lemma 5.2] or
[23] for other characterizations of purely wild extensions). We impose this
restriction on finite extensions of (K, v) and show that:

Theorem 3.2. Let (K, v) be a henselian valued field for which every simple
algebraic extension is defectless. If every finite purely wild extension of (K, v)
is immediate, then (K, v) is defectless.

Proof. Let (K ′, v) be any finite extension of (K, v). It should be shown that
K ′|K is defectless. According to Theorem 2.4 (or see [24, Chap. 13, Sec. 8]), K ′

is contained in a composition field (say) L′.K ′r where K ′r is a finite defectless
extension of K and L′ is a finite purely wild extension of K. By virtue of the
hypothesis, the extension L′|K is immediate; we show that it is trivial. Set

L′ = K(θ1, . . . , θn) for some θ1, . . . , θn ∈ K̃. Obviously the extension K(θ1)|K
is immediate (see [24, Lemma 8.1]) and defectless by the assumption; hence it
is trivial (see [24, Corollary 11.7]). This implies that θ1 ∈ K. By the same
argument, we have θ2, . . . , θn ∈ K; getting L′ = K.

Now we have K ⊆ K ′ ⊆ K ′r. Since K ′r/K is defectless and by the fact that
every subextension of a defectless extension is again defectless, one sees that
(K ′|K, v) is a defectless extension, proving the theorem. �
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One knows every purely inseparable algebraic extension of a henselian field is
purely wild (see [23, Corollary 2.16]). Hence, replacing the assumption “every
finite purely wild extension of (K, v) is immediate” in Theorem 3.2 by the
condition “every finite (or even every simple) purely inseparable extension of
(K, v) is immediate” leads to obtain the following result, which covers a wider
range of fields and has a straightforward proof.

Theorem 3.3. Suppose (K, v) is a henselian valued field such that each of
its simple algebraic extensions is defectless. If every simple purely inseparable
extension of (K, v) is immediate, then (K, v) is defectless.

Proof. We want to show that K is perfect; hence we are in Case II, and (K, v)
is defectless. Take a purely inseparable element θ over K. By the assumptions
of the theorem, the simple extension (K(θ)|K, v) is defectless and immediate;
hence it is trivial. This implies that θ ∈ K, and so K is perfect. �

In order to give a more general result (Theorem 3.6), the previous theorem
motivated us to apply the notion of inseparably defectless valued fields which
are used in studying some classes of valued fields (for example, extermal fields),
giving examples and making characterizations (see [6, 12,21–24]).

We first give the following characterization of inseparably defectless fields
presented in Lemma 3.1 of [21].

Lemma 3.4. Let (K, v) be a valued field with charK = p > 0. (K, v) is
inseparably defectless if and only if (K1/p∞ |K, v) is defectless, this holds if and
only if (K1/p|K, v) is defectless, and equivalently if and only if (K|Kp, v) is
defectless.

The following lemma shows that the property of being defetless is preserved
under finite extensions.

Lemma 3.5 ([21, Lemma 4.15]). Every finite extension of an inseparably de-
fectless field of characteristic p > 0 is again an inseparably defectless field.

Theorem 3.6. Let (K, v) be a henselian valued field with charK = p > 0.
Assume that every simple algebraic extension of (K, v) and also (K|Kp, v) are
defetless. Then (K, v) is defectless.

Proof. Take an arbitrary finite extension (K ′, v) of (K, v). Set F to be the
relative separable closure of K in K ′. Then F |K is separable and K ′|F is
purely inseparable. Since F |K is simple, the extension (F |K, v) is defectless
by the assumption. On the other hand, by Lemmas 3.4 and 3.5, (F, v) is
inseparably defectless. This implies that (K ′|F, v) is defectless. Now by the
transitivity of defectless property (see [24, Chap. 11, Sec. 2]), the extension
(K ′|K, v) is defectless. �
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