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NEW GENERALIZATION OF THE WRIGHT SERIES IN

TWO VARIABLES AND ITS PROPERTIES

Abdelmajid Belafhal, Salma Chib, and Talha Usman

Abstract. The main aim of this paper is to introduce a new generaliza-

tion of the Wright series in two variables, which is expressed in terms of
Hermite polynomials. The properties of the freshly defined function in-

volving its auxiliary functions and the integral representations are estab-
lished. Furthermore, a Gauss-Hermite quadrature and Gaussian quad-

rature formulas have been established to evaluate some integral repre-

sentations of our main results and compare them with our theoretical
evaluations using graphical simulations.

1. Introduction

Over the past decades, the special functions have received a particular attention
from the mathematical physics researchers for its significance in many applica-
tions like engineering [2,3], optics communications [17,26], creation of new laser
beams [6, 12, 36], among many others. Some extensions of these functions as
Gamma, beta, poly-Bernoulli numbers, hypergeometric, Wright, Wright-Bessel
and Fox-Wright functions have been developed [1, 4, 7–11,13,18,23,27,32,34].

In the thirties, Wright investigated, in the partitions theory, a convergent
series representation named the Wright function [40–43]. By working on the
time-fractional diffusion-wave equation, Mainardi introduced in his analysis two
auxiliary functions of the Wright type interrelated through Fν(z) = νzMν(z)
to study fractional calculus and probability theory [24, 25]. At the beginning
of the last century, Mittag-Leffler studied an entire function referred as Eα(z)
and defined a series representation which gives a simple generalization of the
exponential function [14, 28–31]. In 1905, Wiman introduced a Mittag-Leffler
function Eα,β(z) with two parameters [39] which is examined in the fifties by

Humbert and Agarwal [16]. In 2011, Özergin et al. presented some generaliza-
tions of Gamma, beta and hypergeometric functions and their transformation
formulas and properties [34]. In an interesting paper that was published in
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2015, El-Shahed and Salem introduced an extension of the classical Wright

function W γ,δ
α,β(z), Kummer confluent hypergeometric function and two auxil-

iary functions Mα(z) and Fα(z) [13].
A few years ago, a new type of integral expressions associated with the

generalized (Wright) hypergeometric function are established by Khan et al.
[20]. Based on the extended beta function, the extension of Wright-Bessel
function and its properties are introduced by Arshad et al. [4], while Khan
and Nizar developed an integral formula involving Wright generalized Bessel
function as well as some new integral expressions as particular cases [18].

On the other hand, based on the work of Özergin et al. [34], Khan et al.
have recently developed a new extension of the generalized Wright function
[21] by using generalized beta function. Also, they analyzed some properties of
this new series. Lately, Khan et al. derived some properties of certain integral
formulas involving the generalized Wright function [22] and the Redheffer-type
of the inequalities including generalized Fox-Wright function are defined by
Naheed et al. [32].

This study provides some information about one of the special functions
known as Wright function that is denoted byWα,β(·). This function, introduced
by Wright in 1933, is defined by the following series (see [40–42])

(1.1) Wα,β(z) =

∞∑
n=0

zn

n!Γ(αn+ β)

with α > −1 and β ∈ C.
The function Wα,β(z), defined in the whole complex plane, is an entire func-

tion and its order is 1
(1+α) .

In 2015, El-Shahed and Salem [13] generalized the Wright function by intro-
ducing the following entire function also of order 1

(1+α)

(1.2) W γ,δ
α,β(z) =

∞∑
n=0

(γ)n
(δ)nΓ (αn+ β)

zn

n!
,

where α is a real (α > −1), β, γ, δ, z ∈ C, δ 6= 0, −1, −2, . . . , |z| < 1, Γ(·) is

the gamma function and (χ)n = Γ(χ+n))
Γ(χ) is the usual Pochhammer symbol.

In a continuation of this investigation, Khan et al. [21] introduced a new
generalization of the Wright function by using the generalization of gamma
and Euler’s beta functions proposed by Özergin et al. [34], defined by

(1.3) W γ,δ,λ,σ;c,d
α,β (z; p) =

∞∑
n=0

Bc,dp (γ + n, λ− γ)

B(γ, λ− γ)

(σ)n
(δ)n

zn

n!Γ(αn+ β)
,

where α > −1, δ 6= 0, −1, −2, . . . ; γ, δ, λ, σ, β, α ∈ C, with z ∈ C and |z| < 1.
The current paper introduces a new generalization of the Wright series in

two variables, which is expressed in terms of the Hermite polynomials and also
its auxiliary functions.
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For more information, on the Hermite polynomials, we suggest to refer to
[19,33,37].

Definition. A new generalization of the Wright series in two variables is de-
fined as

(1.4) Bγ,δα,β(u, v) = 2iu
√
πe−v

2
∞∑
n=0

1

aγ,δα,β(n)

un

n!
Hn(v),

where Hn is the Hermite polynomial of order n and

(1.5) aγ,δα,β(n) =
(δ)n
(γ)n

Γ(αn+ β),

with δ 6= 0, −1, −2, . . ..

It is known that there are four auxiliary functions of Wright function for
0 < α < 1 which are defined as

(1.6) Mα(z) = W−α,1−α(−z); Mγ,δ
α (z) = W γ,δ

−α,1−α(−z);

(1.7) Fα(z) = W−α,0(−z); F γ,δα (z) = W γ,δ
−α,0(−z).

We define two new auxiliary functions of any order α ∈ (0, 1) and for each
z 6= 0 as follows

(1.8) Mγ,δ
α (u, v) = Bγ,δ−α,1−α(−u, v) =

∞∑
n=0

(−u)
n

n!

Hn(v)

a−α,1−α(n)

and

(1.9) Fγ,δα (u, v) = Bγ,δ−α,0(−u, v) =

∞∑
n=0

(−u)
n

n!

Hn(v)

a−α,0(n)
,

where

(1.10) a−α,1−α(n) =
(δ)n
(γ)n

Γ(1− α(n+ 1)),

and

(1.11) a−α,0(n) =
(δ)n
(γ)n

Γ(−αn).

2. Properties of the generalized Wright function

Below, we give some properties of these series by establishing some theorems.

Theorem 2.1. Let α > −1, <(p) > 0 δ 6= 0, −1, −2, . . ., and z, β, γ, δ ∈ C.
Then the function (1.4) can be represented by

(2.1) Bγ,δα,β(u, v) =

∫ +∞

−∞
e−pz

2+2qzW γ,δ
α,β(z)dz,
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where

(2.2) u =
1

2i
√
p

and v =
iq
√
p
.

Proof. By substituting (1.2) into (2.1) one finds

(2.3)

I =

∫ +∞

−∞
e−pz

2+2qzW γ,δ
α,β(z)dz

=

∞∑
n=0

1

aγ,δα,β(n)

1

n!

∫ +∞

−∞
zne−pz

2+2qzdz.

By using the identity [5]

(2.4)

∫ +∞

−∞
zne−pz

2+2qzdz = eq
2/p

√
π

p

(
1

2i
√
p

)n
Hn

(
iq
√
p

)
with <(p) > 0, (2.3) can be written as

(2.5) I = eq
2/p

√
π

p

∞∑
n=0

1

aγ,δα,β(n)

(1/2i
√
p)
n

n!
Hn

(
iq
√
p

)
.

By taking u and v given by (2.2), Theorem 2.1 is proved. �

Remark 2.2. It is interesting to see that (2.1) can be written as

(2.6) Bγ,δα,β(u, v) =

∫ +∞

−∞
e

z2

4u2− vz
u W γ,δ

α,β(z)dz.

Theorem 2.3. Let α > −1, β, γ, δ ∈ C. Then the auxiliary functions intro-
duced earlier can be expressed as

(2.7) Mγ,δ
α (u, v) =

∫ +∞

−∞
e

z2

4u2 + vz
u Mγ,δ

α (−z)dz

and

(2.8) Fγ,δα (u, v) =

∫ +∞

−∞
e

z2

4u2 + vz
u F γ,δα (−z)dz.

Proof. By using (2.1) and (1.8), one finds

(2.9)

Bγ,δ−α,1−α(−u, v) =

∫ +∞

−∞
e

z2

4u2 + vz
u W γ,δ

−α,1−α(z)dz

=Mγ,δ
α (u, v)

=

∫ +∞

−∞
e

z2

4u2 + vz
u Mγ,δ

α (−z)dz,
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which proves (2.7). For (2.8), (1.9) and (2.1) is used for −α and β = 0. It is
easy to deduce the following identities

(2.10)

Bγ,δ−α,0(−u, v) = Fγ,δα (u, v)

=

∫ +∞

−∞
e

z2

4u2 + vz
u W γ,δ

−α,0(z)dz

=

∫ +∞

−∞
e

z2

4u2 + vz
u F γ,δα (−z)dz.

This completes the proof of Theorem 2.3. �

Theorem 2.4. Let β and δ 6= 0, −1, −2, . . .. Then (1.4) can be expressed in
two variables as

(2.11) Bγ,δα,β(u, v) =
1

Γ (β)

∞∑
n=l=0

(γ)n+2l

(β)α(n+2l)(δ)n+2l

(2uv)
n

n!

(−u2)
l

l!
.

Proof. By using the following expansion of Hermite polynomial [15]

(2.12) Hn(v) =

[n/2]∑
l=0

(−1)
l
n!

l!(n− 2l)!
(2v)

n−2l
,

(1.4) becomes

(2.13) Bγ,δα,β(u, v) =

∞∑
n=0

[n/2]∑
l=0

A(l, n),

where

(2.14) A(l, n) =
(−1)

l

l!(n− 2l)!aγ,δα,β(n)
un(2v)

n−2l
.

With the help of the identity [38] of the double summation

(2.15)

∞∑
n=0

[n/2]∑
l=0

A(l, n) =

∞∑
n=0

∞∑
l=0

A(l, n+ 2l)

with [x] denotes the greatest integer in x, we obtain (2.11). �

In the next theorem, we give the Mellin-Barnes contour integral representa-

tion of the generalized Wright function Bγ,δα,β .

Theorem 2.5. Let α > −1, β, γ, δ and z ∈ C, δ 6= 0, −1, −2, . . .. Then the

Mellin-Barnes contour integral representation of Bγ,δα,β is given by

(2.16) γ,δ
α,β (u, v)=

Γ(δ)

Γ(γ)

ue−v
2/2

√
π

∫
L

(
√

2)
t
Γ(γ+t)

Γ(δ+t)Γ(β+αt)
Γ(−t)(−u)

t
Dt

(√
2v
)
dt,

where L is the Mellin-Barnes contour and Dt is the parabolic function.
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Proof. By the use of Theorem 1 of [13], our (2.1) can be written as

Bγ,δα,β(u, v) =

∫ +∞

−∞
e−pz

2+2qzW γ,δ
α,β(z)dz

=
Γ(δ)

2πiΓ(γ)

∫ +∞

−∞
e−pz

2+2qzdz

∫
L

Γ(γ + t)

Γ(δ + t)Γ(β + αt)
Γ(−t)(−z)tdt,(2.17)

where u = 1
2i
√
p , and v = iq√

p .

On interchanging the order of integration in the last equation and using
(2.1), we obtain

(2.18) Bγ,δα,β(u, v)=
Γ(δ)

2πiΓ(γ)

∫
L

(−1)
t
Γ(γ+t)

Γ(δ+t)Γ(β+αt)
Γ(−t)dt

∫ +∞

−∞
e−pz

2+2qzztdz.

With the help of the following identity [35]

(2.19)

∫ +∞

−∞
xνe−β

2x2−irxdx =

√
π(

i
√

2
)ν 1

βν+1
e−r

2/8β2

Dν

(
r

β
√

2

)
with <(β) > 0 and <(ν) > −1, (2.4) can be written as

(2.20)

∫ +∞

−∞
zte−pz

2+2qzdz =

√
π

p
eq

2/2p

(
1

i
√

2p

)t
Dt

(√
2
iq
√
p

)
.

By using the definitions of u and v given by (2.2), we obtain (2.16). This
completes the proof. �

Theorem 2.6. Let α > −1, β, γ, δ and z ∈ C, δ 6= 0, −1, −2, . . .. Then Bγ,δα,β
can be represented as

(2.21)

Bγ,δα,β(u, v) = 2iu
√
πe−v

2 Γ(δ)

Γ (γ) Γ(δ − γ)

∞∑
n=0

un

n!Γ(αn+ β)
Hn (v)

×
∫ 1

0

xn+γ−1(1− x)
δ−γ−1

dx.

Proof. By the use of Theorem 2 of [13], (2.1) becomes

Bγ,δα,β(u, v) =
Γ(δ)

Γ(γ)Γ(δ − γ)

∫ +∞

−∞
e−pz

2+2qzdz

∫ 1

0

xγ−1(1− x)
δ−γ−1

Wα,β (zx) dx

=
Γ(δ)

Γ(γ)Γ(δ − γ)

∫ 1

0

xγ−1(1− x)
δ−γ−1

dx

∫ +∞

−∞
e−pz

2+2qzWα,β (xz) dz,(2.22)

where

(2.23) Wα,β(z) =

∞∑
n=0

zn

n!Γ(αn+ β)

with α > −1 and β ∈ C.
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Hence, by using (2.4), (2.22) can be rearranged to write
(2.24)

Bγ,δα,β(u, v) =
Γ(δ)

Γ (γ) Γ(δ − γ)

∞∑
n=0

In
n!Γ(αn+ β)

∫ 1

0

xn+γ−1(1− x)
δ−γ−1

dx,

where

In = eq
2/p

√
π

p

(
1

2i
√
p

)n
Hn

(
iq
√
p

)
.

By using the definitions of u and v, (2.21) is proved. This completes the proof
of Theorem 2.6. �

Corollary 2.7. We know that (see [35])∫ 1

0

xµ−1
(
1− xλ

)ν−1
dx =

1

λ
B
(µ
λ
, ν
)
with <(µ) > 0, <(ν) > 0 and λ > 0.

Taking µ = n+ γ, λ = 1 and ν = δ − γ, we find the following result

(2.25)

∫ 1

0

xn+γ−1(1− x)
δ−γ−1

dx = B (n+ γ, δ − γ) .

With the use of this last equation, one can write (2.21) as

(2.26)

Bγ,δα,β(u, v) = 2iu
√
πe−v

2 Γ(δ)

Γ (γ) Γ(δ − γ)

×
∞∑
n=0

un

n!Γ(αn+ β)
Hn (v)B(n+ γ, δ − γ).

Theorem 2.8. The Mellin transform of Bγ,δα,β is given by

(2.27)

M
{
Bγ,δα,β (u, v) ; s

}
=

Γ(s)

2
us(−4u2)

( 1−s
2 )

×
∞∑
n=0

[
1 + (−1)

n−s
]

aγ,δα,β(n)

(
−4u2

)n
2

n!
Γ

(
n+ 1− s

2

)
.

Proof. The definition of the Mellin transform of Bγ,δα,β yields with the help of

(2.6)

(2.28)

M
{
Bγ,δα,β(u, v); s

}
=

∫ +∞

0

vs−1Bγ,δα,β(u; v)dv

=

∫ +∞

0

vs−1dv

∫ +∞

−∞
e

z2

4u2− vz
u W γ,δ

α,β(z)dz.

On interchanging the order of integration in (2.28) and by using the identity

(2.29) M
{
e−at; s

}
=

∫ +∞

0

vs−1e−avdv = a−sΓ(s),



184 A. BELAFHAL, S. CHIB, AND T. USMAN

we obtain

(2.30) M
{
Bγ,δα,β(u, v); s

}
= Γ(s)usIs,

where

(2.31) Is =

∫ +∞

−∞
z−se

z2

4u2W γ,δ
α,β(z)dz.

By the use of the expansion of W γ,δ
α,β given by (1.2) and the identity (2.29), the

last integral in (2.31) can be written as

(2.32)

Is =

∞∑
n=0

1

n!aγ,δα,β(n)

[
1 + (−1)

n−s
] ∫ +∞

0

tn−se
t2/4u2dt

=
1

2

∞∑
n=0

1

n!aγ,δα,β(n)

[
1 + (−1)

n−s
]( −1

4u2

)−(n+1−s
2 )

Γ

(
n+ 1− s

2

)
,

and finally, we find (2.27). This completes the proof of Theorem 2.8. �

Theorem 2.9. Let β ∈ C and m ∈ N. Then

B1,m
0,β (u, v) =

Γ(m)

Γ (β)
2i
√
πe−v

2

u2−m

×

{[
e(2v−u)u − 1

]
H1−m(v − u)−

m−2∑
k=1

ukH1−m+k(v)

}
.(2.33)

Proof. Starting from the following relation of W 1,δ
0,β and the Mittag-Leffer func-

tion [13,14]

(2.34) W 1,δ
0,β (z) =

Γ (δ)

Γ (β)
E1,δ (z)

with

(2.35) Eα,β(z) =

∞∑
k=0

zk

Γ (αk + β)
with α > 0.

For δ = m,

(2.36) W 1,m
0,β (z) =

Γ (m)

Γ (β)
E1,m (z) ,

where

(2.37) E1,m(z) = z1−m

(
ez −

m−2∑
k=0

zk

k!

)
.
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By using (2.1), B1,m
0,β can be written as

(2.38)

B1,m
0,β (u, v) =

Γ(m)

Γ(β)

∫ +∞

−∞
e−pz

2+2qzE1,m(z)dz

=
Γ(m)

Γ(β)

(
I1 −

m−2∑
k=0

I2k
k!

)
,

where

(2.39) I1 =

∫ +∞

−∞
z1−me−pz

2+(2q+1)zdz

and

(2.40) I2k =

∫ +∞

−∞
z1−m+ke−pz

2+2qzdz.

By the use of the identity (2.4), (2.38) becomes
(2.41)

B1,m
0,β (u, v) =

Γ (m)

Γ (β)

√
π

p
e
q2/p

(
1

2i
√
p

)1−m

×

{[
e(q+

1
4 )/p − 1

]
H1−m

[
i
√
p

(
q +

1

2

)]
−
m−2∑
k=1

(
1

2i
√
p

)k
H1−m+k

(
iq
√
p

)}
.

Finally, if the expressions of u and v are used, it is easy to find (2.33). This
completes the proof of Theorem 2.9. �

Theorem 2.10. Let β, γ and δ ∈ C, and Re (δ) > 0. Then

(2.42) Bγ,δ1,β (u, v) =
2i
√
π

Γ (β)
ue−v

2
∞∑
n=0

(γ)n
(δ)n(β)n

un

n!
Hn (v) .

Proof. By the help of the following identity [13]

(2.43) W γ,δ
1,β (z) =

1

Γ (β)
1F2 (γ; δ, β; z) =

1

Γ (β)

∞∑
n=0

(γ)n
(δ)n(β)n

zn

n!
,

Bγ,δ1,β is written as

(2.44) Bγ,δ1,β (u, v) =
1

Γ (β)

∞∑
n=0

(γ)n
(δ)n(β)nn!

∫ +∞

−∞
zne−pz

2+2qzdz.

By the use of (2.4), one finds easily (2.42). This completes the proof of Theorem
2.10. �
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Theorem 2.11. Let β ∈ C, u, v ∈ C. Then

(2.45)

B1−β,1−β
−1,β (u, v) = B−1,β (u, v)

=
i
√

2π

Γ (β)

(√
2u
)β
e−

1
8u2 (4u2v2−4uv−1)Dβ−1

(
2uv + 1

u
√

2

)
,

where D is the parabolic function.

Proof. Taking α = −1, γ = δ = 1− β and using (2.1), we obtain

(2.46)

B1−β,1−β
−1,β (u, v) =

1

Γ (β)

∫ +∞

−∞
(1 + z)

β−1
e−pz

2+2qzdz

=
1

Γ (β)
e−(p+2q)I,

where

(2.47) I =

∫ +∞

−∞
tβ−1e−pt

2+2(p+q)tdt.

With the help of (2.19) and taking ν = β − 1 and r = 2i (p+ q), the integral
of (2.47) can be expressed as

(2.48) I =

√
π(√

2i
)β−1

pβ/2
e

4(p+q)2

8p Dβ−1

(
2i (p+ q)√

2p

)
.

The expressions of u and v used in the proof of Theorem 2.7 yield (2.45). This
completes the proof of Theorem 2.11. �

Theorem 2.12. Let γ, δ ∈ C. Then
(2.49)

Bγ,δ−1/2,1 (u, v)

= 2i
√
πue−v

2

1− γ

δ
√
π
u

∞∑
n=0

(1/2 )n
(

1+γ
2

)
n

(
2+γ

2

)
n

(3/2 )n
(

1+δ
2

)
n

(
2+δ

2

)
n

(
−u2

/4

)n
n!

H2n+1 (v)

 .

Proof. To evaluate Bγ,δ−1/2,1 (u, v), we use the following expression [13]

(2.50) W γ,δ
−1/2,1 (−z) = 1− γz

δ
√
π

3F3

(
1

2
,

1 + γ

2
,

2 + γ

2
;

3

2
,

1 + γ

2
,

2 + δ

2
;−z

2

4

)
.

Therefore, Bγ,δ−1/2,1 can be expressed as

(2.51) Bγ,δ−1/2,1 (u, v) = A1 −
γ

δ
√
π

∞∑
n=0

(1/2 )n
(

1+γ
2

)
n

(
2+γ

2

)
n

(3/2 )n
(

1+δ
2

)
n

(
2+δ

2

)
n

(−1/4

)n
n!

A2n,

where

(2.52) A1 =

∫ +∞

−∞
e−pz

2+2qzdz
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and

(2.53) A2n =

∫ +∞

−∞
z2n+1e−pz

2+2qzdz.

Using (2.4) yields the expression of these last integrals and one finds easily
(2.49). �

Theorem 2.13. Let γ and δ ∈ C. Then

(2.54) Mγ,δ
1/2 (u, v) = 2iue−v

2
∞∑
n=0

(γ/2 )n
(

1+γ
2

)
n

(δ/2 )n
(

1+δ
2

)
n

(
−u2

/4

)n
n!

H2n (v) .

Proof. By taking α = 1/2 in (1.8) and using the following expression [13]

(2.55) Mγ,δ
1/2 (−z) =

1√
π

2F2

(
γ

2
,

1 + γ

2
;
δ

2
,

1 + δ

2
;−z

2

4

)
,

the result is:

(2.56) Mγ,δ
1/2 (u, v) =

1√
π

∞∑
n=0

(γ/2 )n
(

1+γ
2

)
n

(δ/2 )n
(

1+δ
2

)
n

(
−1/4

)n
n!

∫ +∞

−∞
z2ne−pz

2+2qzdz,

which yields easily (2.54) by the use of (2.4). This completes the proof of
Theorem 2.13. �

Theorem 2.14. Let γ ∈ C and u, v ∈ C. Then

(2.57)

Mγ,γ+1
1/3 (u, v) = 2i

√
πue−v

2

×

{
1

Γ (2/3 )

∞∑
n=0

(γ/2 )n
(2/3 )n(3+γ/3)n

(u/3)
3n

n!
H3n (v)

− γu

(γ + 1) Γ (1/3 )

∞∑
n=0

(
1+γ

3

)
n

(4/3 )n
(

4+γ
3

)
n

(u/3)
3n

n!
H3n+1 (v)

}
.

Proof. Applying the following relation [13]

(2.58)

Mγ,γ+1
1/3 (z) =

1

Γ (2/3 )
1F2

(
γ

2
;

2

3
,

3 + δ

3
;
z3

27

)
− γz

(γ + 1) Γ (1/3 )
1F2

(
1 + γ

3
;

4

3
,

4 + δ

3
;
z3

27

)
on (2.1) and using (1.6), we obtain for α = 1

3 and δ = γ + 1
(2.59)

Mγ,γ+1
1/3 (u, v) =

1

Γ (2/3)

∞∑
n=0

(γ/2 )n
(2/3 )n

(
3+γ

3

)
n

(
1/27

)n
n!

∫ +∞

−∞
z3ne−pz

2+2qzdz

− γ

(γ + 1) Γ (1/3)

∞∑
n=0

(
1+γ

3

)
n

(4/3 )n
(

4+γ
3

)
n

(
1/27

)n
n!

∫ +∞

−∞
z3n+1e−pz

2+2qzdz.
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With the help of the identity (2.4), this last equation becomes
(2.60)

Mγ,γ+1
1/3 (u, v) =

eq
2/p
√
π/p

Γ (2/3)

∞∑
n=0

(γ/2 )n
(2/3 )n

(
3+γ

3

)
n

(
i/216p3/2

)n
n!

H3n

(
iq
√
p

)

−
γeq

2/p
√
π/p

(γ + 1) Γ (1/3)

1

2i
√
p

∞∑
n=0

(
1+γ

3

)
n

(4/3 )n
(

4+γ
3

)
n

(
i/216p3/2

)n
n!

H3n+1

(
iq
√
p

)
.

After some simplifications (2.57) is obtained. Thus, the proof of Theorem 2.14
is complete. �

3. Graphical simulations of Bγ,δ
α,β(u, v)

In this section, some numerical simulations of Theorems 2.1 and 2.6 are
performed with respect to the variable u in order to show an agreement between
the series and integral representations as well as the effect of some parameters

in the evolution of Bγ,δα,β(u, v). Below, the used numerical methods are: Gauss-
Hermite quadrature and Gaussian quadrature.

Evaluation of Theorem 2.1

Fig. 1 illustrates a graphical simulation of (1.4) and (2.1) vs. the variable
u. The parameters are chosen as γ = 5, δ = 2 and v = 2. Fig. 1 shows that
the obtained results are similar. Note that (2.1) is evaluated in this case by
Gauss-Hermite quadrature method.

0 0.2 0.4 0.6 0.8 1
u

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

|B
 ,

 

 ,
 (u

,v
)|

Analytical method

Gauss-Hermite quadrature method

Figure 1. Representation of Bγ,δα,β(u, v) in terms of u evalu-

ated from (1.4) and (2.1) with β = 4
3 and α = − 1

3 .

The figures below display (1.4) for various values of β and α. The other
parameters are similar of these in Fig. 1. For Fig. 2(A-B), one can note that,

when α = − 1
3 , the quantity Bγ,δα,β(u, v) takes a large value with the increases of
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the parameters β, and when the parameter α takes a positive value it changes
its behaviour.
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(b)

Figure 2. Illustration of Bγ,δα,β(u, v) in terms of u evaluated

from (1.4) with three values of β for (A) α = − 1
3 and (B)

α = 2.

Evaluation of Theorem 2.5

Fig. 3 presents a numerical representation of (1.4) and (2.17). The expression
(2.17) is solved by using Gaussian quadrature method. The parameters are
taken as γ = 6, β = 4

3 , α = − 1
3 and v = 2. The results show a good agreement

between the numerical and analytical formulas.

0 0.2 0.4 0.6 0.8 1u
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Gaussian quadrature method

Figure 3. Representation of Bγ,δα,β(u, v) in terms of u evalu-

ated from (1.4) and (2.17) with δ = 7.

Fig. 4 shows the evolution of Bγ,δα,β(u, v) established in (1.4) with three values
of δ and γ.
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Figure 4. Illustration of Bγ,δα,β(u, v) in terms of u evaluated

from (1.4) for δ = 7, 9 and 11, with (A) γ = 0.1, (B) γ = 0.3
and (C) γ = 6.

From these plots, the conclusion is: when <(γ) → 0, there is no effect of

the parameter β on the evolution of Bγ,δα,β(u, v), but when γ is equal to six, the

quantity Bγ,δα,β(u, v) increases with increasing δ.

4. Conclusion

This study has investigated a new generalization of the Wright series in two
variables. The properties of these functions are derived and some integral trans-
forms, with known special functions, are provided. We have illustrated some
graphical representations of some results by using numerical and analytical
methods to show the agreement between the series and integral representa-
tions.
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