DECOMPOSITIONS OF GRADED MAXIMAL SUBMODULES

Fida Мон'D

Abstract

In this paper, we present different decompositions of graded maximal submodules of a graded module. From these decompositions, we derive decompositions of the graded Jacobson radical of a graded module. Using these decompositions, we prove new theorems about graded maximal submodules, improve old theorems, and give other proofs for old theorems.

1. Introduction

Graded maximal submodules and ideals played important role in the study of Graded Ring and Module Theory. Up to the author's knowledge, the definition of graded maximal submodules was almost involved in any study of such submodules. Not much attention was paid to the possibility that graded maximal submodules possess a special decomposition. Because knowing a special decomposition for graded maximal submodules will lead us to a deeper study of such modules and related concepts, the task of this paper is to introduce such a decomposition. The decompositions permit us to prove new theorems, improve theorems, reprove old theorems, and give a simple method to construct graded maximal submodules and ideals.

While the second section gives a quick review for the basics of graded rings and modules, the third section presents two decompositions for graded maximal submodules along with different applications of the decompositions. For example, we show that the decomposition of graded maximal submodules of graded modules over first strongly graded rings is different from the decomposition of graded maximal submodules of some other modules. Also, in contrast to maximal submodules, we show that graded maximal submodules of certain decomposition cannot be graded direct summands unless the graded module submits a strong restriction. In the fourth section, we use the decompositions of the graded maximal submodules to construct decompositions for the graded

[^0]Jacobson radical of a graded module and for the units of a graded ring, followed by some applications.

2. Preliminaries

This section presents a quick review of graded rings and graded modules. More details can be found in the references (for example [1, 4, 6]) and the literature.

Let G be a group with identity e. Let R be a ring with nonzero unity 1 . We say R is graded by G if $R=\bigoplus_{g \in G} R_{g}$, where R_{g} is an abelian subgroup of R, and $R_{g} R_{h} \subseteq R_{g h}$ for every $g, h \in G$. The set $\operatorname{supp}(R, G)=\left\{g \in G: R_{g} \neq 0\right\}$ is called the support of R. The set $h(R)=\bigcup_{g \in G} R_{g}$ is the set of homogeneous elements of R. The elements of R_{g} are called homogeneous elements of degree g. Notice that R_{e} is a ring with $1 \in R_{e}$.

Let R be a G-graded ring with nonzero unity 1 and M a left R-module. We say that M is a G-graded R-module if $M=\bigoplus_{g \in G} M_{g}$, where M_{g} is an abelian subgroup of M, and $R_{g} M_{h} \subseteq M_{g h}$ for every $g, h \in G$. The support of $M, \operatorname{supp}(M, G)$, and $h(M)$ are defined similarly to $\operatorname{supp}(R, G)$ and $h(R)$, respectively. Also, the elements of M_{g} are called homogeneous elements of degree g.

We say that a ring R is trivially G-graded if $R_{g}=0$ for every $g \neq e$ and $R_{e}=R$. The trivial gradation of a module M by G is defined in a similar way.

A G-graded ring R is first strong, if $R_{g} R_{h}=R_{g h}$ for all $g, h \in \operatorname{supp}(R, G)$ or equivalently if $1 \in R_{g} R_{g^{-1}}$ for all $g \in \operatorname{supp}(R, G)$. It is not difficult to see if R is first strong, then $\operatorname{supp}(R, G)$ is a subgroup of G (see [8]). If $\operatorname{supp}(R, G)=G$ and R is first strong, we say R is strong (see [6]).

A G-graded R-module M is called first strongly graded if $\operatorname{supp}(R, G)$ is a subgroup of G and $R_{g} M_{h}=M_{g h}$ for every $(g, h) \in \operatorname{supp}(R, G) \times G$. If $\operatorname{supp}(R, G)=G$, we obtain the definition of strongly graded modules [7].

To avoid repetition, we assume that all underlying rings and modules are non-trivial, and all modules are left modules.

3. Decompositions of graded maximal submodules

In this section, we present two decompositions of the gr-maximal submodules. These decompositions allow us to prove many theorems, generalize different theorems, and reprove old theorems about gr-maximal submodules and ideals.

Theorem 3.1. Let M be a G-graded R-module and N a G-graded R-submodule of M. If there exists $h \in \operatorname{supp}(M, G)$ such that $N=\left(\underset{g \in G-\{h\}}{\oplus} M_{g}\right) \oplus K$ where K is a maximal R_{e}-submodule of M_{h} containing $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$, then N is a gr-maximal R-submodule of M.

Proof. Assume $N=\left(\underset{g \in G-\{h\}}{\oplus} M_{g}\right) \oplus K$ where K is a maximal R_{e}-submodule of M_{h} containing $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$ and $h \in \operatorname{supp}(M, G)$. Then N is a G graded R-submodule of M. Let A be a G-graded R-submodule of M such that $N \varsubsetneqq A \subseteq M$. For every $g \in G-\{h\}$ we have $N_{g}=M_{g}$, which yields $A_{g}=M_{g}$. Also, we have $K \varsubsetneqq A_{h} \subseteq M_{h}$. However, K is a maximal R_{e}-submodule of M_{h}. So, $A_{h}=M_{h}$ and hence $A=M$. As a result, N is a gr-maximal R-submodule of M.

The next theorem is a partial converse of Theorem 3.1. The proof requires the following lemma which has an easy proof.

Lemma 3.2. Let M be a G-graded R-module and L an R_{e}-submodule of M_{h}. Then $\oplus M_{g} \oplus L$ is a graded R-submodule of M if and only if L contains $\sum_{g \in G-\{h\}}{ }^{g \neq h} R_{h g^{-1}} M_{g}$.
Theorem 3.3. Let M be a G-graded R-module and N a gr-maximal R-submodule of M such that there exists $h \in \operatorname{supp}(M, G)$ with $N_{h} \neq M_{h}$ and contains $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$, then N_{h} is a maximal R_{e}-submodule of M_{h}. Moreover, $N=$ $\left(\underset{g \in G-\{h\}}{\oplus} M_{g}\right) \oplus N_{h}$.
Proof. Suppose L is a maximal R_{e}-submodule of M_{h} such that $N_{h} \varsubsetneqq L \subseteq M_{h}$. By Lemma 3.2, $\underset{\substack{g \neq h}}{ } M_{g} \oplus L$ is a graded R-submodule of M such that $N \varsubsetneqq$ $\underset{g \neq h}{\oplus} M_{g} \oplus L \subseteq \stackrel{\substack{g \neq h}}{M}$. Thus, $N=\underset{g \neq h}{\oplus} M_{g} \oplus L$ and hence $N_{h}=L$. So, N_{h} is a gr-maximal R-submodule of M_{h}.

Definition 3.4. Let R be a G-graded R-module. A gr-maximal R-submodule N of M of the form $N=\left(\underset{g \in G-\{h\}}{\oplus} M_{g}\right) \oplus K$ where K is a maximal $R_{e^{-}}$ submodule of M_{h} containing $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$ and $h \in \operatorname{supp}(M, G)$ is called a gr-maximal R-submodule of degree h.

It is obvious that there is a one-to-one correspondence between the grmaximal R-submodules of degree h and the maximal R_{e}-submodules of M_{h} that contain $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$.
Corollary 3.5. If R is not strongly graded and $\sum_{g \in G-\{e\}} R_{g} R_{g^{-1}} \varsubsetneqq R_{e}$, then R has a gr-maximal ideal of degree e.
Proof. Applying Zorn's lemma on the partial ordered set

$$
\left\{I: I \text { is an ideal of } R_{e} \text { containing } \sum_{g \in G-\{e\}} R_{g} R_{g^{-1}}\right\},
$$

we get that R_{e} has a maximal ideal containing $\sum_{g \in G-\{e\}} R_{g} R_{g^{-1}}$. Thus, by Theorem 3.1 R has a gr-maximal ideal of degree e.

Theorem 3.6. Let M be a G-graded R-module and N a gr-maximal R-submodule of M. There is at most one homogeneous component $N_{h} \neq M_{h}$ of N with the property that N_{h} contains $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$.

Proof. Suppose that there exist at least two different components $N_{h} \neq M_{h}$ and $N_{i} \neq M_{i}$ of N, where $h, i \in \operatorname{supp}(M, G)$, containing $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$ and $\sum_{g \in G-\{i\}} R_{i g^{-1}} M_{g}$, respectively. By Lemma $3.2, K=\underset{g \neq i}{\oplus} M_{g} \oplus \sum_{g \in G-\{i\}} R_{i g^{-1}} M_{g}$ is a G-graded R-submodule of M such that $N \varsubsetneqq K \varsubsetneqq M$, which contradicts the fact that N is gr-maximal.

Definition 3.7 ([6]). Let M be a G-graded R-module (resp. an R-module) and N a G-graded R-submodule (resp. a submodule) of M. We say N is a graded simple or gr-simple (resp. simple) submodule of M, if $\{0\}$ and M are the only graded submodules (resp. submodules) of M.

Example 3.8. Let M be a non-simple R-module. Give R the trivial gradation by \mathbb{Z}_{2} and $M \oplus M$ the gradation $M_{0}=M \oplus 0$ and $M_{1}=0 \oplus M$. Since $R_{1} M_{0}=R_{1} M_{1}=0$, Theorems 3.3 and 3.6 guarantee that the gr-maximal submodules should be of some degree. Let $\Delta=\{(x, x): x \in M\}$. Then Δ is a maximal R-submodule but not a gr-maximal R-submodule because it cannot be decomposed according to Theorem 3.3.

Definition 3.9. An R -module (resp. G-graded R-module) is called max-nested (resp. gr-max-nested) if every submodule (resp. graded submodule) is included in a maximal submodule (resp. gr-maximal submodule).

Max-nested modules cover a wide class of modules such as rings with unity, finitely generated modules, Noetherian modules, multiplication modules,... etc (same for gr-max-nested modules).

Theorem 3.10. Let M be a G-graded R-module such that for every $h \in$ $\operatorname{supp}(M, G), \sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$ is included in every nonzero R_{e}-submodule of M_{h} if M_{h} is not a simple R_{e}-module and $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}=0$ if M_{h} is simple. Then M is gr-max-nested if and only if M_{h} is max-nested, for every $h \in G$ and the only gr-maximal R-submodules of M are the gr-maximal submodules of degree g, for all $g \in \operatorname{supp}(M, G)$.
Proof. Assume M is a gr-max-nested module. Without loss of generality, assume M is not gr-simple. On one hand, let N be a gr-maximal R-submodule of M. We distinguish among four cases.

Case 1: Suppose N_{g} is 0 for every $g \in H$, where $\emptyset \neq H \varsubsetneqq \operatorname{supp}(M, G)$ and $N_{g}=M_{g}$ for every $g \in \operatorname{supp}(M, G)-H$ and $|H|>1$. Let $h \in H$. Then $N \varsubsetneqq \underset{g \neq h}{\oplus} M_{g} \varsubsetneqq M$. Since $\underset{g \neq h}{\oplus} M_{g}$ is a G-graded R-submodule of M, we get that N is not gr-maximal which is a contradiction. So this case is rejected.

Case 2: Suppose N_{g} is 0 for every $g \in H$, where $\emptyset \neq H \varsubsetneqq \operatorname{supp}(M, G)$, $N_{g}=M_{g}$ for every $g \in \operatorname{supp}(M, G)-H,|H|=1$, say $H=\{h\}$, and M_{h} is not a simple R_{e}-module. Let $L \varsubsetneqq M_{h}$ be a nonzero R_{e}-submodule of M_{h}. Then $N \varsubsetneqq \underset{g \neq h}{\oplus} M_{g} \oplus L \varsubsetneqq M$. Since $\underset{g \neq h}{\oplus} M_{g} \oplus L$ is a G-graded R-submodule of M, we get that N is not gr-maximal which is a contradiction. So, again, this case is rejected.

Case 3: Suppose N_{g} is 0 for every $g \in H$, where $\emptyset \neq H \varsubsetneqq \operatorname{supp}(M, G), N_{g}=$ M_{g} for every $g \in \operatorname{supp}(M, G)-H,|H|=1$, say $H=\{h\}$, and M_{h} is a simple R_{e}-module. Since $\{0\}$ is a maximal R_{e}-submodule of M_{h}, by assumptions, we obtain N is gr-maximal of degree h. This case is accepted.

Case 4: If there exists $h \in \operatorname{supp}(M, G)$ such that $0 \neq N_{h} \neq M_{h}$. By the assumption, $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g} \subseteq N_{h}$. Theorem 3.3 implies N is gr-maximal of degree h. This case is accepted.

The cases show that a gr-maximal submodule should be of a specific degree.
On the other hand, let $h \in \operatorname{supp}(M, g)$ and $L \varsubsetneqq M_{h}$ be a nonzero $R_{e^{-}}$ submodule of M_{h}. We have $K=\underset{g \neq h}{\oplus} M_{g} \oplus L$ is a G-graded R-submodule of M such that $K \neq M$. By the assumption, there exists a gr-maximal submodule N of M such that $N \supseteq K$. Thus, N is gr-maximal of degree h and hence N_{h} is a maximal R_{e}-submodule of M_{h} containing L. From this we conclude that M_{h} is a max-nested R_{e}-module, for every $h \in \operatorname{supp}(M, G)$.

For the converse, assume M_{h} is max-nested, for every $h \in G$ and the only gr-maximal R-submodules of M are the gr-maximal submodules of degree g, for all $g \in \operatorname{supp}(M, G)$. Let $0 \neq L \varsubsetneqq M$ be a graded R-submodule. We distinguish among four cases:

Case 1: Suppose L_{g} is 0 for every $g \in H$, where $\emptyset \neq H \varsubsetneqq \operatorname{supp}(M, G)$ and $L_{g}=M_{g}$ for every $g \in \operatorname{supp}(M, G)-H$ and $|H|>1$. Let $h \in H$. Then $L \subseteq N=\underset{g \neq h}{\oplus} M_{g} \oplus K$, where $K=0$ if M_{h} is simple and K is a maximal R_{e}-submodule of M_{h} containing $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$ if M_{h} is not simple. Since N is a G-graded R-submodule of M, we get that N is a gr-maximal submodule containing L.

Case 2: Suppose L_{g} is 0 for every $g \in H$, where $\emptyset \neq H \varsubsetneqq \operatorname{supp}(M, G)$, $L_{g}=M_{g}$ for every $g \in \operatorname{supp}(M, G)-H,|H|=1$, say $H=\{h\}$, and M_{h} is not a simple R_{e}-module. Since M_{h} is max-nested, there exists $K \varsubsetneqq M_{h}$ a maximal nonzero R_{e}-submodule of M_{h}. Then $N=\underset{g \neq h}{\oplus} M_{g} \oplus K$ is a G-graded R-submodule of M of degree h containing L.

Case 3: Suppose L_{g} is 0 for every $g \in H$, where $\emptyset \neq H \varsubsetneqq \operatorname{supp}(M, G), L_{g}=$ M_{g} for every $g \in \operatorname{supp}(M, G)-H,|H|=1$, say $H=\{h\}$, and M_{h} is a simple R_{e}-module. Since $\{0\}$ is a maximal R_{e}-submodule of M_{h}, by assumptions, we obtain L itself is gr-maximal of degree h.

Case 4: If there exists $h \in \operatorname{supp}(M, G)$ such that $0 \neq L_{h} \neq M_{h}$. Since M_{h} is max-nested, $L_{h} \subseteq K$ where K is a maximal R_{e}-submodule of M_{h}. By assumptions and Theorem 3.3, $N=\underset{g \neq h}{\oplus} M_{g} \oplus K$ is a gr-maximal R-submodule of M of degree h containing L.

From the cases above, we conclude that M is a gr-max-nested module.
As an application of Theorem 3.10, we have the following examples.
Example 3.11. Let F be a field accommodated with the trivial gradation by \mathbb{Z}. The vector space $F[x]$ over F is graded by $(F[x])_{n}=F x^{n}$ if $n=0,1, \ldots$ and $(F[x])_{n}=0$ if $n=-1,-2, \ldots$. Notice that $(F[x])_{n}, n=0,1,2, \ldots$ is a simple F-module due to being a vector subspace of dimension 1. The vector space $F[x]$ is not strongly graded, therefore there is a chance of the existence of gr-maximal subspaces. Since $\underset{n \neq j}{\oplus} F_{n-j} F x^{n}=0$, where $j=0,1, \ldots$. According to Theorem 3.10 the gr-maximal subspaces are $M_{j}=\oplus \sum_{\substack{n=0 \\ n \neq j}}^{\infty} F x^{n}$, where $j=$ $0,1, \ldots$. Actually, M_{j} is a gr-maximal subspace of degree j.
Example 3.12. Consider the abelian group $R=\mathbb{Z}$ as a \mathbb{Z}-graded module with the trivial gradation and the abelian group $M=Z_{p^{2}} \oplus Z_{q^{2}}$ where p and q are different prime numbers, as a \mathbb{Z}-graded \mathbb{Z}-module with the trivial gradation. There are only two gr-maximal submodules of M and they are of degree 0 , namely $Z_{p} \oplus Z_{q^{2}}$ and $Z_{p^{2}} \oplus Z_{q}$. Notice the satisfaction of the two gr-maximal submodules for the conditions in Theorem 3.1.

The proof of the following theorem is easy.
Theorem 3.13. A G-graded R-module M has at least one gr-maximal R submodule of degree h if and only if M_{h} has at least one maximal R_{e}-submodule containing $\sum_{g \neq h} R_{h g^{-1}} M_{g}$. Further, if $\sum_{g \neq h} R_{h g^{-1}} M_{g}$ is a maximal R_{e}-submodule of M_{h}, then M has a unique gr-maximal R-submodule of degree h.
Proof. The proof is straight forward from Theorem 3.1.
In [2, Lemma 2.7], the authors proved that if M is a gr-finitely generated R-module (i.e., M is spanned by finite number of homogeneous elements), then M has a gr-maximal R-submodule. Next, we give another condition that guarantees the existence of gr-maximal R-modules.
Theorem 3.14. Let M be a G-graded R-module such that a homogeneous component M_{h} of M is a finitely generated R_{e}-module, where $h \in \operatorname{supp}(M, G)$ such that $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g} \varsubsetneqq M_{h}$, then M has a gr-maximal R-submodule.

Proof. Assume $M_{h}=R_{e} x_{1}+\cdots+R_{e} x_{n}$, where x_{1}, \ldots, x_{n} are a minimal number of elements of M_{h} that span M_{h}. Since $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g} \subsetneq M_{h}$, then not all of x_{1}, \ldots, x_{n} belong to $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$. Without loss of generality, assume $x_{1} \notin \sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$. Let $N=R_{e} x_{2}+\cdots+R_{e} x_{n}$. Then $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g} \subseteq N$ and $N \neq M_{h}$. Now we apply Zorn's Lemma to the set $W=\left\{K: K\right.$ is an R_{e}-submodule of M_{h} containing N and $\left.x_{1} \notin K\right\} . W \neq \emptyset$ because $N \in W$. If Λ is a chain of W, then $\bigcup_{K \in \Lambda} K$ is an R_{e}-submodule of M_{h} containing $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$. Since $x_{1} \notin K$ for every $K \in \Lambda$, we obtain $x_{1} \notin \bigcup_{K \in \Lambda} K$. Thus, $\bigcup_{K \in \Lambda} K$ is an upper bound of Λ in W. By Zorn's Lemma, W has a maximal element, name it A. The submodule A is a maximal R_{e}-submodule of M_{h} containing $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$. To see this, assume L is an R_{e}-submodule such that $A \subseteq L$. Then $N \subseteq L$ because $N \subseteq A$ and $x_{1} \notin L$ because $L \neq M_{h}$. So, $L \in W$. However, A is a maximal element of W. Therefore $L \subseteq A$ and hence $L=A$. By Theorem 3.1, M has a gr-maximal R-submodule of degree h.

A gr-maximal submodule needs not to be gr-maximal of some degree as shown in the following theorem.

Theorem 3.15. Strongly G-graded R-modules do not possess gr-maximal R submodules of any degree.
Proof. If $h \in G=\operatorname{supp}(M, G)$, and K is an R_{e}-submodule of M_{h} such that $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g} \subseteq K$, then $\sum_{g \in G-\{h\}} M_{h} \subseteq K \subseteq M_{h}$ which gives $K=$ M_{h}. Therefore, a strongly graded R-module does not possess gr-maximal R submodules of any degree.

Actually, the gr-maximal submodules of graded modules over first strongly graded rings have a different decomposition from gr-maximal submodules of a specific degree as demonstrated in the next work.

Theorem 3.16 ([7]). Let R be a G-graded ring. Then R is first strong if and only if every G-graded R-module is first strong.

If M is a G-graded R-module such that $M_{e}=0$, we can relabel the components of M to produce a new gradation to M such that the e-component is nonzero [5]. So, in the next theorem we can assume, without loss of generality, that $M_{e} \neq 0$.

Lemma 3.17. Suppose R is a first strongly G-graded ring and M a G-graded R-module. Then, K is a maximal R_{e}-submodule of M_{g} if and only if $R_{h} K$ is a maximal R_{e}-submodule of $M_{h g}$, for every $g \in \operatorname{supp}(M, G)$ and $h \in \operatorname{supp}(R, G)$.

Proof. Let $g \in \operatorname{supp}(M, G)$ and $h \in \operatorname{supp}(R, G)$ and K be a maximal $R_{e^{-}}$ submodule of M_{g}. Let A be an R_{e}-submodule of $M_{h g}$ such that $R_{h} K \varsubsetneqq A \subseteq$ $M_{h g}$. Thus

$$
\begin{aligned}
R_{h^{-1}} R_{h} K \subsetneq R_{h^{-1}} A \subseteq R_{h^{-1}} M_{h g} & \Rightarrow R_{e} K \varsubsetneqq R_{h^{-1}} A \subseteq M_{g} \\
& \Rightarrow R_{h^{-1}} A=M_{g} \\
& \Rightarrow A=M_{h g} .
\end{aligned}
$$

We deuce that $R_{h} K$ is a maximal R_{e}-submodule of $M_{h g}$. The converse is proved in the same manner.

Theorem 3.18. Let R be a first strongly G-graded ring, M a G-graded R module with $\operatorname{supp}(R, G)=\operatorname{supp}(M, G)$, and N a G-graded R-submodule of M. Then, N is gr-maximal if and only if $N=\underset{g \in G}{\oplus} N_{g}$ where N_{g} is a gr-maximal R_{e}-submodule of M for every $g \in \operatorname{supp}(M, G)$, and zero otherwise.

Proof. Assume N is gr-maximal. There exists $h \in \operatorname{supp}(M, G)$ such that $N_{h} \neq$ M_{h}. Fix $g \in \operatorname{supp}(M, G)$. If $N_{g}=M_{g}$, then $R_{h g^{-1}} N_{g}=R_{h g^{-1}} M_{g}$ which implies by Theorem 3.16 that $N_{h}=M_{h}$ which is a contradiction. Thus, $N_{g} \neq$ M_{g} for every $g \in \operatorname{supp}(M, G)$. Let $g, h \in \operatorname{supp}(M, G)$ and assume L is an $R_{e^{-}}$ submodule of M_{h} such that $N_{h} \varsubsetneqq L \subseteq M_{h}$. By Theorem 3.16, $N_{g h}=R_{g} N_{h} \varsubsetneqq$ $R_{g} L \subseteq R_{g} M_{h}=M_{g h}$. Hence, $N \varsubsetneqq \underset{g \in G}{\oplus} R_{g} L \subseteq M$. Since $\underset{g \in G}{\oplus} R_{g} L$ is a G-graded R-submodule of M and N is gr-maximal, we obtain that $\underset{g \in G}{\oplus} R_{g} L=M$ which in turn implies that $L=R_{e} L=M_{h}$. Therefore, N_{h} is a maximal R_{e}-submodule of M_{h}. Lemma 3.17 implies N_{h} is a maximal R_{e}-submodule of M_{h}, for each $h \in \operatorname{supp}(M, G)$.

For the converse, assume $N=\underset{g \in G}{\oplus} N_{g}$ where N_{g} is a $g r$-maximal R_{e}-submodule of M for every $g \in \operatorname{supp}(M, G)$ and zero, otherwise. Let L be a G-graded R-submodule of M such that $N \varsubsetneqq L \subseteq M$. Then for each $g \in$ $\operatorname{supp}(M, G)$, we have $N_{g} \varsubsetneqq L_{g} \subseteq M_{g}$. By assumption, $L_{g}=M_{g}$ for each $g \in \operatorname{supp}(M, G)$ and this yields $L=M$. thus, N is gr-maximal.

The following corollary follows directly from Theorem 3.18.
Corollary 3.19. Let R be a strongly G-graded ring and M a G-graded R module. Then a G-graded R-submodule N of M is gr-maximal if and only if $N=\underset{g \in G}{\oplus} N_{g}$ where N_{g} is a gr-maximal R_{e}-submodule of M for every $g \in G$.

A linear homomorphism $f: M \rightarrow M^{\prime}$ from a G-graded R-module M to a G-graded R-module M^{\prime} is said to be a gr-homomorphism of degree $i \in G$ if $f\left(M_{g}\right) \subseteq M_{g i}^{\prime}$. The proof of the next theorem is straightforward from Theorem 3.1.

Lemma 3.20. Let M be a G-graded R-module and X a maximal R_{e}-submodule of M_{h} containing $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$. Then $R X$ is gr-maximal of degree h if and only if $R_{g} X=M_{g h}$ for every $g \neq e$.
Proof. Apply Theorem 3.1.
Definition 3.21. Let R be a G-graded ring, and M a G-graded R-module. We say M is strongly graded at $h \in G$, if $R_{g} M_{h}=M_{g h}$ for every $g \in G$.

A graded module which is strongly graded at e is called a flexible graded module (see [9]).
Theorem 3.22. Let R be a G-graded ring, M a G-graded R-module, X an R_{e}-submodule of M_{h} containing $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$, where $h \in G$. If $R X$ is a gr-maximal R-submodule of degree h, then M is strongly graded at h.
Proof. Let $g \in G$ and $g \neq e$. By Lemma 3.20 , we have $M_{g h} \supseteq R_{g} M_{h} \supseteq R_{g} X=$ $M_{g h}$. Thus, $R_{g} M_{h}=M_{g h}$. Since $R_{e} M_{h}=M_{h}$, we obtain that M is strongly graded at h.

The following corollary is a direct consequence of the previous theorem.
Corollary 3.23. If M is a G-graded R-module that contains a gr-maximal R-submodule of degree e of the form $R X$, where X is an R_{e}-submodule of M_{e}, then M is a flexible module.
Theorem 3.24. If $f: M \rightarrow \bar{M}$ is a gr-epimorphism of degree e, and N is a gr-maximal R-submodule of M of degree h such that $f(N) \neq \bar{M}$, then $f(N)$ is a gr-maximal R-submodule of \bar{M} of degree h.
Proof. By the assumption, $f\left(N_{g}\right)=f\left(M_{g}\right)=\bar{M}_{g}$ for every $g \in G-\{h\}$. Since $f(N) \neq \bar{M}$, we obtain $f\left(N_{h}\right) \neq M_{h}$ and it is not difficult to see that $f\left(N_{h}\right)$ is a maximal R_{e}-submodule of \bar{M}_{h}. Further,

$$
\sum_{g \in G-\{h\}} R_{h g^{-1}} \bar{M}_{g}=\sum_{g \in G-\{h\}} R_{h g^{-1}} f\left(M_{g}\right)=f\left(\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}\right) \subseteq f\left(N_{h}\right) .
$$

By Theorem 3.1, $f(N)$ is a gr-maximal R-submodule of \bar{M} of degree h.
Theorem 3.25. Let M be a G-graded R-module and N a graded R-submodule of M. If L is a gr-maximal R-submodule of degree $h \in G$, then $\frac{L+N}{N}$ is a gr-maximal R-submodule of $\frac{M}{N}$ of degree h.
Proof. The proof follows directly by Theorem 3.24 where $f: M \rightarrow \frac{M}{N}$ is the natural epimorphism.

Assume $M=\underset{g \in G}{\oplus} M_{g}$ is a G-graded R-module. Given the trivial gradation to R_{e} by G, then $M^{\prime}=\underset{g \in G}{\oplus} M_{g}$ is a G-graded R_{e}-module. We call this gradation the gradation induced by the original gradation on M as an R_{e}-submodule.

Theorem 3.26. Let M be a G-graded R-module and K a maximal R_{e}-submodule of M_{h}. Then $\left(\underset{g \neq h}{\oplus} M_{g}\right) \oplus K$ is a gr-maximal R_{e}-submodule of M of degree h.

Proof. The proof follows from Theorem 3.1.
The following corollary is a straightforward consequence of Theorem 3.26.
Corollary 3.27. Let M be a G-graded R-module and L a G-graded R-submodule of M. If L is a gr-maximal R-submodule of M of degree h, then L is a gr-maximal R_{e}-submodule of M^{\prime} of degree h.

The converse of the previous corollary is not necessarily true as shown in the next example.

Example 3.28. Let G be a nontrivial group with identity e, and R a strongly G-graded ring with unity. Then, by Theorem 3.15, the ring R does not have gr-maximal ideals of degree e. On the other hand, since R_{e} has a maximal ideal, Theorem 3.26 asserts that R^{\prime} has a gr-maximal R_{e}-submodule of degree e.

Theorem 3.29. Let $f: M \rightarrow \bar{M}$ be a gr-epimorphism of degree e. If $\operatorname{Ker}(f)$ is gr-maximal of some degree, then \bar{M} is a trivially graded simple R-module.
Proof. Suppose that $\operatorname{Ker}(f)$ is gr-maximal of some degree. Then $\{0\}$ is a grmaximal R-submodule of \bar{M} of the same degree. By Theorem $3.1, \bar{M}$ is grsimple and trivially graded by G.

Theorem 3.30. Let M be a G-graded R-module and N a gr-maximal submodule of M of degree h. Then $\frac{M}{N}$ is a gr-simple R-module which is isomorphic to $\frac{M_{h}}{N_{h}}$ as an R_{e}-modules.
Proof. We have $\frac{M}{N}=\frac{\underset{g \in G}{\oplus} M_{g}}{\oplus \in G} \underset{g \in G}{ } N_{g} \underset{g \in G}{\oplus} \frac{M_{g}}{N_{g}}$. Since $M_{g}=N_{g}$ for every $g \neq h$, we get $\frac{M}{N} \cong \frac{M_{h}}{N_{h}}$, where the symbol \cong means "isomorphic as an R_{e}-modules".

Let M be a G-graded R-module and N a G-graded R-submodule. We define the set $\left(N:_{R} M\right)$ by $\left(N:_{R} M\right)=\{r \in R: r M \subseteq N\}$. The set $\left(N:_{R} M\right)$ is a graded ideal of R (see [3]).

Theorem 3.31. Let M be a G-graded R-module and N a graded R-submodule of M. If N and $\left(N:_{R} M\right)$ are gr-maximal of some degrees, then the degrees coincide.

Proof. Assume N is a gr-maximal R-submodule of degree h. Then $N=$ $\left(\underset{g \in G-\{h\}}{\oplus} M_{g}\right) \oplus K$ where K is a maximal R_{e}-submodule of M_{h} containing $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$ and $h \in \operatorname{supp}(M, G)$. Also, assume $\left(N:_{R} M\right)$ is gr-maximal
of degree $\sigma \in \operatorname{supp}(R, G)$. Then $\left(N:_{R} M\right)=\left(\underset{g \in G-\{\sigma\}}{\oplus} R_{g}\right) \oplus\left(N:_{R} M\right)_{\sigma}$ where $\left(N:_{R} M\right)_{\sigma}$ is a maximal R_{e}-submodule of R_{σ} containing $\sum_{g \in G-\{\sigma\}} R_{\sigma g^{-1}} R_{g}$. If $\sigma \neq h$ we obtain

$$
R_{\sigma} M=\underset{g \neq h}{\oplus} R_{\sigma} M_{\sigma^{-1} g} \oplus R_{\sigma} M_{\sigma^{-1} h} \subseteq \underset{g \neq h}{\oplus} M_{g} \oplus K=N,
$$

which implies $\left(N:_{R} M\right)_{\sigma}=R_{\sigma}$ which contradicts that $\left(N:_{R} M\right)_{\sigma}$ is a maximal R_{e}-submodule of R_{σ}. Therefore, $\sigma=h$.

Let S be a subset of a left R-module M. The annihilator of S in R is defined to be $A n n_{R}(S)=\{r \in R: r s=0, \forall s \in S\}$. If S is a graded submodule of M, then $A n n_{R}(S)$ is a graded ideal of $R[3]$. It is easy to see that an R_{e}-submodule X of a component M_{h} of graded R-module M is a G-graded R-submodule of M if and only if $\underset{g \neq e}{\oplus} R_{g} \subseteq A n n_{R}(X)$.

Definition 3.32. Let M be a G-graded R-module and N a G-graded R-submodule of M. We say N is a graded direct summand (or gr-direct summand) of M, if there exists a graded R-submodule L of M such that $M=N \oplus L$.

The following theorem states that a gr-maximal submodule of some degree cannot be a gr-direct summand in a graded module unless a very strict restriction is applied.

Theorem 3.33. Let M be a G-graded R-module, and N a maximal G-graded R-submodule of M of degree $h \in G$. Then
(1) If N is a gr-direct summand of M, say $M=N \oplus L$, then L is a simple R_{e}-submodule of M_{h} and $\underset{g \neq e}{\oplus} R_{g} \subseteq \operatorname{Ann}_{R}\left(L_{h}\right)$ (or equivalently, a gr-simple R-submodule of M).
(2) N a gr-direct summand of M if and only if N_{h} is a direct summand of M_{h}.

Proof. (1) Assume $M=N \oplus L$, where L is a graded R-submodule of M. Then $M_{g}=N_{g} \oplus L_{g}$ for every $g \in G$. If $g \neq h$, then $N_{g}=M_{g}$ which yields $L_{g}=0$. Hence, $L=L_{h}$ which means L is an R_{e}-submodule of M_{h}. Since L is a G graded submodule, it follows from the paragraph before Definition 3.32 that $\underset{g \neq e}{\oplus} R_{g} \subseteq A n n_{R}\left(L_{h}\right)$. The fact that L is a simple R_{e}-submodule of M_{h} (or equivalently, a gr-simple R-submodule of M) comes from the fact that $\frac{M}{N}$ is isomorphic to L as an R_{e}-modules (or equivalently as a graded modules with isomorphism degree equal to e).
(2) The proof of this part follows directly from the proof of the previous part.

Part (1) of Theorem 3.33 yields the following corollaries.

Corollary 3.34. Let M be a G-graded R-module such that M_{h} has no nonzero proper simple R_{e}-submodule. Then M does not have a gr-direct summand grmaximal submodule of degree h.

In the next corollary, an element $m \neq 0$ of a left R-module M is torsion free if $r m=0$ implies $r=0$.

Corollary 3.35. Let M be a torsion free G-graded R-module. Then M does not have a gr-direct summand gr-maximal submodule of any degree.

Example 3.36. In Example 3.11 and according to either of the above corollaries, $F[x]$ does not possess a gr-maximal F-subspace which is a gr-direct summand of $F[x]$.

Example 3.37. Consider the ring $R=\mathbb{Z}$ as a \mathbb{Z}_{2}-graded module with the trivial gradation and the abelian group $M=Z_{p^{2}} \oplus Z_{q^{2}}$ where p and q are different prime numbers, as a \mathbb{Z}_{2}-graded \mathbb{Z}-module with the gradation $M_{0}=Z_{p^{2}}$ and $M_{1}=Z_{q^{2}}$. There are only two gr-maximal submodules of M, namely $Z_{p} \oplus Z_{q^{2}}$ of degree 0 and $Z_{p^{2}} \oplus Z_{q}$ of degree 1. By Theorem 3.33, both grmaximal submodules are gr-direct summands of M.

Definition 3.38. Let M be a G-graded R-module. A G-graded R-submodule N of M is called graded essential or graded large (alternatively, gr-essential or gr-large) if $N \cap L \neq 0$ for every graded R-submodule $L \neq 0$ of M.

Recall that a maximal submodule is either a direct summand or a large submodule. We prove the same result for maximal graded modules of a degree.

Theorem 3.39. A gr-maximal submodule of some degree is either gr-large or gr-direct summand.

Proof. Let M be a G-graded R-module, N a gr-maximal R-submodule of M of degree h. If the maximal submodule N_{h} is a direct summand R_{e}-submodule of M_{h}, Theorem 3.33 implies N is a gr-direct summand of M. Assume N_{h} is a large R_{e}-submodule of M_{h} and $L \neq 0$ a graded R-submodule of M. If $L_{h} \neq 0$, then $L_{h} \cap N_{h} \neq 0$ and hence $N \cap L \neq 0$. If $L_{g} \neq 0$ for some $g \neq h$, then $L_{g} \cap N_{g}=L_{g} \cap M_{g}=L_{g} \neq 0$. Thus, $N \cap L \neq 0$. So, N is gr-large.

4. Decompositions of the graded Jacobson radical and units

The following section is devoted to present decompositions of the gr-Jacobson radical of a graded module in terms of the Jacobson radical of its components and use these decompositions to develop different results.

The set of all $g r$-maximal R-submodules of degree g will be denoted by \mathfrak{M}_{g}. Recall that the Jacobson radical $J(M)$ (resp. the graded Jacobson radical $J_{g r}(M)$ or briefly the gr-Jacobson radical) of M is defined to be the intersection of the maximal R-submodules of M (resp. the intersection of all $g r$-maximal R-submodules of M).

Definition 4.1. Let M be a G-graded R-module. We define the Jacobson radical of M of degree $h \in G$, denoted by $F\left(M_{h}\right)$, to be the intersection of all

Directly from Definition 4.1 we obtain that $F\left(M_{h}\right)$ is an R_{e}-submodule of M_{h} and $J\left(M_{h}\right) \subseteq F\left(M_{h}\right)$. Moreover, if M_{h} does not contain maximal $R_{e^{-}}$ submodules containing $\sum_{g \in G-\{h\}} R_{h g^{-1}} M_{g}$, then $F\left(M_{h}\right)=M_{h}$.
Theorem 4.2. Let M be a G-graded R-module whose gr-maximal modules possess degrees. Then $J_{g r}(M)=\bigoplus_{g \in G} F\left(M_{h}\right)$.

Proof. As a matter of fact,

$$
J_{g r}(M)=\bigcap_{g \in G} \bigcap_{L \in \mathfrak{M}_{g}} L=\bigcap_{g \in G}\left(\bigoplus_{\sigma \in G-\{g\}} M_{\sigma} \oplus F\left(M_{g}\right)\right)=\bigoplus_{g \in G} F\left(M_{g}\right) .
$$

Corollary 4.3. Let M be a G-graded R-module whose gr-maximal modules possess degrees. Assume that $F\left(M_{g}\right)=J\left(M_{g}\right)$ for every $g \in \operatorname{supp}(M, G)$. Then, $J_{g r}(M)=\bigoplus_{g \in G} J\left(M_{g}\right)$, where $J\left(M_{g}\right)$ is the Jacobson radical of M_{g} and $J\left(M_{g}\right)=M_{g}$ if M_{g} has no maximal R_{e}-submodules.

There were many contributions by mathematicians to find out the conditions that guarantee the equality $J_{g r}(R) \cap R_{e}=J\left(R_{e}\right)$. The following corollary gives a new condition.

Corollary 4.4. The following statements are true:
(1) Let M be a G-graded R-module whose gr-maximal modules possess degrees. Then, $J_{g r}(M) \cap M_{h}=F\left(M_{h}\right)$.
(2) Let R be a G-graded ring whose gr-maximal ideals possess degrees and such that $F\left(R_{e}\right)=J\left(R_{e}\right)$. Then $J_{g r}(R) \cap R_{e}=J\left(R_{e}\right)$.

Proof. (1) The proof is directly obtained from Theorem 4.2.
(2) Since R_{e} is a ring with unity, $\mathfrak{M}_{e} \neq \emptyset$. By (1), $J_{g r}(R) \cap R_{e}=J\left(R_{e}\right)$.

Let M be a G-graded R-module. Denote by M^{\prime} the module M as a G-graded R_{e}-module with the gradation $M_{g}^{\prime}=M_{g}$ for every $g \in G$ and R_{e} has the trivial gradation by G (the gradation induced by the original gradation of M by G).

Theorem 4.5. Let M be a G-graded R-module whose gr-maximal modules possess degrees. Then
(1) $F\left(M_{g}^{\prime}\right)=J\left(M_{g}^{\prime}\right)$ for every $g \in G$.
(2) $J_{g r}\left(M^{\prime}\right) \cap M_{g}^{\prime}=J\left(M_{g}^{\prime}\right)$ for every $g \in G$.
(3) $J_{g r}\left(M^{\prime}\right)=\underset{g \in G}{\oplus} J\left(M_{g}^{\prime}\right)$, where $J\left(M_{g}^{\prime}\right)=M_{g}^{\prime}$ if M_{g}^{\prime} is empty of maximal R_{e}-submodules.

Proof. Apply Corollaries 4.3 and 4.4.

Theorem 4.6. Let R be a first strongly G-graded ring, M a G-graded R-module with $\operatorname{supp}(R, G)=\operatorname{supp}(M, G)$. Then $J_{g r}(M)=\bigoplus_{\sigma \in \operatorname{supp}(M, G)} J\left(M_{\sigma}\right)$.
Proof. Let $\mathfrak{M}_{g r}$ be the set of all gr-maximal submodules of M. By Theorem 3.18 we have

$$
J_{g r}(M)=\bigcap_{L \in \mathfrak{M}_{g r}} L=\bigcap_{L \in \mathfrak{M}_{g r}}\left(\bigoplus_{\sigma \in \operatorname{supp}(M, G)} N_{\sigma}\right)=\bigoplus_{\sigma \in \operatorname{supp}(M, G)} J\left(M_{\sigma}\right)
$$

where N_{σ} is a maximal R_{e}-submodule of M_{σ}.
Next, we describe the units of graded rings and give them an explicit form when the graded ring is a gr-local ring whose unique gr-maximal ideal is of degree e.

Lemma 4.7. Let R be a G-graded ring. Then R has a gr-maximal ideal of degree e if and only if $\sum_{g \neq e} R_{g} R_{g^{-1}} \varsubsetneqq R_{e}$
Proof. If R has a gr-maximal ideal J of degree e, by Theorem $3.1 J_{e}$ is a maximal ideal of R_{e} containing $\sum_{g \neq e} R_{g} R_{g^{-1}}$. Therefore, $\sum_{g \neq e} R_{g} R_{g^{-1}} \varsubsetneqq R_{e}$. Conversely, assume $\sum_{g \neq e} R_{g} R_{g^{-1}} \varsubsetneqq R_{e}$. Since R_{e} has a unity, there exists a maximal ideal I of R_{e} containing the proper ideal $\sum_{g \neq e} R_{g} R_{g^{-1}}$. Now, the ideal $\underset{g \neq e}{\oplus} R_{g} \oplus I$ is a gr-maximal ideal of degree e by Theorem 3.1.

Theorem 4.8. Let R be a G-graded ring. If R has a homogeneous unit of degree different from e, then R has no gr-maximal ideals of degree e.

Proof. Assume u is a homogeneous unit of degree $h \neq e$. Then u^{-1} is homogeneous of degree h^{-1}. Thus, $1=u u^{-1} \in R_{h} R_{h^{-1}}$. This implies $\sum_{g \neq e} R_{g} R_{g^{-1}}=$ R_{e}. By Lemma 4.7, R cannot include gr-maximal ideals of degree e.

Corollary 4.9. Let R be a G-graded ring. If R has at least one gr-maximal ideal of degree e (i.e., $\left.F\left(R_{e}\right) \neq R_{e}\right)$, then all homogeneous units have degree e.
Proof. Take the contrapositive of Theorem 4.8.
Theorem 4.10. Let R be a gr-local ring whose unique gr-maximal ideal K has degree e. Then an element $r=\sum_{g \in G} r_{g} \in R$ is a unit if and only if r_{e} is a unit and r_{g} is not a unit for every $g \neq e$.
Proof. Assume $r=\sum_{g \in G} r_{g} \in R$ is a unit. Then $r \notin K$. By Theorem 3.1, $r_{e} \notin K_{e}$. Since K_{e} is the unique maximal ideal of R_{e}, we obtain that r_{e} is a unit. For the converse, assume r_{e} is a unit. By Corollary 4.9, r_{g} is not a unit
for every $g \neq e$ and hence $r_{g} \in J(R)$ for every $g \neq e$. Thus, $\sum_{g \neq e} r_{g} \in J(R)$ which yields $1+r_{e}^{-1} \sum_{g \neq e} r_{g} \in U(R)$. Now, $r=r_{e}\left(1+r_{e}^{-1} \sum_{g \neq e} r_{g}\right) \in U(R)$.

References

[1] E. C. Dade, Group-graded rings and modules, Math. Z. 174 (1980), no. 3, 241-262. https://doi.org/10.1007/BF01161413
[2] S. Ebrahimi Atani and F. Farzalipour, Notes on the graded prime submodules, Int. Math. Forum 1 (2006), no. 37-40, 1871-1880. https://doi.org/10.12988/imf.2006.06162
[3] J. Escoriza and B. Torrecillas, Multiplication objects in commutative Grothendieck categories, Comm. Algebra 26 (1998), no. 6, 1867-1883. https://doi.org/10.1080/ 00927879808826244
[4] R. Hazrat, Graded rings and graded Grothendieck groups, London Mathematical Society Lecture Note Series, 435, Cambridge University Press, Cambridge, 2016. https://doi. org/10.1017/CB09781316717134
[5] F. Moh'd amd M. Khader, Graded modules over first strongly graded rings, Malaysian J. Math. Sci. 11 (2017), no. 2, 20520.
[6] C. Năstăsescu and F. Van Oystaeyen, Methods of graded rings, Lecture Notes in Mathematics, 1836, Springer-Verlag, Berlin, 2004. https://doi.org/10.1007/b94904
[7] M. Refai and F. A. M. Moh'd, First strongly graded modules, Int. J. Math. Game Theory Algebra 15 (2006), no. 4, 451-457.
[8] M. Refai and F. A. M. Moh'd, More properties on various types of strongly graded rings, Pac.-Asian J. Math. 1 (2007), no. 2, 129-135.
[9] M. Refai and F. A. M. Moh'd, On flexible graded modules, Ital. J. Pure Appl. Math. No. 22 (2007), 125-132.

Fida Moh'd
Department of Basic Sciences
Princess Sumaya University for Technology
Amman, Jordan
Email address: f.mohammad@psut.edu.jo

[^0]: Received November 13, 2020; Revised January 6, 2021; Accepted January 20, 2021.
 2010 Mathematics Subject Classification. 13A02.
 Key words and phrases. Graded rings, graded modules, graded maximal submodules, grmaximal submodules, graded Jacobson radical, gr-Jacobson radical, gr-max-nested modules, decomposition.

