TOEPLITZ AND HANKEL OPERATORS
WITH CARLESON MEASURE SYMBOLS

JAEHUI PARK

Abstract. In this paper, we introduce Toeplitz operators and Hankel operators with complex Borel measures on the closed unit disk. When a positive measure \(\mu \) on \((-1, 1)\) is a Carleson measure, it is known that the corresponding Hankel matrix is bounded and vice versa. We show that for a positive measure \(\mu \) on \(\mathbb{D} \), \(\mu \) is a Carleson measure if and only if the Toeplitz operator with symbol \(\mu \) is a densely defined bounded linear operator. We also study Hankel operators of Hilbert–Schmidt class.

1. Introduction

Let \(\mathbb{D} \) and \(\mathbb{T} \) denote the open unit disk and the unit circle in the complex plane, respectively. A Toeplitz operator with bounded symbol is a compression to \(H^2 \) of a multiplication operator on \(L^2(\mathbb{T}) \). Toeplitz operators were introduced by O. Toeplitz [22,23] and interesting properties of them have been studied by many authors (cf. [2,3,14,20,24], etc.). In addition, Toeplitz operators have been studied in various function spaces other than \(H^2 \) (cf. [1,10,19,21]). Research on Toeplitz operators with operator-valued symbols can be found in the papers [6–9]. The author [17] has investigated Toeplitz operators with symbols of complex Borel measures on \(\mathbb{T} \). In this paper, we define Toeplitz operators and Hankel operators on \(H^2 \) whose symbols are complex Borel measures on \(\mathbb{T} \). In this paper, we define Toeplitz operators and Hankel operators on \(H^2 \) whose symbols are complex Borel measures on the closed unit disk \(\overline{\mathbb{D}} = \mathbb{D} \cup \mathbb{T} \).

The Hardy space \(H^2 \) is the class of analytic functions on \(\mathbb{D} \) whose Taylor coefficients are square summable. The \(H^2 \)-functions also can be viewed as square integrable functions on \(\mathbb{T} \) via nontangential limit. We refer the reader to the texts [11], [15], and [16] for details of Hardy spaces. Throughout this paper we use \(\| \cdot \|_2 \) and \(\langle \cdot, \cdot \rangle \) to denote the norm and the inner product in \(H^2 \), respectively.

Received November 5, 2020; Accepted February 3, 2021.

2010 Mathematics Subject Classification. Primary 47B35, 47L60, 28A25.

Key words and phrases. Toeplitz operators, Hankel operators, densely defined operators, Carleson measures.

©2022 Korean Mathematical Society
Let $M(\mathbb{D})$ denote the space of complex Borel measures on \mathbb{D}. For $\mu \in M(\mathbb{D})$ and for $n, k \in \mathbb{N}_0$, define the (n, k)-moment of μ by

$$
\mu_{n,k} = \int_D z^n \overline{z}^k \, d\mu(z).
$$

If $k = 0$, we simply write $\mu_n = \mu_{n,0}$. Observe that

$$
|\mu_{n,k}| \leq \int_D |z|^{n+k} \, |d\mu(z)| \leq \|\mu\|.
$$

Hence the double sequence $\{\mu_{n,k}\}$ is bounded. Note that every complex Borel measure on \mathbb{D} is completely determined by its moments. To see this, suppose that μ and ν are complex Borel measures on \mathbb{D} such that $\mu_{n,k} = \nu_{n,k}$ for every $n, k \in \mathbb{N}_0$. Then

$$
\int_D f \, d\mu = \int_D f \, d\nu
$$

whenever $f = p(z, \overline{z})$ is a trigonometric polynomial. Since the trigonometric polynomials are dense in $C(\mathbb{D})$ with respect to the supremum norm, the identity (1) holds for every $f \in C(\mathbb{D})$. In view of the Riesz representation theorem, this shows that the measure $\mu - \nu$ is a linear functional on $C(\mathbb{D})$ which is zero. It follows that $\mu - \nu = 0$, i.e., $\mu = \nu$.

Let m_2 be the normalized Lebesgue measure on \mathbb{D} so that $m_2(\mathbb{D}) = 1$. Then, for every $n, k \in \mathbb{N}_0$,

$$
(m_2)_{n,k} = \int_D z^n \overline{z}^k \, dm_2(z) = \frac{1}{\pi} \int_0^1 \int_0^{2\pi} r^{n+k+1} e^{i(n-k)} \, d\theta \, dr.
$$

Thus $(m_2)_{n,k} = \frac{1}{n+1}$ if $n = k$, and $(m_2)_{n,k} = 0$ otherwise. On the other hand, the moments of the unit mass δ_0 concentrated at the point $z = 0$ is

$$
(\delta_0)_{n,k} = \begin{cases}
1 & (n = k = 0), \\
0 & \text{(otherwise)}.
\end{cases}
$$

Let $C_A(\mathbb{D})$ be the disk algebra, i.e., the set of all continuous functions on \mathbb{D} which are analytic in \mathbb{D}. For $f \in C_A(\mathbb{D})$, define a function $T_{\mu}f$ on \mathbb{D} by

$$
(T_{\mu}f)(z) := \int_D f(w) \frac{1}{1 - wz} \, d\mu(w) \quad (z \in \mathbb{D}).
$$

Note that, for each $z \in \mathbb{D}$, the series $\sum_{n=0}^{\infty} \frac{1}{1-z^n}$ converges uniformly on \mathbb{D}. It follows that

$$
T_{\mu}f(z) = \int_D f(w) \sum_{n=0}^{\infty} \frac{w^n z^n}{1 - wz} \, d\mu(w)
$$

$$
= \sum_{n=0}^{\infty} \int_D f(w) w^n \, d\mu(w) z^n = \sum_{n=0}^{\infty} (f \cdot \mu)_{0,n} z^n.
$$
Therefore the function $T_\mu f$ is analytic in D. If $T_\mu f$ belongs to the Hardy space H^2, we say that $f \in D(T_\mu)$. That is, we define

$$D(T_\mu) = \{ f \in C_A(D) : T_\mu f \in H^2 \}.$$

It is easy to see that $D(T_\mu)$ is a linear subspace of H^2. The mapping T_μ is a linear operator H^2 with domain $D(T_\mu)$.

Similarly, we define a linear operator H_μ on H^2 with domain

$$D(H_\mu) = \{ f \in C_A(D) : H_\mu f \in H^2 \},$$

where

$$H_\mu f(z) := \int_D \frac{f(w)}{1-wz} \, d\mu(w) \quad (z \in D).$$

Definition. The linear operator T_μ is called the **Toeplitz operator with symbol μ**. The linear operator H_μ is called the **Hankel operator with symbol μ**.

If $\varphi \in L^\infty$, the classical Toeplitz operator T_φ on H^2 is given by

$$(T_\varphi f)(z) = P(\varphi f)(z) = \int_T \frac{f(\zeta)}{1-\zeta z} \varphi(\zeta) \, dm(\zeta) \quad (f \in H^2),$$

where P is the orthogonal projection of L^2 onto H^2 and m is the normalized Lebesgue measure on T. The identity (2) is a generalization of the above identity. Similarly, the identity (4) is a generalization of the identity for the Hankel operator H_φ:

$$(H_\varphi f)(z) = \int_T \frac{\zeta f(\zeta)}{1-\zeta z} \varphi(\zeta) \, dm(\zeta) \quad (f \in H^2).$$

(For notational convenience, we divided the integrand in (4) by the variable w.) Note also that if $\text{supp } \mu \subseteq [-1, 1]$, then $T_\mu = H_\mu$.

Properties of the operator T_μ when $\text{supp } \mu \subseteq T$ have been studied in the paper [17]. Some of them also hold for T_μ and H_μ. For example, for the domain $D = D(T_\mu), D(H_\mu)$, one of the following holds:

(i) $D = \{0\}$.
(ii) D is dense in H^2.
(iii) $\text{cl}_{H^2} D = \theta H^2$, where θ is a singular inner function.

In this paper we focus on the boundedness of Toeplitz operators T_μ and the Hilbert–Schmidt class of the Hankel operators H_μ. In Section 2, we will show that T_μ is densely defined bounded linear operator if and only if μ is a Carleson measure. In Section 3, we provide a general sufficient condition for Hankel operators to belong to the Hilbert–Schmidt class.
2. The boundedness of T_{μ}

Let $T(\mu)$ be the infinite matrix whose entries are the moments of $\mu \in M(\mathbb{D})$:

$$T(\mu) := \begin{bmatrix}
\mu_{0,0} & \mu_{1,0} & \mu_{2,0} & \cdots \\
\mu_{0,1} & \mu_{1,1} & \mu_{2,1} & \cdots \\
\mu_{0,2} & \mu_{1,2} & \mu_{2,2} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}$$

(5)

The moment matrix $T(\mu)$ corresponds to T_{μ} in some sense by (3). If the support of μ is contained in T, then

$$\mu_{n,k} = \int T z^n \overline{z}^k d\mu(z) = \int T z^{n-k} d\mu(z)$$

for every $n, k \in \mathbb{N}_0$. Hence the matrix $T(\mu)$ is a Toeplitz matrix. On the other hand, if the support of μ is contained in the segment $(-1, 1)$, then

$$\mu_{n,k} = \int_{(-1,1)} x^n x^k d\mu(x) = \int_{(-1,1)} x^{n+k} d\mu(x)$$

for every $n, k \in \mathbb{N}_0$. Hence the matrix $T(\mu)$ is a Hankel matrix.

Another matrix we consider is the infinite Hankel matrix

$$H(\mu) := \begin{bmatrix}
\mu_0 & \mu_1 & \mu_2 & \cdots \\
\mu_1 & \mu_2 & \mu_3 & \cdots \\
\mu_2 & \mu_3 & \mu_4 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix},$$

(6)

which corresponds to H_{μ}. Recall that $\mu_n = \mu_{n,0}$.

A linear operator T_{μ} may not be bounded.

Example 2.1. (a) Suppose that $\alpha \in \mathbb{D}$. Let $\mu = \delta_{\alpha}$ be the unit mass concentrated at the point $\alpha \in \mathbb{D}$. If $f \in C_A(\mathbb{D})$, then

$$T_{\mu}f(z) = \int_{\mathbb{D}} f(w) \frac{d\mu(w)}{1 - \overline{\alpha} w} = \frac{f(\alpha)}{1 - \overline{\alpha} z} \quad (z \in \mathbb{D}).$$

Note that the function $k_{\alpha}(z) = \frac{1}{1 - \overline{\alpha} z}$ is the reproducing kernel function for H^2. Then

$$T_{\mu}f = \langle f, k_{\alpha} \rangle k_{\alpha} = (k_{\alpha} \otimes k_{\alpha})f.$$

In particular, $T_{\mu}f \in H^2$. Therefore $D(T_{\mu}) = C_A(\mathbb{D})$ and T_{μ} is a restriction of the rank one projection $k_{\alpha} \otimes k_{\alpha}$ to $C_A(\mathbb{D})$. The matrix representation of T_{μ} is

$$T(\mu) = \begin{bmatrix}
1 & \alpha & \alpha^2 & \cdots \\
\overline{\alpha} & \overline{\alpha} \alpha & \overline{\alpha} \alpha^2 & \cdots \\
\overline{\alpha}^2 & \overline{\alpha}^2 \alpha & \overline{\alpha}^2 \alpha^2 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}$$
(b) Consider the function

$$\varphi(x) = \frac{1}{2\sqrt{1-x}} \quad (0 \leq x < 1).$$

Let m_1 denote the Lebesgue measure on $[0, 1)$. Since

$$\int_{[0,1)} |\varphi| \, dm_1 = \int_0^1 \frac{1}{2\sqrt{1-x}} \, dx = \int_0^1 \frac{1}{2\sqrt{y}} \, dy = 1,$$

the function φ belongs to $L^1(m_1)$. Hence $\mu := \varphi \cdot m_1$ is a finite positive Borel measure on D. For each $n \in \mathbb{N}_0$,

$$\mu_n = \int_0^1 \frac{x^n}{2\sqrt{1-x}} \, dx = \int_0^1 \frac{(1-y)^n}{2\sqrt{y}} \, dy = \int_0^1 (1-x^2)^n \, dx.$$

If $n \geq 1$, by integration by parts,

$$\mu_n = 2n \int_0^1 x^2 (1-x^2)^{n-1} \, dx = 2n \int_0^1 (1-(1-x^2))(1-x^2)^{n-1} \, dx = 2n(\mu_{n-1} - \mu_n).$$

Hence we have

$$\mu_0 = 1, \quad \mu_n = \frac{2n}{2n+1} \mu_{n-1} \quad (n = 1, 2, 3, \ldots).$$

By using the induction, we can show that

$$\frac{1}{2n+1} \leq \mu_n^2 \leq \frac{1}{n+1}$$

for every $n \in \mathbb{N}_0$. Hence $\{\mu_n\} \notin \ell^2$. Note that the domain $D(T_\mu)$ does not contain all polynomials. Indeed, if $f_n(z) = z^n$, then

$$T_\mu f_n(z) = \int_0^1 \frac{\varphi(x) z^n}{1-zx} \, d\mu(x) = \sum_{k=0}^\infty \mu_{n+k} z^k,$$

which does not belong to H^2 because $\{\mu_{n+k}\}_{k \geq 0} \notin \ell^2$. Hence $z^n \notin D(T_\mu)$ for any $n \in \mathbb{N}_0$. On the other hand, if $p_n(z) = 1 - z^n$, then

$$T_\mu p_n(z) = \sum_{k=0}^\infty (\mu_k - \mu_{n+k}) z^k.$$

Since $\mu_k - \mu_{n+k} \leq \frac{\mu_k}{2n}$, the sequence $\{\mu_k - \mu_{n+k}\}_{k \geq 0}$ belongs to ℓ^2. Hence $T_\mu p_n \in H^2$, i.e., $p_n \in D(T_\mu)$. Observe that $\|p_n\|^2_2 = 2$, but

$$\|T_\mu p_n\|^2_2 = \sum_{k=0}^\infty |\mu_k - \mu_{n+k}|^2 \to \infty$$

as $n \to \infty$. This shows that T_μ is unbounded.
If μ is a complex Borel measure on \mathbb{D}, we may write $\mu = \mu_1 + \mu_2$, where μ_1 and μ_2 are complex Borel measures on \mathbb{D} which are concentrated on \mathbb{T} and \mathbb{D}, respectively. Then $T_\mu f = T_{\mu_1} f + T_{\mu_2} f$ for $f \in C_A(\mathbb{D})$. In the case of $\text{supp} \mu \subseteq \mathbb{T}$, the following is known (see e.g., [26]):

Theorem 2.2. Let $\mu \in M(\mathbb{T})$. The followings are equivalent:

1. μ is a compatible measure, i.e., $\int_\mathbb{T} |f|^2 \, d\mu \leq c \int_\mathbb{T} |f|^2 \, dm$ for all $f \in C_A(\mathbb{D})$.
2. $\mathcal{D}(T_\mu)$ contains all polynomials and T_μ is bounded on $\mathcal{D}(T_\mu)$.

In the remainder of this paper we will focus on the case of measures concentrated in \mathbb{D} and investigate the boundedness of T_μ. A compatible measure is replaced by a positive Carleson measure. A complex Borel measure μ on \mathbb{D} is called a Carleson measure if there exists a constant $c > 0$ such that

$$|\mu|(S_{\theta_0, h}) \leq c \cdot h$$

for every sector $S_{\theta_0, h} = \{re^{i\theta} : 1 - h \leq r < 1, |\theta_0 - \theta| \leq h\}$. The Carleson imbedding theorem (cf. [4], [13]) shows that a complex Borel measure μ on \mathbb{D} is a Carleson measure if and only if there exists a constant $c > 0$ such that

$$\int_\mathbb{D} |f|^2 \, d|\mu| \leq c \cdot \|f\|^2_2$$

for every $f \in H^2$, or equivalently, the identical imbedding operator I_μ from H^2 into $L^2(\mathbb{D}, |\mu|)$, given by

$$I_\mu f = f \quad (f \in H^2),$$

is bounded. If

$$\lim_{h \to 0} \frac{|\mu|(S_{\theta_0, h})}{h} = 0,$$

the measure μ is called a vanishing Carleson measure. In this case I_μ becomes a compact operator.

An interesting relation between Hankel matrices and Carleson measures was studies by [25] (see also [18]): An infinite Hankel matrix $\{\alpha_{j+k}\}_{j,k \geq 0}$ determines a bounded operator on ℓ^2 if and only if there exists a Carleson measure μ on \mathbb{D} such that $\alpha_j = \int_\mathbb{D} w^j \, d\mu(w)$ for all $j \geq 0$. As a result, for a measure μ on the segment $(-1, 1)$, the moment matrix $T(\mu)$ is bounded if and only if μ is a Carleson measure. In particular, we can see that T_μ is bounded.

We extend this result to the case when μ is a positive measures on \mathbb{D}. To do this, we first observe the following lemma.

Lemma 2.3. Let $\mu \in M(\mathbb{D})$. Then

$$\langle T_\mu f, g \rangle = \int_\mathbb{D} f \bar{g} \, d\mu$$

for every $f \in \mathcal{D}(T_\mu)$ and $g \in C_A(\mathbb{D})$.

Proof. The proof of the lemma for measures on \mathbb{T} can be found in [17]. The proof of the lemma for measures on \mathbb{D} is exactly same. For the sake of completeness, we give the proof.

Suppose that $f \in D(T_\mu)$ and $g \in C_A(\mathbb{D})$, so that $T_\mu f \in H^2$. Write $T_\mu f = \sum_{n=0}^{\infty} a_n z^n$ and $g = \sum_{n=0}^{\infty} b_n z^n$. Then

$$\langle T_\mu f, g \rangle = \sum_{n=0}^{\infty} a_n b_n.$$

By (3), for each $z \in \mathbb{D}$,

$$(T_\mu f)(z) = \sum_{n=0}^{\infty} \left[\int_{\mathbb{T}} f(w) \overline{w^n} d\mu(w) \right] z^n.$$

Hence we have

$$a_n = \int_{\mathbb{T}} f(w) \overline{w^n} d\mu(w) \quad (n = 0, 1, 2, \ldots).$$

Observe that, for each $0 < r < 1$,

$$g_r = \sum_{n=0}^{\infty} b_n r^n z^n \in C_A(\mathbb{D}).$$

It follows that

$$\langle T_\mu f, g_r \rangle = \sum_{n=0}^{\infty} a_n \overline{b_n r^n} = \sum_{n=0}^{\infty} \int_{\mathbb{T}} f(w) \overline{w^n} \overline{w^n r^n} d\mu(w)$$

$$= \int_{\mathbb{T}} f(w) \sum_{n=0}^{\infty} b_n r^n w^n d\mu(w) = \int_{\mathbb{D}} f(w) g_r(w) d\mu(w).$$

If we let $r \to 1$, then $\|g - g_r\|_{\infty} \to 0$, and hence $\langle T_\mu, g_r \rangle \to \langle T_\mu, g \rangle$ and $\int_{\mathbb{T}} f(z) d\mu \to \int_{\mathbb{D}} f(z) d\mu$. This completes the proof of the lemma. □

Now we have:

Theorem 2.4. Let μ be a positive finite Borel measure on \mathbb{D}. Then the following statements are equivalent:

(a) μ is a Carleson measure.

(b) T_μ is densely defined and bounded on its domain.

Proof. (a) \Rightarrow (b). Suppose that μ is a Carleson measure. Then there exists a constant $c > 0$ such that

$$\int_{\mathbb{D}} |f| \, d\mu \leq c \|f\|_2 \|g\|_2$$

for every $f, g \in C_A(\mathbb{D})$. Let $n \in \mathbb{N}_0$ and let $f(z) = z^n$. Then

$$T_\mu f(z) = \int_{\mathbb{D}} \frac{w^n}{1 - wz} \, d\mu(w) = \sum_{j=0}^{\infty} \int_{\mathbb{D}} w^n \overline{w^j} \, d\mu(w)z^j = \sum_{j=0}^{\infty} \mu_{n,j} z^j.$$

This completes the proof of the lemma.
For each \(k \in \mathbb{N}_0 \), put \(p_k(z) = \sum_{j=0}^k \mu_{n,j} z^j \). Then
\[
\int_{\mathbb{D}} |p_k|^2 d\mu = \int_{\mathbb{D}} z^n \sum_{j=0}^k \mu_{n,j} z^j d\mu(z) = \sum_{j=0}^k |\mu_{n,j}|^2 = \|p_k\|_2^2.
\]
Since \(\int_{\mathbb{D}} |p_k|^2 d\mu \leq c\|f\|_2\|p_k\|_2 \), it follows that \(\|p_k\|_2 \leq c\|f\|_2 \). Hence
\[
\|T_\mu f\|_2^2 = \sum_{j=0}^\infty |\mu_{n,j}|^2 = \lim_{k \to \infty} \|p_k\|_2^2 \leq c\|f\|_2 < \infty.
\]
Therefore, \(T_\mu f \in H^2 \), i.e., \(f \in \mathcal{D}(T_\mu) \). We have shown that \(\mathcal{D}(T_\mu) \) contains every monomial \(z^n \). Since \(\mathcal{D}(T_\mu) \) is a linear space, it contains all polynomials. Hence \(\mathcal{D}(T_\mu) \) is dense in \(H^2 \) and \(T_\mu \) is bounded on \(\mathcal{D}(T_\mu) \).

(b) \(\Rightarrow \) (a). Suppose that \(\mathcal{D}(T_\mu) \) is dense in \(H^2 \) and \(T_\mu \) is bounded on \(\mathcal{D}(T_\mu) \). By Lemma 2.3, for every \(f \in \mathcal{D}(T_\mu) \),
\[
\int_{\mathbb{D}} |f|^2 d\mu = \|\langle T_\mu f, f \rangle\| \leq \|T_\mu\||f||f||^2.
\]
Define \(I_\mu : \mathcal{D}(T_\mu) \to L^2(\mathbb{D}, \mu) \) by \(I_\mu f = f \) for \(f \in \mathcal{D}(T_\mu) \). By the above inequality, we may extend \(I_\mu \) to a bounded operator on \(H^2 \) with bound \(\|T_\mu\|^{1/2} \).

Then, for every \(f \in H^2 \), we have
\[
\int_{\mathbb{D}} |I_\mu f|^2 d\mu \leq \|T_\mu\||f||f||^2.
\]
Now let \(f \in H^2 \) and let \(\{f_n\} \) be a sequence in \(\mathcal{D}(T_\mu) \) which converges to \(f \). Then \(f_n(z) \to f(z) \) for every \(z \in \mathbb{D} \). On the other hand, since \(I_\mu \) is bounded, we have \(I_\mu f_n = f_n \to I_\mu f \) in \(L^2(\mathbb{D}, \mu) \). It follows from Fatou’s lemma that
\[
\int_{\mathbb{D}} |I_\mu f - f_n|^2 d\mu \leq \liminf_{n \to \infty} \int_{\mathbb{D}} |I_\mu f - f_n|^2 d\mu = \liminf_{n \to \infty} \|I_\mu f - f_n\|_{L^2(\mathbb{D}, \mu)}^2 = 0.
\]
Thus \(I_\mu f = f \) a.e. \([\mu] \). Hence we have \(\int_{\mathbb{D}} |f|^2 d\mu \leq \|T_\mu\||f||f||^2 \) for every \(f \in H^2 \), i.e., \(\mu \) is a Carleson measure. \(\square \)

Remark 2.5. A similar argument shows that \(\mathcal{H}_\mu \) is densely defined and bounded on its domain whenever \(\mu \) is a Carleson measure. For the converse, however, even in the case of \(\mathcal{D}(\mathcal{H}_\mu) = C_A(\mathbb{D}) \), we can only guarantee that there exists a Carleson measure \(\nu \) such that \(\mu_n = \nu_n \) for \(n \in \mathbb{N} \).

3. The Hilbert–Schmidt class of \(\mathcal{H}_\mu \)

For \(1 \leq p \leq \infty \), let \(S_p \) denote the Schatten \(p \)-class of operators on \(H^2 \) (or \(\ell^2 \)). If \(p = 1 \), the following is known [18]: For \(\mu \in M(\mathbb{D}) \), \(\mathcal{H}(\mu) \in S_1 \) if and only if \(H(\mu) = H(\nu) \) for some finite complex measure \(\nu \) such that
\[
\int_{\mathbb{D}} \frac{1}{1 - |w|^2} \, d\mu(w) < \infty.
\]
In particular, if μ is a measure on $(-1,1)$ and $H(\mu) \in S_1$, then μ satisfies
\[\int_{(-1,1)} \frac{1}{1 - t^2} \, d\mu(t) < \infty. \]

Note that if μ is a complex measure on \mathbb{D} satisfying (7), then μ is a vanishing Carleson measure.

Question 3.1. Under what conditions on μ does $H(\mu)$ belong to the Hilbert–Schmidt class S_2 (or S_2)?

If μ is a positive Borel measure on $[0,1)$, answers to the question are given by [5] and [12]:

Theorem 3.2 ([5]). Assume $1 < p < \infty$ and let μ be a positive Borel measure on $[0,1)$. Then, $H(\mu) \in S_p$ if and only if $\sum_{n=0}^{\infty} (n+1)^{p-1} \hat{\mu}(n) < \infty$.

Theorem 3.3 ([12]). Let μ be a finite positive Borel measure on $[0,1)$ and suppose that $H(\mu)$ is bounded on H^2. Then $H(\mu) \in S_2$ if and only if
\[\int_{[0,1]} \frac{\mu([t,1))}{(1-t^2)^2} \, d\mu(t) < \infty. \]

By using this, we can find measures μ such that $H_\mu \in S_2 \setminus S_1$ or $H_\mu \in S_\infty \setminus S_2$, e.g., $\mu := \sum_{n \geq 1} c_n \delta_{\lambda_n}$, where $c_n = 2^{-n}$, $\lambda_n = 1 - n \cdot 2^{-n}$.

Remark 3.4. (a) Theorem 3.2 also holds for a positive Borel measure on $(-1,1)$. To see this, define $\mu'(E) := \mu(-E)$ for $E \subseteq (-1,1)$. Then $\mu'(n) = (-1)^n \mu_n$.

Define $\hat{\mu} := \mu_{[0,1)} + \mu'_{[0,1)}$. (Here, if $\mu_{[0,1)}$ is the measure on $[0,1)$ given by $\mu_{[0,1)}(E) = \mu(E \cap [0,1)$.) Then (i) $\hat{\mu}$ is a measure supported on $[0,1)$; (ii) $\hat{\mu}_n = \mu_n = |\mu_n|$, if n is even; and (iii) $\hat{\mu}_n = \int_{(-1,1]} |t^n| \, d\mu \geq |\mu_n|$, if n is odd.

If $H(\mu) \in S_p$, then it is easy to show that $H(\hat{\mu}) \in S_p$. Hence, by Theorem 3.2, $\sum_{n=0}^{\infty} (n+1)^{p-1} |\mu_n|^p < \infty$. Conversely, suppose that $\sum_{n=0}^{\infty} (n+1)^{p-1} |\mu_n|^p < \infty$. Put
\[a_n := \int_{[0,1]} t^n \, d\mu_{[0,1)} \quad \text{and} \quad b_n := \int_{(0,1)} t^n \, d\mu'_{[0,1)}. \]

Then $a_n + b_n = \mu_n$ whenever n is even, so
\[\sum_{n, \text{even}} (n+1)^{p-1} a_n^p < \infty \quad \text{and} \quad \sum_{n, \text{even}} (n+1)^{p-1} b_n^p < \infty. \]

Since $\{a_n\}$ is a decreasing sequence of nonnegative numbers, it follows that $\sum_{n=0}^{\infty} (n+1)^{p-1} a_n^p < \infty$. By Theorem 3.2, we have $H(\mu_{[0,1)}) \in S_p$. In the same way, $H(\mu'_{[0,1)}) \in S_p$.

Observe that $b_n = (-1)^n \int_{(-1,0)} t^n \, d\mu$. Thus $H(\mu_{(-1,0)}) = U \mathcal{H}_{\mu_{[0,1)}} U \in S_p$, where U is the unitary map which maps e_n to $(-1)^n e_n$.

Therefore $\mathcal{H}_{\mu} = \mathcal{H}_{\mu_{[0,1)}} + \mathcal{H}_{\mu_{(-1,0)}} \in S_p$.

TOEPLITZ AND HANKEL OPERATORS WITH CARLESON MEASURE SYMBOLS 99
(b) By Theorem 3.2, we obtain
\[H(\mu) \in S_3 \iff \sum_{n=0}^{\infty} (n+1)^2 \hat{\mu}(n)^3 < \infty. \]

Observe that
\[\sum_{n=0}^{\infty} (n+1)^2 \hat{\mu}(n)^3 \approx \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} \hat{\mu}(n)^3 = \sum_{i,j,k} \hat{\mu}(i+j+k)^3, \]
\[\sum_{i,j,k} \hat{\mu}(i+j+k)^3 = \int_{[0,1]} \int_{[0,1]} \int_{[0,1]} \frac{1}{1-\tau su} \ d\mu(u)\mu(s)\mu(t) \approx \int_{[0,1]} \frac{\mu([t,1])^2}{(1-t)^3} \ d\mu(t). \]

Therefore
\[H(\mu) \in S_3 \iff \int_{[0,1]} \frac{\mu([t,1])^2}{(1-t)^3} \ d\mu(t) < \infty. \]

In a similar manner, it may be true that, for \(p = 1, 2, 3, \ldots \),
\[H(\mu) \in S_p \iff \int_{[0,1]} \frac{\mu([t,1])^{p-1}}{(1-t)^p} \ d\mu(t) < \infty. \]

Now we try to extend Theorem 3.3 to a measure on \(\mathbb{D} \). Since \(S_1 \subseteq S_2 \), the condition on \(\mu \) must be weaker than (7). For \(0 < t < 1 \), define
\[\mathbb{D}_t = \{ z : |z| < t \}, \quad \mathbb{T}_t = \{ z : |z| = t \}, \quad \mathbb{A}_t = \{ z : t < |z| < 1 \}. \]

Note that \(\mathbb{D}_t = \mathbb{D}_t \cup \mathbb{T}_t, \mathbb{T}_t = \mathbb{A}_t \cup \mathbb{T}_t, \) and \(\mathbb{D} = \mathbb{D}_t \cup \mathbb{A}_t \cup \mathbb{T}_t. \) We first consider the positive measure on \(\mathbb{D} \) such that

(8) \[\int_{\mathbb{D}} \frac{\mu(\mathbb{A}_t)}{(1-|z|)^2} \ d\mu(z) < \infty. \]

Proposition 3.5. If \(\mu \geq 0 \) on \(\mathbb{D} \) satisfies (8), then \(\mu \) is a vanishing Carleson measure on \(\mathbb{D} \).

Proof. Observe that
\[\int_{\mathbb{A}_t} \mu(\mathbb{A}_t) \ d\mu(z) = \int_{\mathbb{A}_t} \int_{\mathbb{D}} \chi_{\mathbb{A}_t}(w) \ d\mu(w) \ d\mu(z) = \int_{\mathbb{D}} \int_{\mathbb{A}_t} \chi_{\mathbb{A}_t}(w) \ d\mu(w) \ d\mu(z) = \int_{\mathbb{D}} \mu(\mathbb{A}_t \cap \mathbb{D}(w)) \ d\mu(w) \]
\[= \int_{\mathbb{D}} \mu(\mathbb{A}_t \cap \mathbb{D}(w)) \ d\mu(w) = \int_{\mathbb{A}_t} \mu(\mathbb{A}_t \cap \mathbb{D}(w)) \ d\mu(w). \]

Hence
\[2 \int_{\mathbb{A}_t} \mu(\mathbb{A}_t) \ d\mu(z) = \int_{\mathbb{A}_t} \mu(\mathbb{A}_t) \ d\mu(z) + \int_{\mathbb{A}_t} \mu(\mathbb{A}_t \cap \mathbb{D}(w)) \ d\mu(z) \]
\[= \int_{\mathbb{A}_t} \mu(\mathbb{A}_t) \ d\mu(z) + \int_{\mathbb{A}_t} \mu(\mathbb{T}_t) \ d\mu(z). \]
\[\mu(\mathcal{A}_s)^2 + \int_{\mathbb{T}} \mu(\mathbb{T}|z|) \, d\mu(z). \]

In particular,
\[\mu(\mathcal{A}_s)^2 \leq 2 \int_{\mathbb{T}} \mu(\mathcal{A}_{|z|}) \, d\mu(z). \]

Let \(\epsilon > 0 \). Then there exists \(s_0 > 0 \) such that \(s \geq s_0 \) implies
\[\int_{\mathbb{T}} \mu(\mathcal{A}_{|z|}) \frac{1}{(1-|z|)^2} \, d\mu(z) < \epsilon. \]

It follows from (9) that
\[2\epsilon > 2 \int_{\mathbb{T}} \mu(\mathcal{A}_{|z|}) \frac{1}{(1-|z|)^2} \, d\mu(z) \geq \frac{2}{(1-s)^2} \int_{\mathbb{T}} \mu(\mathcal{A}_{|z|}) \, d\mu(z) \geq \frac{\mu(\mathcal{A}_s)^2}{(1-s)^2} \geq \frac{\mu(S_{\theta,1-s})^2}{(1-s)^2} \]
for every \(\theta \). This shows that \(\mu \) is a vanishing Carleson measure. \qed

Theorem 3.6. If a positive measure \(\mu \) on \(\mathbb{D} \) satisfies (8), then \(H(\mu) \in S_2 \).

Proof. Suppose that \(\mu \) satisfies the above condition. Since
\[\|H(\mu)\|_{S^2} = \sum_{i,j=0}^{\infty} |\hat{\mu}(i,j)|^2 \]
\[\leq \sum_{i,j=0}^{\infty} \int_{\mathbb{D}} \int_{\mathbb{D}} (|z||w|)^{i+j} \, d\mu(z) \, d\mu(w) = \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{d\mu(z) \, d\mu(w)}{(1-|z||w|)^2}, \]
it suffices to show that the last integral is finite. Observe that for any positive measurable function \(f(z,w) \), we have
\[\int_{\mathbb{D}} \int_{\mathbb{D}} f(z,w) \, d\mu(w) \, d\mu(z) = \int_{\mathbb{D}} \int_{\mathbb{D}} f(z,w) \chi_{\mathbb{D}|z|}(w) \, d\mu(w) \, d\mu(z) \]
\[= \int_{\mathbb{D}} \int_{\mathbb{D}} f(z,w) \chi_{\mathbb{A}|w|}(z) \, d\mu(z) \, d\mu(w) \]
\[= \int_{\mathbb{D}} \int_{\mathbb{D}} f(z,w) \, d\mu(z) \, d\mu(w). \]

Hence
\[\int_{\mathbb{D}} \int_{\mathbb{D}} \frac{d\mu(z) \, d\mu(w)}{(1-|z||w|)^2} = \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{d\mu(z) \, d\mu(w)}{(1-|z||w|)^2} + \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{d\mu(z) \, d\mu(w)}{(1-|z||w|)^2} \]
\[\leq \int_{\mathbb{D}} \frac{\mu(\mathbb{T}_{|z|})}{(1-|z|)^2} \, d\mu(z) + \int_{\mathbb{D}} \frac{\mu(\mathcal{A}_{|z|})}{(1-|z|)^2} \, d\mu(z) \]
\[\leq 2 \cdot \int_{\mathbb{D}} \frac{\mu(\mathcal{A}_{|z|})}{(1-|z|)^2} \, d\mu(z) < \infty. \] \qed
Note that the converse is not true: If m_2 is a Lebesgue measure on \mathbb{D}, then $H(m_2)$ is of finite rank, but

$$\int_{\mathbb{D}} \frac{\mu(\overline{A}_z)}{(1-|z|^2)} \, dm_2(z) = \int_0^{2\pi} \int_0^1 \frac{\pi(1-r^2)}{(1-r^2)^2} r \, dr \, d\theta = \infty.$$

References

Jaehui Park
Research Institute of Mathematics
Seoul National University
Seoul 08826, Korea
Email address: nephenjia@snu.ac.kr