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TOEPLITZ AND HANKEL OPERATORS

WITH CARLESON MEASURE SYMBOLS

Jaehui Park

Abstract. In this paper, we introduce Toeplitz operators and Hankel

operators with complex Borel measures on the closed unit disk. When
a positive measure µ on (−1, 1) is a Carleson measure, it is known that

the corresponding Hankel matrix is bounded and vice versa. We show
that for a positive measure µ on D, µ is a Carleson measure if and only if

the Toeplitz operator with symbol µ is a densely defined bounded linear

operator. We also study Hankel operators of Hilbert–Schmidt class.

1. Introduction

Let D and T denote the open unit disk and the unit circle in the complex
plane, respectively. A Toeplitz operator with bounded symbol is a compression
to H2 of a multiplication operator on L2(T). Toeplitz operators were intro-
duced by O. Toeplitz [22,23] and interesting properties of them have been stud-
ied by many authors (cf. [2, 3, 14, 20,24], etc.). In addition, Toeplitz operators
have been studied in various function spaces other than H2 (cf. [1, 10, 19, 21]).
Research on Toeplitz operators with operator-valued symbols can be found in
the papers [6–9]. The author [17] has investigated Toeplitz operators with
symbols of complex Borel measures on T. In this paper, we define Toeplitz op-
erators and Hankel operators on H2 whose symbols are complex Borel measures
on the closed unit disk D = D ∪ T.

The Hardy space H2 is the class of analytic functions on D whose Taylor
coefficients are square summable. The H2-functions also can be viewed as
square integrable functions on T via nontangential limit. We refer the reader
to the texts [11], [15], and [16] for details of Hardy spaces. Throughout this
paper we use ‖ · ‖2 and 〈·, ·〉 to denote the norm and the inner product in H2,
respectively.
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Let M(D) denote the space of complex Borel measures on D. For µ ∈M(D)
and for n, k ∈ N0, define the (n, k)-moment of µ by

µn,k =

∫
D
znzk dµ(z).

If k = 0, we simply write µn = µn,0. Observe that

|µn,k| ≤
∫
D
|z|n+k d|µ|(z) ≤ ‖µ‖.

Hence the double sequence {µn,k} is bounded. Note that every complex Borel

measure on D is completely determined by its moments. To see this, suppose
that µ and ν are complex Borel measures on D such that µn,k = νn,k for every
n, k ∈ N0. Then

(1)

∫
D
f dµ =

∫
D
f dν

whenever f = p(z, z) is a trigonometric polynomial. Since the trigonometric
polynomials are dense in C(D) with respect to the supremum norm, the identity
(1) holds for every f ∈ C(D). In view of the Riesz representation theorem, this
shows that the measure µ − ν is a linear functional on C(D) which is zero. It
follows that µ− ν = 0, i.e., µ = ν.

Let m2 be the normalized Lebesgue measure on D so that m2(D) = 1. Then,
for every n, k ∈ N0,

(m2)n,k =

∫
D
znzk dm2(z) =

1

π

∫ 1

0

∫ 2π

0

rn+k+1ei(n−k) dθdr.

Thus (m2)n,k = 1
n+1 if n = k, and (m2)n,k = 0 otherwise. On the other hand,

the moments of the unit mass δ0 concentrated at the point z = 0 is

(δ0)n,k =

{
1 (n = k = 0),

0 (otherwise).

Let CA(D) be the disk algebra, i.e., the set of all continuous functions on D
which are analytic in D. For f ∈ CA(D), define a function Tµf on D by

(2) (Tµf)(z) :=

∫
D

f(w)

1− wz
dµ(w) (z ∈ D).

Note that, for each z ∈ D, the series 1
1−wz =

∑∞
n=0 w

nzn converges uniformly

on D. It follows that

Tµf(z) =

∫
D
f(w)

∞∑
n=0

wnzn dµ(w)

=

∞∑
n=0

∫
D
f(w)wn dµ(w)zn =

∞∑
n=0

(f · µ)0,nz
n.(3)
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Therefore the function Tµf is analytic in D. If Tµf belongs to the Hardy space
H2, we say that f ∈ D(Tµ). That is, we define

D(Tµ) = {f ∈ CA(D) : Tµf ∈ H2}.

It is easy to see that D(Tµ) is a linear subspace of H2. The mapping Tµ is a
linear operator H2 with domain D(Tµ).

Similarly, we define a linear operator Hµ on H2 with domain

D(Hµ) = {f ∈ CA(D) : Hµf ∈ H2},

where

(4) (Hµf)(z) :=

∫
D

f(w)

1− wz
dµ(w) (z ∈ D).

Definition. The linear operator Tµ is called the Toeplitz operator with symbol
µ. The linear operator Hµ is called the Hankel operator with symbol µ.

If ϕ ∈ L∞, the classical Toeplitz operator Tϕ on H2 is given by

(Tϕf)(z) = P (ϕf)(z) =

∫
T

f(ζ)

1− ζz
ϕ(ζ) dm(ζ) (f ∈ H2),

where P is the orthogonal projection of L2 onto H2 and m is the normalized
Lebesgue measure on T. The identity (2) is a generalization of the above
identity. Similarly, the identity (4) is a generalization of the identity for the
Hankel operator Hϕ:

(Hϕf)(z) =

∫
T

ζf(ζ)

1− ζz
ϕ(ζ) dm(ζ) (f ∈ H2).

(For notational convenience, we divided the integrand in (4) by the variable
w.) Note also that if suppµ ⊆ [−1, 1], then Tµ = Hµ.

Properties of the operator Tµ when suppµ ⊆ T have been studied in the
paper [17]. Some of them also hold for Tµ and Hµ. For example, for the
domain D = D(Tµ),D(Hµ), one of the following holds:

(i) D = {0}.
(ii) D is dense in H2.
(iii) clH2D = θH2, where θ is a singular inner function.

In this paper we focus on the boundedness of Toeplitz operators Tµ and
the Hilbert–Schmidt class of the Hankel operators Hµ. In Section 2, we will
show that Tµ is densely defined bounded linear operator if and only if µ is a
Carleson measure. In Section 3, we provide a general sufficient condition for
Hankel operators to belong to the Hilbert–Schmidt class.
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2. The boundedness of Tµ

Let T (µ) be the infinite matrix whose entries are the moments of µ ∈M(D):

(5) T (µ) :=


µ0,0 µ1,0 µ2,0 · · ·
µ0,1 µ1,1 µ2,1 · · ·
µ0,2 µ1,2 µ2,2 · · ·

...
...

...
. . .


The moment matrix T (µ) corresponds to Tµ in some sense by (3). If the support
of µ is contained in T, then

µn,k =

∫
T
znzk dµ(z) =

∫
T
zn−k dµ(z)

for every n, k ∈ N0. Hence the matrix T (µ) is a Toeplitz matrix. On the other
hand, if the support of µ is contained in the segment (−1, 1), then

µn,k =

∫
(−1,1)

xnxk dµ(x) =

∫
(−1,1)

xn+k dµ(x)

for every n, k ∈ N0. Hence the matrix T (µ) is a Hankel matrix.
Another matrix we consider is the infinite Hankel matrix

(6) H(µ) :=


µ0 µ1 µ2 · · ·
µ1 µ2 µ3 · · ·
µ2 µ3 µ4 · · ·
...

...
...

. . .

 ,
which corresponds to Hµ. Recall that µn = µn,0.

A linear operator Tµ may not be bounded.

Example 2.1. (a) Suppose that α ∈ D. Let µ = δα be the unit mass concen-
trated at the point α ∈ D. If f ∈ CA(D), then

Tµf(z) =

∫
D

f(w)

1− wz
dµ(w) =

f(α)

1− αz
(z ∈ D).

Note that the function kα(z) = 1
1−αz is the reproducing kernel function for H2.

Then

Tµf = 〈f, kα〉kα = (kα ⊗ kα)f.

In particular, Tµf ∈ H2. Therefore D(Tµ) = CA(D) and Tµ is a restriction of
the rank one projection kα ⊗ kα to CA(D). The matrix representation of Tµ is

T (µ) =


1 α α2 · · ·
α αα αα2 · · ·
α2 α2α α2α2 · · ·
...

...
...

. . .

 .
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(b) Consider the function

ϕ(x) =
1

2
√

1− x
(0 ≤ x < 1).

Let m1 denote the Lebesgue measure on [0, 1). Since∫
[0,1)

|ϕ| dm1 =

∫ 1

0

1

2
√

1− x
dx =

∫ 1

0

1

2
√
y
dy = 1,

the function ϕ belongs to L1(m1). Hence µ := ϕ ·m1 is a finite positive Borel
measure on D. For each n ∈ N0,

µn =

∫ 1

0

xn

2
√

1− x
dx =

∫ 1

0

(1− y)n

2
√
y

dy =

∫ 1

0

(1− x2)n dx.

If n ≥ 1, by integration by parts,

µn = 2n

∫ 1

0

x2(1− x2)n−1 dx

= 2n

∫ 1

0

(1− (1− x2))(1− x2)n−1 dx = 2n(µn−1 − µn).

Hence we have

µ0 = 1, µn =
2n

2n+ 1
µn−1 (n = 1, 2, 3, . . . ).

By using the induction, we can show that

1

2n+ 1
≤ µ2

n ≤
1

n+ 1

for every n ∈ N0. Hence {µn} /∈ `2. Note that the domain D(Tµ) does not
contain all polynomials. Indeed, if fn(z) = zn, then

Tµfn(z) =

∫ 1

0

ϕ(x)xn

1− xz
dµ(x) =

∞∑
k=0

µn+kz
k,

which does not belong to H2 because {µn+k}k≥0 /∈ `2. Hence zn /∈ D(Tµ) for
any n ∈ N0. On the other hand, if pn(z) = 1− zn, then

Tµpn(z) =

∞∑
k=0

(µk − µn+k)zk.

Since µk − µn+k ≤ µk

2k , the sequence {µk − µn+k}k≥0 belongs to `2. Hence

Tµpn ∈ H2, i.e., pn ∈ D(Tµ). Observe that ‖pn‖22 = 2, but

‖Tµpn‖22 =

∞∑
k=0

|µk − µn+k|2 →∞

as n→∞. This shows that Tµ is unbounded.
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If µ is a complex Borel measure on D, we may write µ = µ1 + µ2, where
µ1 and µ2 are complex Borel measures on D which are concentrated on T and
D, respectively. Then Tµf = Tµ1f + Tµ2f for f ∈ CA(D). In the case of
suppµ ⊆ T, the following is known (see e.g., [26]):

Theorem 2.2. Let µ ∈M(T). The followings are equivalent:

(a) µ is a compatible measure, i.e.,
∫
T |f |

2 dµ ≤ c
∫
T |f |

2 dm for all f ∈
CA(D).

(b) D(Tµ) contains all polynomials and Tµ is bounded on D(Tµ).

In the remainder of this paper we will focus on the case of measures concen-
trated in D and investigate the boundedness of Tµ. A compatible measure is
replaced by a positive Carleson measure. A complex Borel measure µ on D is
called a Carleson measure if there exists a constant c > 0 such that

|µ|(Sθ0,h) ≤ c · h

for every sector Sθ0,h = {reiθ : 1 − h ≤ r < 1, |θ0 − θ| ≤ h}. The Carleson
imbedding theorem (cf. [4], [13]) shows that a complex Borel measure µ on D
is a Carleson measure if and only if there exists a constant c > 0 such that∫

D
|f |2 d|µ| ≤ c · ‖f‖22

for every f ∈ H2, or equivalently, the identical imbedding operator Iµ from H2

into L2(D, |µ|), given by

Iµf = f (f ∈ H2),

is bounded. If

lim
h→0

|µ|(Sθ0,h)

h
= 0,

the measure µ is called a vanishing Carleson measure. In this case Iµ becomes
a compact operator.

An interesting relation between Hankel matrices and Carleson measures was
studies by [25] (see also [18]): An infinite Hankel matrix {αj+k}j,k≥0 determines
a bounded operator on `2 if and only if there exists a Carleson measure µ on
D such that αj =

∫
D w

j dµ(w) for all j ≥ 0. As a result, for a measure µ on
the segment (−1, 1), the moment matrix T (µ) is bounded if and only if µ is a
Carleson measure. In particular, we can see that Tµ is bounded.

We extend this result to the case when µ is a positive measures on D. To
do this, we first observe the following lemma.

Lemma 2.3. Let µ ∈M(D). Then

〈Tµf, g〉 =

∫
D
fg dµ

for every f ∈ D(Tµ) and g ∈ CA(D).
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Proof. The proof of the lemma for measures on T can be found in [17]. The
proof of the lemma for measures on D is exactly same. For the sake of com-
pleteness, we give the proof.

Suppose that f ∈ D(Tµ) and g ∈ CA(D), so that Tµf ∈ H2. Write Tµf =∑∞
n=0 anz

n and g =
∑∞
n=0 bnz

n. Then

〈Tµf, g〉 =

∞∑
n=0

anbn.

By (3), for each z ∈ D,

(Tµf)(z) =

∞∑
n=0

[ ∫
D
f(w)wn dµ(w)

]
zn.

Hence we have

an =

∫
D
f(w)wn dµ(w) (n = 0, 1, 2, . . . ).

Observe that, for each 0 < r < 1,

gr =
∞∑
n=0

bnr
nzn ∈ CA(D).

It follows that

〈Tµf, gr〉 =

∞∑
n=0

anbnr
n =

∞∑
n=0

∫
D
f(w)wnbnr

n dµ(w)

=

∫
D
f(w)

∞∑
n=0

bnrnwn dµ(w) =

∫
D
f(w)gr(w) dµ(w).

If we let r → 1, then ‖g − gr‖∞ → 0, and hence 〈Tµ, gr〉 → 〈Tµ, g〉 and∫
D fgr dµ→

∫
D fg dµ. This completes the proof of the lemma. �

Now we have:

Theorem 2.4. Let µ be a positive finite Borel measure on D. Then the fol-
lowing statements are equivalent:

(a) µ is a Carleson measure.
(b) Tµ is densely defined and bounded on its domain.

Proof. (a) ⇒ (b). Suppose that µ is a Carleson measure. Then there exists a
constant c > 0 such that ∫

D
|fg| dµ ≤ c‖f‖2‖g‖2

for every f, g ∈ CA(D). Let n ∈ N0 and let f(z) = zn. Then

Tµf(z) =

∫
D

wn

1− wz
dµ(w) =

∞∑
j=0

∫
D
wnwj dµ(w)zj =

∞∑
j=0

µn,jz
j .
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For each k ∈ N0, put pk(z) =
∑k
j=0 µn,jz

j . Then∫
D
fpk dµ =

∫
D
zn

k∑
j=0

µn,j z
j dµ(z) =

k∑
j=0

µn,jµn,j =

k∑
j=0

|µn,j |2 = ‖pk‖22.

Since |
∫
D fpk dµ| ≤ c‖f‖2‖pk‖2, it follows that ‖pk‖2 ≤ c‖f‖2. Hence

‖Tµf‖22 =

∞∑
j=0

|µn,j |2 = lim
k→∞

‖pk‖22 ≤ c‖f‖2 <∞.

Therefore, Tµf ∈ H2, i.e., f ∈ D(Tµ). We have shown that D(Tµ) contains
every monomial zn. Since D(Tµ) is a linear space, it contains all polynomials.
Hence D(Tµ) is dense in H2 and Tµ is bounded on D(Tµ).

(b)⇒ (a). Suppose that D(Tµ) is dense in H2 and Tµ is bounded on D(Tµ).
By Lemma 2.3, for every f ∈ D(Tµ),∫

D
|f |2 dµ = |〈Tµf, f〉| ≤ ‖Tµ‖‖f‖22.

Define Iµ : D(Tµ) → L2(D, µ) by Iµf = f for f ∈ D(Tµ). By the above

inequality, we may extend Iµ to a bounded operator on H2 with bound ‖Tµ‖1/2.
Then, for every f ∈ H2, we have∫

D
|Iµf |2 dµ ≤ ‖Tµ‖‖f‖22.

Now let f ∈ H2 and let {fn} be a sequence in D(Tµ) which converges to f .
Then fn(z) → f(z) for every z ∈ D. On the other hand, since Iµ is bounded,
we have Iµfn(= fn)→ Iµf in L2(D, µ). It follows from Fatou’s lemma that∫

D
|Iµf − f |2 dµ ≤ lim inf

n→∞

∫
D
|Iµf − fn|2 dµ

= lim inf
n→∞

‖Iµf − fn‖2L2(D,µ) = 0.

Thus Iµf = f a.e. [µ]. Hence we have
∫
D |f |

2 dµ ≤ ‖Tµ‖‖f‖22 for every f ∈ H2,
i.e., µ is a Carleson measure. �

Remark 2.5. A similar argument shows thatHµ is densely defined and bounded
on its domain whenever µ is a Carleson measure. For the converse, however,
even in the case of D(Hµ) = CA(D), we can only guarantee that there exists a
Carleson measure ν such that µn = νn for n ∈ N.

3. The Hilbert–Schmidt class of Hµ

For 1 ≤ p ≤ ∞, let Sp denote the Schatten p-class of operators on H2 (or
`2). If p = 1, the following is known [18]: For µ ∈ M(D), H(µ) ∈ S1 if and
only if H(µ) = H(ν) for some finite complex measure ν such that

(7)

∫
D

1

1− |w|2
dµ(w) <∞.
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In particular, if µ is a measure on (−1, 1) and H(µ) ∈ S1, then µ satisfies∫
(−1,1)

1

1− t2
dµ(t) <∞.

Note that if µ is a complex measure on D satisfying (7), then µ is a vanishing
Carleson measure.

Question 3.1. Under what conditions on µ does H(µ) belong to the Hilbert–
Schmidt class S2 (or Sp)?

If µ is a positive Borel measure on [0, 1), answers to the question are given
by [5] and [12]:

Theorem 3.2 ([5]). Assume 1 < p <∞ and let µ be a positive Borel measure
on [0, 1). Then, H(µ) ∈ Sp if and only if

∑∞
n=0(n+ 1)p−1µ̂(n)p <∞.

Theorem 3.3 ([12]). Let µ be a finite positive Borel measure on [0, 1) and
suppose that H(µ) is bounded on H2. Then H(µ) ∈ S2 if and only if∫

[0,1)

µ([t, 1))

(1− t)2
dµ(t) <∞.

By using this, we can find measures µ such thatHµ ∈ S2\S1 orHµ ∈ S∞\S2,
e.g., µ :=

∑
n≥1 cnδλn

, where cn = 2−n, λn = 1− n · 2−n.

Remark 3.4. (a) Theorem 3.2 also holds for a positive Borel measure on (−1, 1).
To see this, define µ′(E) := µ(−E) for E ⊆ (−1, 1). Then µ′n = (−1)nµn.
Define µ̃ := µ[0,1) + µ′(0,1). (Here, if µ[0,1) is the measure on [0, 1) given by

µ[0,1)(E) = µ(E ∩ [0, 1).) Then (i) µ̃ is a measure supported on [0, 1); (ii)

µ̃n = µn = |µn|, if n is even; and (iii) µ̃n =
∫
(−1,1) |t

n| dµ ≥ |µn|, if n is odd.

If H(µ) ∈ Sp, then it is easy to show that H(µ̃) ∈ Sp. Hence, by The-
orem 3.2,

∑∞
n=0(n + 1)p−1|µn|p < ∞. Conversely, suppose that

∑∞
n=0(n +

1)p−1|µn|p <∞. Put

an :=

∫
[0,1)

tn dµ[0,1) and bn :=

∫
(0,1)

tn dµ′(0,1).

Then an + bn = µn whenever n is even, so∑
n:even

(n+ 1)p−1apn <∞ and
∑
n:even

(n+ 1)p−1bpn <∞.

Since {an} is a decreasing sequence of nonnegative numbers, it follows that∑
n(n+ 1)p−1apn < ∞. By Theorem 3.2, we have H(µ[0,1)) ∈ Sp. In the same

way, H(µ′(0,1)) ∈ Sp. Observe that bn = (−1)n
∫
(−1,0) t

n dµ. Thus H(µ(−1,0)) =

UHµ′
(0,1)

U ∈ Sp, where U is the unitary map which maps en to (−1)nen.

Therefore Hµ = Hµ[0,1)
+Hµ(−1,0)

∈ Sp.
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(b) By Theorem 3.2, we obtain

H(µ) ∈ S3 ⇐⇒
∞∑
n=0

(n+ 1)2µ̂(n)3 <∞.

Observe that
∞∑
n=0

(n+ 1)2µ̂(n)3 ≈
∞∑
n=0

(n+ 1)(n+ 2)

2
µ̂(n)3 =

∑
i,j,k

µ̂(i+ j + k)3,

∑
i,j,k

µ̂(i+ j + k)3 =

∫
[0,1)

∫
[0,1)

∫
[0,1)

1

(1− tsu)3
dµ(u)µ(s)µ(t)

≈
∫
[0,1)

µ([t, 1))2

(1− t)3
dµ(t).

Therefore

H(µ) ∈ S3 ⇐⇒
∫
[0,1)

µ([t, 1))2

(1− t)3
dµ(t) <∞.

In a similar manner, it may be true that, for p = 1, 2, 3, . . . ,

H(µ) ∈ Sp ⇐⇒
∫
[0,1)

µ([t, 1))p−1

(1− t)p
dµ(t) <∞.

Now we try to extend Theorem 3.3 to a measure on D. Since S1 ⊆ S2, the
condition on µ must be weaker than (7). For 0 < t < 1, define

Dt = {z : |z| < t}, Tt = {z : |z| = t}, At = {z : t < |z| < 1}.
Note that Dt = Dt ∪Tt, At = At ∪Tt, and D = Dt ∪At ∪Tt. We first consider
the positive measure on D such that

(8)

∫
D

µ(A|z|)

(1− |z|)2
dµ(z) <∞.

Proposition 3.5. If µ ≥ 0 on D satisfies (8), then µ is a vanishing Carleson
measure on D.

Proof. Observe that∫
As

µ(A|z|) dµ(z) =

∫
As

∫
D
χA|z|(w) dµ(w) dµ(z) =

∫
D

∫
As

χD|w|(z) dµ(z) dµ(w)

=

∫
D
µ(As ∩ D|w|) dµ(w) =

∫
As

µ(As ∩ D|w|) dµ(w).

Hence

2

∫
As

µ(A|z|) dµ(z) =

∫
As

µ(A|z|) dµ(z) +

∫
As

µ(As ∩ D|z|) dµ(z)

=

∫
As

µ(As) dµ(z) +

∫
As

µ(T|z|) dµ(z)
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= µ(As)
2 +

∫
As

µ(T|z|) dµ(z).

In particular,

(9) µ(As)
2 ≤ 2

∫
As

µ(A|z|) dµ(z).

Let ε > 0. Then there exists s0 > 0 such that s ≥ s0 implies∫
As

µ(A|z|)

(1− |z|)2
dµ(z) < ε.

It follows from (9) that

2ε > 2

∫
As

µ(A|z|)

(1− |z|)2
dµ(z)

≥ 2

(1− s)2

∫
As

µ(A|z|) dµ(z) ≥ µ(As)
2

(1− s)2
≥ µ(Sθ,1−s)

2

(1− s)2

for every θ. This shows that µ is a vanishing Carleson measure. �

Theorem 3.6. If a positive measure µ on D satisfies (8), then H(µ) ∈ S2.

Proof. Suppose that µ satisfies the above condition. Since

‖H(µ)‖S2 =

∞∑
i,j=0

|µ̂(i+ j)|2

≤
∞∑

i,j=0

∫
D

∫
D

(|z||w|)i+j dµ(z) dµ(w) =

∫
D

∫
D

dµ(z) dµ(w)

(1− |z||w|)2
,

it suffices to show that the last integral is finite. Observe that for any positive
measurable function f(z, w), we have∫

D

∫
D|z|

f(z, w) dµ(w) dµ(z) =

∫
D

∫
D
f(z, w)χD|z|(w) dµ(w) dµ(z)

=

∫
D

∫
D
f(z, w)χA|w|(z) dµ(z) dµ(w)

=

∫
D

∫
A|w|

f(z, w) dµ(z) dµ(w).

Hence∫
D

∫
D

dµ(z) dµ(w)

(1− |z||w|)2
=

∫
D

∫
A|z|

dµ(z) dµ(w)

(1− |z||w|)2
+

∫
D

∫
A|z|

dµ(z) dµ(w)

(1− |z||w|)2

≤
∫
D

A|z|

(1− |z|)2
dµ(z) +

∫
D

µ(A|z|)

(1− |z|)2
dµ(z)

≤ 2 ·
∫
D

µ(A|z|)

(1− |z|)2
dµ(z) <∞. �
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Note that the converse is not true: If m2 is a Lebesgue measure on D, then
H(m2) is of finite rank, but∫

D

µ(A|z|)

(1− |z|2)
dm2(z) =

∫ 2π

0

∫ 1

0

π(1− r2)

(1− r)2
r drdθ =∞.
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