Acknowledgement
본 연구는 한국연구재단의 지원 (No. 2021-R1F1A1053438)을 받아 수행되었습니다.
References
- Seong-Uk, K., Seung-Hui, O., Jin-A, Y., 2012, "Comparison of Aerodynamic Characteristics of a Thick Airfoil for Wind Turbines using XFOIL and EDISON CFD." Korea Institute of Science and Technology Information, pp. 65-68.
- Morgado, J., Vizinho, R., Silvestre, M. A. R., & Pascoa, J. C., 2016, "XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils." Aerospace Science and Technology, 52, pp. 207-214. https://doi.org/10.1016/j.ast.2016.02.031
- Miyanawala, T. P., & Jaiman, R. K., 2017, "An efficient deep learning technique for the Navier-Stokes equations: Application to unsteady wake flow dynamics." arXiv preprint arXiv: 1710.09099.
- Drela, M., 1989, "XFOIL: An analysis and design system for low Reynolds number airfoils." In Low Reynolds Number Aerodynamics, Springer, Berlin, Heidelberg, pp.1-12.
- Xflr5., 2019, http://www.xflr5.tech/xflr5.html.
- Gunel, O., Koc, E., & Yavuz, T., 2016, November, "CFD vs. XFOIL of airfoil analysis at low reynolds numbers." In 2016 IEEE International Conference on Renewable Energy Research and Applications, pp. 628-632.
- Guo, X., Li, W., & Iorio, F., 2016, August, "Convolutional neural networks for steady flow approximation." In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 481-490.
- Yilmaz, E., and German, B., 2017, "A convolutional neural network approach to training predictors for airfoil performance." 18th AIAA/ISSMO multidisciplinary analysis and optimization conference.
- Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A., 2017, "Inception-v4, inception-resnet and the impact of residual connections on learning." In Thirty-first AAAI conference on artificial intelligence.
- Srikanth Tammina. , 2019, "Transfer learning using vgg-16 with deep convolutional neural network for classifying images." International Journal of Scientific and Research Publications, 9(10), pp.143~150.
- Walters, D. K., and Leylek, J.H., 2004, "A new model for boundary layer transition using a single-point RANS approach.", J. Turbomach. 126.1.
- Walters, D. K., and Cokljat, D., 2008, "A three-equation eddy-viscosity model for Reynoldsaveraged Navier-Stokes simulations of transitional flow.", Journal of fluids engineering 130.12.
- Azmi, A. R. S., Sapit, A., Mohammed1,A. N., Razali, M. A., Sadikin, A., and Nordin, N., 2007, "Study on airflow characteristics of rear wing of F1 car.", IOP Conference Series: Materials Science and Engineering. Vol. 243.
- Bora, Kim., 2022, " Prediction of the pressure field over airfoils using convolutional neural network.", Korea Maritime Ocean University., Master's thesis.
- Walters, D. K., & Cokljat, D., 2008, "A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow." Journal of Fluids Engineering, 130(12), p.121401. https://doi.org/10.1115/1.2979230
- Azmi, A. R. S., Sapit, A., Mohammed, A. N., Razali, M. A., Sadikin, A., & Nordin, N., 2017, September, "Study on airflow characteristics of rear wing of F1 car." In IOP Conference Series: Materials Science and Engineering, 243(1), 012030. https://doi.org/10.1088/1757-899X/243/1/012030
- Selig, M. S., & McGranahan, B. D., 2004, "Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines." Journal of Solar Energy Engineering., 126(4), pp. 986-1001. https://doi.org/10.1115/1.1793208
- Ronneberger, Olaf, Philipp Fischer, and Thomas Brox., 2015, "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, pp.234~241.
- Simonyan, K., & Zisserman, A., 2014, "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv: 1409.1556.
- Selig, M. S., and McGranahan, B, D., 2004, "Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines." , J. Sol. Energy Eng. 126.4.
- Chicco, D., Warrens, M. J., & Jurman, G., 2021, "The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation." PeerJ Computer Science, 7, p. 623.
- Hore, A., and Ziou, D., 2010, "Image quality metrics: PSNR vs. SSIM." 2010 20th international conference on pattern recognition. IEEE.