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A NOTE ON MODULAR EQUATIONS OF SIGNATURE 2

AND THEIR EVALUATIONS

Belakavadi Radhakrishna Srivatsa Kumar, Arjun Kumar Rathie,
Nagara Vinayaka Udupa Sayinath, and Shruthi

Abstract. In his notebooks, Srinivasa Ramanujan recorded several mod-
ular equations that are useful in the computation of class invariants, con-

tinued fractions and the values of theta functions. In this paper, we prove

some new modular equations of signature 2 by well-known and useful
theta function identities of composite degrees. Further, as an application

of this, we evaluate theta function identities.

1. Introduction

Throughout this paper, we use the standard q-series notation fk and is
defined as

fk := (qk; qk)∞ =
∞∏
m=1

(1− qmk), |q| < 1.

Ramanujan [7] has defined theta function [2, p. 36] as follows:

ϕ(q) := f(q, q) = 1 +
∞∑
i=1

qi
2

=
(−q;−q)∞
(q;−q)∞

,

ψ(q) := f(q, q3) =

∞∑
i=0

qi(i+1)/2 =
(q2; q2)∞
(q; q2)∞

,

f(−q) := f(−q,−q2) =

∞∑
i=0

(−1)iqi(3i−1)/2 +

∞∑
i=1

(−1)iqi(3i+1)/2 = (q; q)∞.

For convenience, we write f(−qn) by fn. Ramanujan [7] begins his study on
modular equations in Chapter 15 by defining

F (x) := (1− x)−1/2 =
∞∑
n=0

( 1
2 )n

n!
xn = 1F0

(
1

2
;x

)
, |x| < 1.
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He then states a trivial identity

(1.1) F

(
2t

1 + t

)
= (1 + t)F (t2).

After setting α = 2t/(1 + t) and β = 2t2 in (1.1), Ramanujan offers a modular
equation of degree two,

β(2− α)2 = α2,

and the factor (1 + t) in (1.1) is called the multiplier. Further Ramanujan
developed theory of elliptic functions in which q is replaced by one or the other
functions for n = 3, 4 and 6.

qn := qn(x) := exp

(
−π csc(π/n)

F (1− x)

F (x)

)
0 < x < 1,

where F (x) = 2F1( 1
r ,

r−1
r ; 1;x) and 2F1 represent the classical hypergeometric

function [6] defined as follows:

2F1(α, β; γ; z) =

∞∑
m=0

(α)m(β)m
(γ)mm!

zm, |z| < 1,

where

(α)m = α(α+ 1) · · · (α+m− 1).

These theories are now known as the theory of signature n, where n = 3, 4
and 6. For n = 3 and 4, the theories are known as cubic and quartic theories,
respectively. Let us now take up a modular equation as given in the literature.
An nth degree modular equation [2] in the theory of signature 2, is an equation
that is induced by

n
2F1

(
1

2
,

1

2
; 1; 1− α

)
2F1

(
1

2
,

1

2
; 1;α

) =
2F1

(
1

2
,

1

2
; 1; 1− β

)
2F1

(
1

2
,

1

2
; 1;β

)
relating α and β. Then, always we say that β is of degree n over α and call
the ratio

m :=
z1
zn
,

the multiplier, where z1 = 2F1

(
1
2 ,

1
2 ; 1;α

)
and zn = 2F1

(
1
2 ,

1
2 ; 1;β

)
.

Ramanujan [7, Vol II] in his notebooks documented some cubic modular
equations. Further these are proved by B. C. Berndt [3], through parameter-
ization and modular forms. Also N. D. Baruah and N. Saikia [1], M. S. M.
Naika and S. Chandankumar [5], K. R. Vasuki and C. Chamaraju [8] also ob-
tained some interesting results on modular equations of various degrees. We
classify this paper as follows. In Section 2 we list some P -Q type theta function
identities which will be utilized to demonstrate our main results. Further, in
Section 3, we prove composite degrees of modular equations of various degrees
and in Section 4, we evaluate theta function identities of two parameters.
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2. Results required

In this section, we shall mention some known results in the form of lemmas
that will be required in our present investigation and are included so that the
paper may be self contained.

Lemma 2.1. Let

An :=
fn

qn/24f2n
.(2.1)

Then, the following results hold true.

(A1A3)
3

+
8

(A1A3)
3 =

(
A3

A1

)6

−
(
A1

A3

)6

(2.2)

and

(A1A5)
2

+
4

(A1A5)
2 =

(
A5

A1

)3

−
(
A1

A5

)3

.(2.3)

For the proof of the above results, one can refer [3, 4, 10].

Lemma 2.2. Let

Bn :=
ϕ(−qn)

ϕ(−q2n)
.(2.4)

Then, the following results hold true.(
B1

B3

)4

+

(
B3

B1

)4

+ 6 = 4

[
(B1B3)

2
+

1

(B1B3)
2

]
(2.5)

and (
B1

B5

)3

−
(
B5

B1

)3

+ 5

(
B1

B5
− B5

B1

)
= 4

[
(B1B5)

2 − 1

(B1B5)
2

]
.(2.6)

For the proof of the above results, one can refer [1, 9].

Lemma 2.3. Let

Cn :=
ψ(−qn)

qn/8ψ(−q2n)
.(2.7)

Then, the following result holds true.

C1C3 −
4

C1C3
=

(
C3

C1

)2

−
(
C1

C3

)2

.(2.8)

For the proof of the above result, one can refer [4].
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3. Main results

In this section, we shall establish five interesting theorems in the form of
P -Q identities in the following theorems.

Theorem 3.1. Let

P := q1/12
f1f6
f2f3

and Q := q1/4
f3f18
f6f9

.

Then the following result holds true.

(PQ)6 +
1

(PQ)6
− 10

(
(PQ)3 +

1

(PQ)3

)
−
(

(PQ)3 +
1

(PQ)3
− 1

)((
P

Q

)6

+

(
Q

P

)6
)

+ 20 = 0.

Proof. From (2.1) and together with the definition of P and Q, we have

P =
A1

A3
and Q =

A3

A9
.(3.1)

Also from (2.2) and (3.1), we find that

P 3A6
3

2
√

2
+

2
√

2

P 3A6
3

=
1

2
√

2

{
1

P 6
− P 6

}
.

On solving this for P 3A6
3/2
√

2, we obtain

P 3A6
3

2
√

2
=
K1 ±

√
K2

1 − 4

2
,(3.2)

where

K1 =
1

2
√

2

{
1

P 6
− P 6

}
.

Therefore the identity (3.2) implies that

2
√

2

P 3A6
3

=
K1 ∓

√
K2

1 − 4

2
.(3.3)

In the similar manner, we deduce that

Q3A9

2
√

2
=
K2 ±

√
K2

2 − 4

2
(3.4)

and

2
√

2

Q3A9
=
K2 ∓

√
K2

2 − 4

2
,(3.5)

where

K2 =
1

2
√

2

{
1

Q6
−Q6

}
.
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Multiplying (3.2) and (3.5) and employing (3.1) and after a little simplification,
we obtain

(PQ)3 =
1

4

{
K1K2 ±K2

√
K2

1 − 4∓K1

√
K2

2 − 4−
√
K2

1 − 4
√
K2

2 − 4

}
.(3.6)

Similarly, multiplying (3.3) and (3.4) and employing (3.1), we obtain

1

(PQ)3
=

1

4

{
K1K2 ∓K2

√
K2

1 − 4±K1

√
K2

2 − 4−
√
K2

1 − 4
√
K2

2 − 4

}
.(3.7)

Adding (3.6) and (3.7) and then simplifying, we get

2

(
(PQ)3 +

1

(PQ)3

)
−K1K2 = −

√
K2

1 − 4
√
K2

2 − 4.

Squaring on both sides and then simplifying, we obtain

(PQ)6 +
1

(PQ)6
−K1K2

(
(PQ)3 +

1

(PQ)3

)
+K2

1 +K2
2 − 2 = 0.

Finally, substituting the values of K1 and K2 in the above identity and then
simplifying, we obtain(

P 18Q6 − P 15Q15 − P 15Q3 + 10P 12Q12 + P 12 − 20P 9Q9 + P 6Q18

+10P 6Q6 − P 3Q15 − P 3Q3 +Q12
)

(1 + PQ)2(1− PQ+ P 2Q2)2 = 0.

Since PQ 6= −1 and can not be imaginary, we have

P 18Q6 − P 15Q15 − P 15Q3 + 10P 12Q12 + P 12 − 20P 9Q9

+ P 6Q18 + 10P 6Q6 − P 3Q15 − P 3Q3 +Q12 = 0.

Now on dividing throughout by (PQ)9, we obtain the required result. This
theorem was also proved in [8, Theorem 2.3]. �

Theorem 3.2. Let

P := q1/6
f1f10
f2f5

and Q := q5/6
f5f50
f10f25

.

Then the following result holds true.

(PQ)5 +
1

(PQ)5
− 4

(
(PQ)4 +

1

(PQ)4

)
+

(
PQ+

1

PQ

)
−
(

(PQ)3 +
1

(PQ)3

)
×

((
P

Q

)3

+

(
Q

P

)3
)
−
(

(PQ)2 +
1

(PQ)2

)((
P

Q

)3

+

(
Q

P

)3
)

+ 12 = 0.

Proof. From (2.1) and the definition of P and Q, we have

P =
A1

A5
and Q =

A5

A25
.(3.8)

Also, from (2.3) and (3.8), we find that

P 2A4
5

2
+

2

P 2A4
5

=
1

2

(
1

P 3
− P 3

)
.
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On solving this for P 2A4
5/2, we obtain

P 2A4
5

2
=
K1 ±

√
K2

1 − 4

2
,(3.9)

where

K1 =
1

2

(
1

P 3
− P 3

)
.

Therefore the identity (3.9) implies that

2

P 2A4
5

=
K1 ∓

√
K2

1 − 4

2
.(3.10)

Proceeding on similar lines, it is not difficult to see that

Q2A4
25

2
=
K2 ±

√
K2

2 − 4

2
(3.11)

and

2

Q2A4
25

=
K2 ∓

√
K2

2 − 4

2
,(3.12)

where

K2 =
1

2

(
1

Q3
−Q3

)
.

Multiplying (3.9) and (3.12) and employing (3.8), we obtain

(PQ)2 = K1K2 ±K2

√
K2

1 − 4∓K1

√
K2

2 − 4−
√
K2

1 − 4
√
K2

2 − 4.(3.13)

Multiplying (3.10) and (3.11) and then employing (3.8), we obtain

1

(PQ)2
= K1K2 ∓K2

√
K2

1 − 4±K1

√
K2

2 − 4−
√
K2

1 − 4
√
K2

2 − 4.(3.14)

Adding (3.13) and (3.14) and then simplifying, we obtain

(PQ)2 +
1

(PQ)2
− 2K1K2 = −2

√
K2

1 − 4
√
K2

2 − 4.

Squaring on both sides and then simplifying, we obtain

(PQ)4 +
1

(PQ)4
− 4K1K2

(
(PQ)2 +

1

(PQ)2

)
+ 16K2

1 + 16K2
2 − 62 = 0.

Finally, substituting the values of K1 and K2 in the above identity and then
simplifying, we obtain the required result. �

Theorem 3.3. If

P :=
ϕ(−q)ϕ(−q6)

ϕ(−q2)ϕ(−q3)
and Q :=

ϕ(−q3)ϕ(−q18)

ϕ(−q6)ϕ(−q9)
,
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then the following result holds true.(
(PQ)6 +

1

(PQ)6

)
− 16

(
(PQ)4 +

1

(PQ)4

)
+ 37

(
(PQ)2 +

1

(PQ)2

)
−

((
P

Q

)4

+

(
Q

P

)4
)(

(PQ)4 +
1

(PQ)4
+ (PQ)2 +

1

(PQ)2

)

−12

((
P

Q

)2

+

(
Q

P

)2
)(

1

2

(
(PQ)4 +

1

(PQ)4

)
+ (PQ)2 +

1

(PQ)2
− 1

)
− 44 = 0.

Proof. From (2.4) and the definition of P and Q, we can write

P =
B1

B3
and Q =

B3

B9
.(3.15)

Also from (2.6) and (3.15), we find that

P 2B4
3 +

1

P 2B4
3

=
1

4

(
P 4 +

1

P 4
+ 6

)
.

On solving this for P 2B4
3 , we obtain

P 2B4
3 =

K1 ±
√
K2

1 − 4

2
,(3.16)

where

K1 =
1

4

(
P 4 +

1

P 4
+ 6

)
.

Therefore the identity (3.16) implies that

1

P 2B4
3

=
K1 ∓

√
K2

1 − 4

2
.(3.17)

In the similar manner, we deduce that

Q2B4
9 =

K2 ±
√
K2

2 − 4

2
(3.18)

and

1

Q2B4
9

=
K2 ∓

√
K2

2 − 4

2
,(3.19)

where

K2 =
1

4

(
Q4 +

1

Q4
+ 6

)
.

Multiplying (3.16) and (3.19) and employing (3.15), we obtain

4(PQ)2 = K1K2 ±K2

√
K2

1 − 4∓K1

√
K2

2 − 4−
√
K2

1 − 4
√
K2

2 − 4.(3.20)

Multiplying (3.17) and (3.18) and then employing (3.15), we obtain

4

(PQ)2
= K1K2 ∓K2

√
K2

1 − 4±K1

√
K2

2 − 4−
√
K2

1 − 4
√
K2

2 − 4.(3.21)
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Adding (3.20) and (3.21) and then simplifying, we deduce

2

(
(PQ)2 +

1

(PQ)2

)
−K1K2 = −

√
K2

1 − 4
√
K2

2 − 4.

Squaring on both sides and then simplifying, we obtain(
(PQ)2 +

1

(PQ)2

)2

−K1K2

(
(PQ)2 +

1

(PQ)2

)
+K2

1 +K2
2 − 4 = 0.

Finally, substituting the values of K1 and K2 in the above identity and then
simplifying, we obtain the result. �

Theorem 3.4. Let

P :=
ϕ(−q)ϕ(−q10)

ϕ(−q2)ϕ(−q5)
and Q :=

ϕ(−q5)ϕ(−q50)

ϕ(−q10)ϕ(−q25)
.

Then the following result holds true.(
(PQ)5 +

1

(PQ)5

)
− 16

(
(PQ)4 +

1

(PQ)4

)
+ 25

(
(PQ)3 +

1

(PQ)3

)
+26

(
PQ+

1

PQ

)
+

(
(PQ)3 +

1

(PQ)3

)((
P

Q

)3

+

(
Q

P

)3
)

+10

(
(PQ)2 +

1

(PQ)2

)((
P

Q

)2

+

(
Q

P

)2
)
−
(

(PQ)2 +
1

(PQ)2

)((
P

Q

)3

+

(
Q

P

)3
)

+15

(
PQ+

1

PQ

)(
P

Q
+
Q

P

)
+ 10

(
P

Q
+
Q

P

)
−5

(
(PQ)3 +

1

(PQ)3
+ PQ+

1

PQ

)((
P

Q

)2

+

(
Q

P

)2
)

−25

(
(PQ)2 +

1

(PQ)2

)(
P

Q
+
Q

P

)
+ 5

(
(PQ)4 +

1

(PQ)4

)(
P

Q
+
Q

P

)
− 72 = 0.

Proof. From (2.4) and the definition of P and Q, we can write P and Q as

P =
B1

B5
and Q =

B5

B25
.(3.22)

Also from (2.4) and (3.22), we find that

P 2B4
5 −

1

P 2B4
5

=
1

4

(
t3 + 8t

)
,

where

t = P − 1

P
.

On solving this for P 2B4
5 , we obtain

P 2B4
5 =

K1 ±
√
K2

1 + 4

2
,(3.23)
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where

K1 =
1

4

(
t3 + 8t

)
.

The identity (3.23) implies that

1

P 2B4
5

=
K1 ∓

√
K2

1 + 4

2
.(3.24)

In the similar manner, we deduce that

Q2B4
25 =

K2 ±
√
K2

2 + 4

2
(3.25)

and

1

Q2B4
25

=
K2 ∓

√
K2

2 + 4

2
,(3.26)

where

K2 =
1

4

(
s3 + 8s

)
and s = Q− 1

Q
.

Multiplying (3.23) and (3.26) and employing (3.22), we obtain

4(PQ)2 = K1K2 ±K2

√
K2

1 + 4∓K1

√
K2

2 + 4−
√
K2

1 + 4
√
K2

2 + 4.(3.27)

Multiplying (3.24) and (3.25) and then employing (3.22), we obtain

4

(PQ)2
= K1K2 ∓K2

√
K2

1 + 4±K1

√
K2

2 + 4−
√
K2

1 + 4
√
K2

2 + 4.(3.28)

Adding (3.27) and (3.28) and then simplifying, we deduce

2

(
(PQ)2 +

1

(PQ)2

)
−K1K2 = −

√
K2

1 + 4
√
K2

2 + 4.

Squaring on both sides and then simplifying, we obtain(
(PQ)2 +

1

(PQ)2

)2

−K1K2

(
(PQ)2 +

1

(PQ)2

)
= K2

1 +K2
2 + 4.

Finally, substituting the values of K1 and K2 in the above identity and then
simplifying, we obtain Theorem 3.4. �

Theorem 3.5. If

P := q1/4
ψ(q)ψ(q6)

ψ(q2)ψ(q3)
and Q := q3/4

ψ(q3)ψ(q18)

ψ(q6)ψ(q9)
,

then the following result holds true.

(PQ)3 +
1

(PQ)3
−
(

(PQ)2 +
1

(PQ)2

)
+

(
PQ+

1

PQ

)
+

(
4(PQ)2 +

4

(PQ)2
−
(
PQ+

1

PQ

))((
P

Q

)2

+

(
Q

P

)2
)

+ 46 = 0.
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Proof. From (2.7) and the definition of P and Q, we have

P =
C1

C3
and Q =

C3

C9
.(3.29)

Also, from (2.8) and (3.29), we find that

PC2
3

2
− 2

PC2
3

=
1

2

(
1

P 2
− P 2

)
.

On solving this for PC2
3/2, we obtain

PC2
3 = K1 ±

√
K2

1 + 4,(3.30)

where

K1 =
1

2

(
1

P 2
− P 2

)
.

Therefore the identity (3.30) implies that

1

PC2
3

= K1 ∓
√
K2

1 + 4.(3.31)

In the similar manner, we deduce that

QC2
9 = K2 ±

√
K2

2 + 4(3.32)

and
1

QC2
9

= K2 ∓
√
K2

2 + 4,(3.33)

where

K2 =
1

2

(
1

Q2
−Q2

)
.

Multiplying (3.30) and (3.33) and employing (3.29), we obtain

PQ = K1K2 ±K2

√
K2

1 + 4∓K1

√
K2

2 + 4−
√
K2

1 + 4
√
K2

2 + 4.(3.34)

Multiplying (3.31) and (3.32) and then employing (3.29), we obtain

1

PQ
= K1K2 ∓K2

√
K2

1 + 4±K1

√
K2

2 + 4−
√
K2

1 + 4
√
K2

2 + 4.(3.35)

Adding (3.34) and (3.35) and then simplifying, we obtain

PQ+
1

PQ
− 2K1K2 = −2

√
K2

1 + 4
√
K2

2 + 4.

Squaring on both sides and then simplifying, we obtain

(PQ)2 +
1

(PQ)2
− 4K1K2

(
PQ+

1

PQ

)
− 16K2

1 − 16K2
2 − 62 = 0.

Finally, substituting the values of K1 and K2 in the above identity and then
simplifying, we complete the proof. �



MODULAR EQUATIONS OF SIGNATURE 2 41

4. Evaluations of rk,n

Lemma 4.1. For all positive real numbers k and n, define rk,n by

rk,n :=
f1

k1/4q(k−1)/24fk
,

where q = e−2π
√
n/k. Then the following results hold true.

(i) rk,n = 1 (ii) rk,1/n = r−1k,n (iii) rk,n = rn,k.

For the proof one can refer [10].

Theorem 4.2. If rk,n is as defined as in Lemma 4.1, then the following result
holds true.(

r2,n
r2,81n

)6

+

(
r2,81n
r2,n

)6

− 10

[(
r2,n
r2,81n

)3

+

(
r2,81n
r2,n

)3
]

+ 20

=

(r2,nr2,81n
r22,9n

)6

+

(
r22,9n

r2,nr2,81n

)6
[( r2,n

r2,81n

)3

+

(
r2,81n
r2,n

)3

− 1

]
.

Proof. The proof follows directly from Theorem 3.1 with P =
r2,n
r2,9n

and Q =
r2,9n
r2,81n

. �

Theorem 4.3 ([10]). If rk,n is as defined as in Lemma 4.1, then the following
result holds true.

r2,1/9 =
6

√
5− 2

√
6 = r−12,9.

Proof. In order to prove the result asserted in Theorem 4.3, if we set n = 1/9
in Theorem 4.2 and upon using Lemma 4.1 we find that(

r2,1/9
)12

+
1(

r2,1/9
)12 − 12

(
(r2,1/9)6 +

1

(r2,1/9)6

)
+ 22 = 0.

On solving, we obtain

r62,1/9 +
1

r62,1/9
= 10, 2.

Since rk,n is increasing in n, we choose

r62,1/9 +
1

r62,1/9
= 10.

Therefore on solving, we get

r62,1/9 =

√
5± 2

√
6.

Since 0 < r2,1/9 < 1, we choose r62,1/9 =
√

5− 2
√

6 and it completes the

proof. �
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Theorem 4.4. If rk,n is as defined in Lemma 4.1, then the following result
holds true.(

r2,n
r2,625n

)5

+

(
r2,625n
r2,n

)5

−4

((
r2,n
r2,625n

)4

+

(
r2,625n
r2,n

)4
)

+

(
r2,n
r2,625n

+
r2,625n
r2,n

)

−

((
r2,n
r2,625n

)3

+

(
r2,625n
r2,n

)3
)(r2,nr2,625n

r22,25n

)3

+

(
r22,25n

r2,nr2,625n

)3


−

((
r2,n
r2,625n

)2

+

(
r2,625n
r2,n

)2
)(r2,nr2,625n

r22,25n

)3

+

(
r22,25n

r2,nr2,625n

)3
+12 = 0.

Proof. The proof follows directly from Theorem 3.2 with P =
r2,n
r2,25n

and Q =
r2,25n
r2,625n

. �

Theorem 4.5. We have

r2,25 =

√√√√a2 + 4a+ 25 +
√
a4 + 30a2 + 200a+ 5(357 + 48

√
6)

6a
= r−12,1/25,

where a =
(
145 + 30

√
6
)1/6

.

Proof. Upon setting n = 1/25 in Theorem 4.4 and upon using Lemma 4.1 we
find that

1

(r2,25)
10 + (r2,25)

10 − 4

(
1

(r2,25)
8 + (r2,25)

8

)
− 2

(
1

(r2,25)
6 + (r2,25)

6

)

− 2

(
1

(r2,25)
4 + (r2,25)

4

)
+

(
1

(r2,25)
2 + (r2,25)

2

)
+

1

r2,25
+ r2,25 + 12 = 0.

On letting (r2,25)
2

+ (r2,25)
−2

= t, we obtain

t5 − 4t4 − 7t3 + 14t2 + 12t+ 8 = 0.

On solving the above equation, we obtain

t = 2,−2,
1

3

(145 + 30
√

6
)1/3

+
25(

145 + 30
√

6
)1/3 + 4


and the remaining two roots are imaginary. Since r2,n > 1, we choose

(r2,25)
2

+
1

(r2,25)
2 =

1

3

(145 + 30
√

6
)1/3

+
25(

145 + 30
√

6
)1/3 + 4

 .

On solving the above for r2,25, we obtain the required result. �
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