Commun. Korean Math. Soc. 37 (2022), No. 1, pp. 213-228
https://doi.org/10.4134/CKMS.c200365
pISSN: 1225-1763 / eISSN: 2234-3024

YAMABE AND RIEMANN SOLITONS ON LORENTZIAN
PARA-SASAKIAN MANIFOLDS

SHRUTHI CHIDANANDA AND VENKATESHA VENKATESHA

ABSTRACT. In the present paper, we aim to study Yamabe soliton and
Riemann soliton on Lorentzian para-Sasakian manifold. First, we proved,
if the scalar curvature of an n-Einstein Lorentzian para-Sasakian manifold
M is constant, then either 7 = n(n—1) or, 7 = n—1. Also we constructed
an example to justify this. Next, it is proved that, if a three dimensional
Lorentzian para-Sasakian manifold admits a Yamabe soliton for V' is an
infinitesimal contact transformation and ¢r ¢ is constant, then the soliton
is expanding. Also we proved that, suppose a 3-dimensional Lorentzian
para-Sasakian manifold admits a Yamabe soliton, if ¢r ¢ is constant and
scalar curvature 7 is harmonic (i.e., A7 = 0), then the soliton constant A
is always greater than zero with either 7 = 2, or 7 = 6, or A = 6. Finally,
we proved that, if an n-Einstein Lorentzian para-Sasakian manifold M
represents a Riemann soliton for the potential vector field V' has constant
divergence then either, M is of constant curvature 1 or, V is a strict
infinitesimal contact transformation.

1. Introduction

It is well known that, the notion of Yamabe flow was first introduced by
Richard Hamiliton at the same time as Ricci flow [11]. A Yamabe flow is
defined as a tool for constructing metrics of constant scalar curvature. On a
smooth pseudo Riemannian manifold, Yamabe flow is defined as the evaluation
of the metric go in time ¢ to g = g(t) through the equation

(1) So) =79 90)=g.

where 7 is the scalar curvature of the metric g(t). If a pseudo-Riemannian
manifold M holds the relation

(1.2) Lvg=2(1—N)g
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for a vector field V on M and a constant A, then M is said to have Yamabe soli-
ton. Like the Ricci soliton [17,18], the Yamabe soliton is said to be shrinking,
steady or expanding according as A < 0, A =0, or A > 0, respectively.

In the past two decades, many authors have studied Yamabe soliton on
various types of manifolds [1,5,7,25,27]. Recently, Venkatesha et al., studied
Yamabe soliton on three dimensional contact manifolds [24] and Ghosh studied
Yamabe soliton on Kenmotsu manifold [10].

The notion of Ricci flow is generalized to the concept of Riemann flow (see
[21], [22]). As an analogous to the Ricci flow, a Riemann flow has been intro-
duced by Hirica and Udrigte [12] as a natural extension of the Ricci flow to a
non-linear PDE and the metric g as a solution of the PDE. A Riemann soliton
is defined as a self similar solution to the Riemann flow and is defined as
(1.3) %G(t) = —2R(g(t)), teo,1],
where R denotes the Riemannian curvature tensor associated with metric g,
G = g@®g and @ is Kulkarni-Nomizu product. If C' and D are two (0,2)-
tensors, then C@®D is given by

(COD)(W, X,Y, Z) = C(W, Z)D(X,Y) + C(X,Y)D(W, 2)
(1.4) - CWY)D(X, 2) - C(X, Z)D(W,Y).
A pseudo-Riemannian manifold M is said to admit a Riemann soliton (g, V),
if there exist a vector field V' and a constant A on M such that

(1.5) R+ %{Ag®g+g®£vg} =0,

where £y is the Lie-derivative along V. In (1.5), if V = Df, where f is some
smooth function and D represents the gradient operator of g, then the soliton
is called a gradient Riemann soliton and is given by

(1.6) 2R+ Ag®g + 29DV f = 0.
By Kulkarni-Nomizu product defined in (1.4) the soliton equation (1.5) becomes
2R(W, X,Y, Z) + 2Mg(X,Y)g(Z, W) — g(Y,W)g(X, Z)}
+{gW, 2)(£Lvg)(X,Y) + g(X,Y)(Lvg)(W, Z)
(1.7) —gW.Y)(£vg)(X,Z) = g(X, Z)(£vg)(W,Y)} =0
foral W, X, Y, Z € X(M).
Moreover, contraction of the above expression over W, Z gives
28(X,Y) 4+ 2(n — DAg(X,Y) + (n — 2)(£vg)(X,Y)
(1.8) +2(divV)g(X,Y) =0.
Similar to the Yamabe soliton, the Riemann soliton is steady, shrinking or ex-
panding according as A = 0, A < 0 or A > 0, respectively. In [8], [23], Naik et

al., studied geometric properties of Riemann soliton in contact manifolds and in
almost Kenmotsu manifolds. Further, in [4], we have studied Riemann soliton
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on non-Sasakian (k, 1)-contact manifolds. In [6], De et al., studied an almost
Riemann soliton in a non-cosymplectic normal almost contact metric manifold.
Further, Blaga et al., considered Riemann soliton in («, 3)-contact manifolds
and gave some important geometric aspects [2]. This literature survey moti-
vates us to study Yamabe and Riemann soliton on Lorentzian para-Sasakian
manifolds.

The structure of this paper is as follows: After the accumulation of some
basic results and formulas in Section 2, we show some non-existence curvature
conditions on Lorentzian para-Sasakian manifold M. Also, we show that, if
M is an n-Einstein and 7 is constant on M, then either 7 = n(n — 1), or
7 = n — 1. Example has been constructed to justify this. In Section 3, we
consider studying the Yamabe soliton and we establish a result that, if a three
dimensional Lorentzian para-Sasakian metric g represents a Yamabe soliton
for an infinitesimal contact transformation V with constant tr¢, then A >
0. Further, we prove that, if a three dimensional Lorentzian para-Sasakian
manifold with constant tr¢ and A7 = 0 admits a Yamabe soliton, then the
soliton is expanding. Section 4, is devoted to study Riemann soliton on M
under certain conditions, such as, (1) M is an n-Einstein and divV is constant,
(2) for V=¢, (3) V=Df and divV is constant.

2. Preliminaries

The Lorentzian para-Sasakian structure on a differentiable manifold M was
first introduced by K. Matsumoto in 1989 and is defined as follows [13]:

An n-dimensional smooth manifold M together with 1-form 7, a (1, 1) tensor
©, a unit vector field £ and a Lorentzian metric g is said to have a Lorentzian
para-Sasakian structure if it holds the following conditions:

(2.1) =0, 7)) =-1, ¢’X=X+nX),
(2.2) 9(eX,0Y) = g(X,Y) + n(X)n(Y),

(2.3) (Vxp)Y = g(X,Y)E+n(Y)X + 2n(X)n(Y)S,
(2.4) Vxé=pX.

From the definition, it is known that

9(X; &) = n(X)
for all X belongs to X(M). And so the vector field ¢ is time like, i.e.,

and ¢ is symmetric with respect to the metric g. Moreover, the geometric
aspects of the Reeb vector field £ have been exclusively studied by Wang in [26].
A smooth connected manifold M together with a Lorentzian para-Sasakian
structure is said to be a Lorentzian para-Sasakian manifold. In recent years,
the Lorentzian para-Sasakian manifold has been studied by many authors, [14—
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16,19, 20]. So we have the following expressions

(2.5) R(X,Y)¢ = n(Y)X = (X)Y,
(2.6) R(EY)Z = g(Y,2)§+n(2)Y + 2n(Y)n(Z)E,
(2.7) Q¢ = (n—-1)¢.

Moreover, the Reeb vector field £ is never a Killing, i.e.,

(2.8) (£eg)(Y, Z) = 29(Z,¢Y)

as ¢ is linear and the rank of ¢ is n — 1, so £¢g # 0 for all vector fields on
X(M). Since, ¢ is symmetric. Therefore, we have

div€ =1tr o,
where div and tr stand for divergence and trace, respectively.

Definition 2.1. A pseudo-Riemannian manifold M is said to be an n-Einstein
if the Ricci operator () satisfies

(2.9) 9(QX,Y) = ag(X,Y) + Bnen)(X,Y),

where «, 8 are the smooth functions on M.
Moreover, from [3], the expression of @ for an 7n-Einstein Lorentzian para-
Sasakian manifold is given by

(2.10) QX:{ T —1}X+{T—n}77(X)5.

n—1 n—1

If M is a three-dimensional Lorentzian para-Sasakian manifold, then the
expression of () is given as

(2.11) QX:{%-1}X+{%—3}77(X)§.

Definition 2.2. On a pseudo-Riemannian manifold M, any vector field V is
said to be an infinitesimal contact transformation if it satisfies

(2.12) £yn=on,
where o is the smooth function on M. If o = 0, then V is called to be strict.
From [9], we have:

Lemma 2.3. On an n-dimensional pseudo-Riemannian manifold M, if there
exists a vector field V such that £ g = 2pg, where p is a smooth function, then
the following equations hold true on M

(213)  (LvS)(X,Y) = g(X,Y)(Ap) — (n— 2g(VxDp,Y),
(2.14) Ly ==2p7 +2(n—1)Ap,
where Ap = —divDp. If p =1 — X, then Ap = AT = —divDr.
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From Yano [28], we deduce the following computational formulas

(2.15) —(Vz£L£yg)(X,Y)
and
(2.16) (LvR) (X, Y)Z = (Vx£v V)Y, Z) — (Vy £y V)(X, Z).

Proposition 2.4. A Lorentzian para-Sasakian manifold M for dim M > 1,
never has the following curvature conditions:

e n-recurrent Ricci tensor.

e cyclic n-recurrent Ricci tensor.

Proof. Let M be an n-dimensional Lorentzian para-Sasakian manifold and the
dimension n > 1.
e If suppose the Ricci curvature tensor S on M satisfies
(VxS)(Y,Z) = n(X)S(Y,Z) (i.e., Ricci tensor is n-recurrent) for all
X, Y, Z e X(M).
By taking X =Y = ¢ in this expression and from (2.7), we obtain

(2.17) (n—1)n(2) =0,
this shows that n = 1. Which is a contradiction.
Similarly,

e If S is cyclic n-recurrent on M, then
(VyS)(X, Z2) + (VzS)(X,Y) + (Vx )Y, Z2) = n(Y)S(X, Z) + n(2)S(X,Y)

(2.18) +n(X)S(Y, Z).

In this, by taking Y = Z = £, we get

(2.19) —3(n—1)n(X) =0,

which leads to the contradiction as n > 1. Hence the result is proved. (]

Lemma 2.5. On a Lorentzian para-Sasakian manifold, the following condition
holds true:

(2.20) (VeQ)Y = 2(tr )Y — 20QY.

Proof. Taking covariant derivative of (2.8) along the direction of X and from
(2.3) we deduce

(2.21) (Vx£eg)(Y, 2) = 2{9(X, Y )n(Z) + n(Y)g(X, Z) + 2n(X)n(Y)n(Z)}-
In view of (2.15) and (2.21), we find
(2.22) (£eV)(Y, Z) = 29(pY, 0 Z)E.
Now, in (2.22), with the help of (2.3) and (2.4), we infer
(Vx £eV)(Y, Z) = 29(¢Y, 9Z) X + 20(Y)g(X, 9Z)¢
(2.23) +2n(Z2)g(X, Y )E.
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By virtue of this, we obtain
(Vy £eV)(X, Z) = 29(0X,0Z)pY + 2n(X)g(Y,0Z)¢
(2.24) +2n(2)g(X, pY)E.

On substituting the foregoing relations in (2.16) and then contracting (2.16)
over X with respect to an orthonormal basis, gives

(2.25) (£LeS)(Y, Z) = 29(pY, 02)(tr ¢).

On the other hand, computing the left hand side of (2.25) by using (2.4) leads
to

(2.26) (£eS)(Y, Z2) = g((VeQ)Y, Z) +29(pQY, Z).

Hence, by equating (2.25) with (2.26) we obtain (2.20). This finishes the proof.
(|

Lemma 2.6. On an n-Einstein Lorentzian para-Sasakian manifold M we have

T = n) (tr o).

n —

(2.27) &r = —2 (

Proof. Since M is n-Einstein, covariant derivative of equation (2.10) leads to
obtain

x@y = () v+ (25 ) a0k (255 ) (oxeme

(2.28) +n(Y)pX}.

Hence, fetching Y = £ in the above relation and then taking contraction over
X gives the condition (2.27). O

Theorem 2.7. Let 7 be the scalar curvature of an n-dimensional n-Finstein
Lorentzian para-Sasakian manifold M. If T is constant, then either 7 = n(n—1)
with (trp) =+£(n—1), or 7= (n — 1) with (tr o) = 0.

Proof. Suppose 7 is constant on M, then {7 = 0 and from (2.27), we get

(2.29) (t—n(n—1))({re)=0.

From (2.28) we get (VeQ)X = 0, which in (2.20) for Y = ¢Y implies

(2.30) (tr )Y — Qe*Y = 0.

Contracting this over Y and with the help of (2.10), we find

(2.31) (tre)> =7+ (n—1)=0.

On solving (2.31) by using (2.29) we obtain, either 7 = (n— 1) with (tr¢) = 0,
or 7 =n(n — 1) with (tr ¢) = £(n — 1). Hence the result is proved. O

From the above theorem, we can also state that:
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Theorem 2.8. Let M be an n-dimensional Lorentzian para-Sasakian manifold
and the scalar curvature T is constant on M. If T is neither n(n—1) nor (n—1),
then M never be an n-FEinstein manifold.

Example 2.9. Here we construct the 5-dimensional Lorentzian para-Sasakian
manifold M. We consider M = {(u,v,w,x,y) € R®}, where (u,v,w,,y) are
the standard coordinates in R®.

Let {v1,v2,v3,v4,v5} be the basis for M and the Lorentzian metric g is
defined as the

0 for i # j,
(2.32) g(vi,v) =41 for i=j and i#3,
-1 for i=j5=3.

Let V be the Levi-Civita connection corresponding to g and we have

[v1,v2] =0, [vi,v3] = —v1, [v1,v4] =0,
[’U17/05] = U1, [’U27’U?,] = —V2, [v27fv4] = V2,
[U2,U5] = V2, [Us,v4] = Vg4, [U3,U5] = Us, [U4,v5] = —Us.

Let the (1,1) tensor field ¢ is defined by
(2.33) Ui =—vi, @ua=—v2, @u3=0, Yu=—v4, PU5=—Us.

Let n be the 1-form defined by n(X) = ¢g(X,v3) for any vector field X on
X (M). Then, by the linearity of ¢ and g, we find

(2.34) n(vs) = —1,

(2.35) P*=1+nQ¢,

(2.36) gl ) = (g+n@n)(-).

By the Koszul’s formula, we find

Vo, 01 = —v3 —v5, V43,02 =0, V, v3=—v1, V,00 =0, V, v5=11,
Vi, 01 =0, Viy,v2 = —vg3 =04 — U5, Vi3 = —v2, Vai,Us =02, Vy,05 =02,

Vo011 =0, Vv =0, Vy,v3 =0, Vy,v4 =0, Vy,u5 =0,

V01 =0, Vy,v0 =0, V,,v3 =—v4, V,,v4 =—v3, V,,v5 =0,

Vi1 =0, Vv =0, Vi, v3=—v5, Vy,00 =05, VU5 =—03 —v4.
Hence, we can conclude that (¢,vs,7,g) defines a Lorentzian para-Sasakian
structure on M and so M is a Lorentzian para-Sasakian manifold. Let R be

the Riemannian curvature and S is the Ricci tensor and by the above relations,
we evaluated the following conditions

R(vi,v2)va =0, R(vi,v3)vg = —v1, R(vi,va)va =v1, R(v1,vs5)v5 =0,
R(va,v3)v3 = —v2, R(v2,v4)vs =0, R(va,v5)vs = —v2, R(v3,v4)v4 = v3,

R(vs,v5)vs = vg +v4, R(vg,vs)vs =0.
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And from the above relations, we obtain
S(’Ul,vl) :2a S(v27v2) :Oa S(Ug,’t)g) = 747
S('U4,’U4) = 27 S(’U571)5) =0.

Since, M is 5-dimensional and the scalar curvature is 8. Moreover, S(vq,v1) #
S(va,v2) shows that M is never an n-Einstein. Hence this verifies Theorem 2.8.

Example 2.10. Let us consider a manifold M = {(z,y,2z) € R3} and the
orthonormal basis {u1, ua,us} on M, with the Lorentzian metric g satisfying

g(ui,u;) =0 for i#j,

g(ur,ur) = g(uz,uz) =1,

g(us,uz) = —1.
Define 1-form 7 and the vector field £ by

n(X) = g(X, us), £ =u3.
Let V be the Levi-Civita connection corresponding to g and is defined by
[u,ug] =0, [ur,uz] = —u1, [ug,us] = —uz,
and the tensor field ¢ is defined by
YUy = —uy, Pus = —u, pus=.>0.

Use of Koszul’s formula gives the following relations

Vi ur = —ug, Vyug =0, Vi, Uz = —uq,
Vu,u1 =0, V2 = —u3, VU3 = —uz,
VU3U1 = 0, VuSUQ = 07 VUS’LL3 =0.

From the above relations, it is clear that (Vx¢)Y = ¢g(X,Y){ +n(Y)X +
(X )N(Y)¢ and Vx& = X for any vector fields X, Y. Hence, the defined
structure (¢, & = us,n,g) is a Lorentzian para-Sasakian structure on M. Then
the corresponding Riemannian curvature tensor and Ricci tensor have been
calculated as follows:
R(ui,ug)ug = w1,  R(up,uz)uz = —u1, R(uz,ur)u; = ug,
R(ug,uz)us = —uz, R(uz,ui)u; =u3,  R(uz,uz)us = us,

and

S(ur,ur) = S(ug,ug) =2,  S(us,uz) = —2,
S(u1,u2) = S(U1,U3) = S(UQ,U:J,) =0.
Clearly, the constructed structure (¢, &, 7, g), for £ = ug is an Einstein Lorentzi-

an para-Sasakian structure with 7 = 6 and tr ¢ = —2. This verifies Theorem
2.7.
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3. Yamabe soliton

Theorem 3.1. If a Lorentzian para-Sasakian metric g represents a Yamabe
soliton, then the scalar curvature T is constant if and only if V is Killing.

Proof. Suppose M has a constant scalar curvature and ¢ is a Yamabe soliton.
Then by equation (1.2) we can deduce that, Vx £y g = 0. And by using this
in the computational formula (2.15), we obtain

(3.1) (LvV)(Y, 2) = 0,
this implies getting

(3.2) (Vx£vV)(Y,Z) =0.

As a result, the preceding condition in (2.16) produces
(3.3) (LvR)(X,Y)Z =0.

Substituting Y = Z = £ in the previous relation and then tracing the resulting
equation with the aid of (1.2), we find

(3.4) n(£vé) =7—-A=0.

Therefore, use of this in (1.2) proves that V is Killing.

Conversely, if the soliton vector field V' is Killing, then from the expression
(1.2), it is obvious that 7 = A. Since A is constant, which means 7 is also
constant. This completes the proof. (I

Corollary 3.2. If g is a Lorentzian para-Sasakian metric, then g never satisfies
Yamabe equation for V =¢.

Proof. If suppose a Lorentzian para-Sasakian metric g is a Yamabe soliton for
V = ¢, then the equation (1.2), on (£,£) gives 7 — A = 0. Later, this in (1.2)
shows ¢ is Killing. But, as we know, if £ is Killing then by the condition (2.8)
¢ = 0, which is a contradiction. Therefore, V is never a Reeb vector field £&. [

Here we justify the above theorem by the following example:

Example 3.3. In Example 2.9, if manifold M holds Yamabe soliton for V =
& = v3, then, by computing (1.2) on (v3,v3), we acquire

(3.5) (£059)(vs,v3) = 2(A = 7) =0,

this implies 7 = A, at one more time, evaluating (1.2) on (ve,vs) gives
29(Vy,v3,v2) = =2 =0,

which is a contradiction. Therefore it verifies Corollary 3.2.

Theorem 3.4. Let g be a Lorentzian para-Sasakian metric and it admits Yam-
abe soliton for V is an infinitesimal contact transformation, if T is constant in
the direction of & then V is Killing.
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Proof. From Definition 2.2 and from the equation (1.2) we can easily find that
(3.6) o= (1-2),

and as we know 7 is closed on M, i.e., dn = 0, therefore applying d on both
sides of relation (2.12) provides

(3.7) (do Am)(X,Y) =0.

In the above equation for X = & we get Yo = —({o)n(Y). So o is constant
if {0 is zero. Since {7 = 0, then by (3.6), we have £o = 0, which shows o
is constant on M and consequently 7 is also constant on M. Therefore, from
Theorem 3.1 the proof is completed. O

Theorem 3.5. Let M be a three-dimensional Lorentzian para-Sasakian man-
ifold and admits a Yamabe soliton for the potential vector field V, where V is
an infinitesimal contact transformation. If the trace of ¢ is constant, then the
soliton is expanding.

Proof. For a 3-dimensional Lorentzian para-Sasakian manifold the expression
of Ricci tensor is given by

(3.8) S:{%—l}ﬁ{%—:’)}n@n.

Taking the Lie-derivative of the above condition in the direction of V' results
in the following

(evs).2) = (557 ) v 2+ {5 =1} (vad . 2) 4 (557 ) v ncz)

2 2 2
(3.9) +{ -3} (Lvnen)(v.2),
We can also have
(4@, 2) = (557 ) a2+ (557 ) )+ {5 -3} ) Lvnyy
(3.10) +a(£vE Z ()},
From equation (1.2), we derive
B1) (LS 2) — o(£vQ)Y. 2) = 2~ NS(Y. 2).

As from (1.2), we have n(£v&) = (1 — A). Next, by putting ¥ = Z = ¢ in
equation (3.11) and with the help of (3.9) and (3.10) we find that

(3.12) (£v8)(&,€) = —4(r = A).
Since, from (2.13) we have
(3.13) (£v9)(&,€) = AT —g(Ve D, ).

On equating (3.12) with (3.13), we obtain
(3.14) 4t —N) = A1+ (7).
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Since V' is an infinitesimal contact transformation, thus, from the conditions
(2.12) and (1.2), we have that Xo = X7 = 0 for all X orthogonal to £. Later,
this implies getting

(3.15) D7 = —(¢7)¢.
Now differentiating this along Y provides
(3.16) Vy D1 = —{Y(£7)}§ — (§7) Vv €.

Further, we proceed with the condition tr ¢ = constant. If the trace of ¢ is
constant, then from (2.27) we obtain

(3.17) £(6m) = —(&r)(trp) = (1 = 6)(tr 9)*.
In equation (2.27), the fact that g(X, D7) = 0 for any X orthogonal to ¢
enables us to find
(3.18) X (1) =—(XT1)(trp) =0,
for all X perpendicular to &.
Next, tracing (3.16) over Y and then using above relation yields
(3.19) —A7 = —{£(¢7)} — (€7)(tr ).
On substituting (3.17) and (3.19) in (3.14) we get
(3.20) —4(T = X\) = =2(7 = 6)(tr ©)* + (T — 6)(tr p)?,
differentiating (3.20) along ¢ and using (2.27), we have

(3.21) (1 — 6){4(tr @) — (tr ¢)*} = 0.

Note that the trace of ¢ is constant. Therefore, from the above equation, there
are three cases that arise: either 7 = 6, or (trp) = 0, or (tr¢)? = 4. First
case itself proves the result. Next, let us deal with second case, i.e., (trp) =0,
which in (2.27) finds {7 = 0 and from (2.28) for n = 3 gives (V¢Q)Y =0, use
of this in (2.20) enables us to find 7 = 2. Finally, if (tr ¢)? = 4, which in (3.20)
finds A = 6. Hence, by Theorem 3.1 the proof is completed. (I

Theorem 3.6. Let M be a Lorentzian para-Sasakian manifold of dimension
three and admits a Yamabe soliton (g, V,\). If tr ¢ is constant and the scalar
curvature T is harmonic, i.e., AT = 0, then the soliton is expanding with either
V' is Killing, or A = 6.

Proof. Suppose a three-dimensional Lorentzian para-Sasakian manifold M ad-
mits a Yamabe soliton. If ¢r ¢ is constant and A7 = 0, then from (2.27) we
have

(3.22) £(&r) = (1 = 6)(tro)*.
Use of foregoing condition in (3.14) and the harmonic scalar curvature condition
provides

(3.23) 41 =N — (T = 6)(tr)® = 0.
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Taking covariant derivative of preceding relation along ¢ and from (2.27), we
yields

(3.24) (T —6)(tr ) {4 — (tr )*} = 0.
Hence, from the above equation we conclude that either 7 = 6, or 7 = 2, or
A = 6. This finishes the proof. O

4. Riemann soliton

Theorem 4.1. Let M (dim M = n > 2) be an n-FEinstein Lorentzian para-
Sasakian manifold and represents a Riemann soliton for V' has a constant di-
vergence. Then either V is strict infinitesimal contact transformation or M is
of constant curvature 1.

Proof. By the hypothesis, divV is constant. Therefore, the contraction of equa-
tion (1.8) gives an expression for 7 and shows 7 is constant on M. Taking the
covariant derivative of equation (2.10) leads to obtaining

@) o(TxQ¥.2) = (75 = n) DX, Y) + 1Y)l X, 2).

In view of the above condition and from (1.8), we derive

(Vx£vg)(Y,Z) = n:22 (nT 1~ n) {n(Z2)g(pX.Y) +n(Y)g(pX, Z)}.

Use of foregoing relation in the computational formula (2.15) yields

(LvV)(X,Y) = — ( i n) G(X, Y )E.

n—2\n—1
By the help of above condition and equation (2.3), we obtain
-2
(OxtrD1,2) = =5 (255 = n) aleXo oV n(2)¢

+9(eX, 0Z)n(Y)E+ g(Y, pZ)pX }.

With the help of previous equation, the right side of the relation (2.16) is
computed as

(LVR)(X.Y)Z = —> ( r —n) {9(X. Z)n(Y ) — g(Y, Z)n(X)e

n—2\n—1
+9(Y,0Z)pX — g(X,0Z)pY}.

T

Tracing this over X implies

-2 T
an s = 5 (g o) (e
In equation (4.2), by placing Z = £ and from (2.7), we obtain

(4.3) (n =1 (£Lyn)Y = g(QY, £v§).
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In order to find g(QY, £v&), we go through an n-Einstein condition. By taking
an inner product of (2.10) with £y£ we find the following:

(44) 9(QX. £vE) = (nil - 1) 9(X. £vE) + <nil - n) (X (L),
In (1.8), for Y = ¢ and the expansion of £y g provides
(4.5) (n—2)g9(X, £v&)={2(n — 1)(1 + A)+2(divV) }n(X)+(n — 2)(£vn)X.

For n > 2, by taking Y = ¢ in (4.3) and by the fact that Q¢ = (n — 1)§ we
obtain the value n(£y£) = 0. Finally, substituting (4.5) in (4.4) (minding that
n > 2) and then the use of the resulting equation in (4.3) gives

(16) (”_1171) (’EV”)X:<nT1_1> (2<n—1)(1:A)2+2(dwv)) ().

For an 7n-Einstein Lorentzian para-Sasakian manifold with constant 7, we have
from Theorem 2.7 that either 7 = n—1 or 7 = n(n—1). Therefore, if T =n—1,
then the preceding equation shows that V is a strictly infinitesimal contact
transformation. This completes the either part of the theorem. Next, if suppose
7 =n(n — 1), then from (4.6) we infer

(4.7) (n—=1)(14 \) + divV = 0.
Moreover, contraction of (1.8) leads to achieve
(4.8) n+n + 2(divV) = 0.

On solving (4.7) and (4.8), we obtain A = —1 and divV = 0. Making use of
the resulting equations and QX = (n — 1)X in (1.8) provides £y g = 0, i.e.,
V is Killing. Thus, from (1.7), we conclude that, manifold M is of constant
curvature 1. O

Theorem 4.2. If (p,£,1n,9) is a Lorentzian para Sasakian structure on an
n-dimensional manifold M, then for n > 2, g never a Riemann soliton (g, ¢).

Proof. If suppose a Lorentzian para-Sasakian metric g is a Riemann soliton for
V =¢, then from (1.8) we have

(4.9)  25(X)Y)+{2(n— DA+ 2(trp)}g(X,Y) +2(n — 2)g(¢X,Y) = 0.
Choosing X =Y = £ in the foregoing relation we get

(4.10) tro=—(n—1)(1+\).

Contracting (4.9) over X, Y, and from the above condition we find

(4.11) T==-Mn—-1)4+2(n—1)(n—1)(1+ A).

Since A is constant, which implies 7 is constant on M and from (4.9), we deduce

(4.12) (VXQ)Y = —(n - 2)(Vxp)Y.
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In the above relation putting ¥ = ¢ and then contracting over X finds (n —
2)(n — 1) = 0. But this is a contradiction to our assumption that n > 2. This
completes the proof. (I

Example 4.3. In Example 2.10, if g represents a Riemann soliton (g, ), then
in equation (1.7) for W = Z = u; and X =Y = usy, we have

(4.13) 242X+ (£us9)(uz, u2) + (Lyyg)(ur, u1) =0,

which finds A = —1. Again, in (1.7) for W = Z = up and X =Y = uz we get
(4.14) =242+ 2g(Vy,us,ug) = 0.

Since, g(Vu,us,u2) = —1, use of this in the preceding relation leads to a

contradiction. Hence, g never admits a Riemann soliton for V' being a Reeb
vector field &.

Theorem 4.4. If a Lorentzian para-Sasakian metric g supports a Riemann
soliton for V.= Df with divergence of V (i.e., divDf = —Af) constant, then
M is of constant curvature 1 and the scalar curvature 7 = n(n — 1).

Proof. If the vector V in (1.7) is a gradient of a smooth function f, then the
relation (1.8) reduces to

(4.15) QW + An— D)W — (Af)W + (n— 2)VwDf =0.

If Af is constant, then the contraction of (4.15) shows that the scalar curvature
7 constant. Further, from equation (4.15), we derive the following relation

(4.16) (VxQ)W = —(n = 2){VxVwDf + Vo, wDf}.
So, from this and equation (4.15), we find
(4.17) (n=2)R(X,W)Df =—-(VxQ)W + (VwQ)X.

For n > 3, in the above expression setting X = £ and then taking the scalar
product of the resulting condition with £ gives g(R(§,W)Df,€) = 0. Next,
contraction of (4.17) over X with respect to an orthonormal basis provides
(n —2)QDf = 0. This implies f is constant along £. Further, the use of
equation (2.5) in g(R(§,W)¢,Df) = 0 shows Wf = 0, i.e., f is constant.
Hence, the equation (1.7) turns to

(4.18) R(X,Y)Z = ~Mg(Y, 2)X — g(X, Z)Y}.
Replacing Y and Z by £ and X by ¢X in (4.18) and by the virtue of (2.5), we
get the value of A\ as —1. Hence the theorem is proved. (|
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